Uniaxial Compression Experiments on PZT 95/5-2Nb Ceramic: Evidence for an Orientation-Dependent, ''Maximum Compressive Stress'' Criterion for Onset of the F(R1)()A(O) Polymorphic Phase Transformation

PDF Version Also Available for Download.

Description

Some time ago we presented evidence that, under nonhydrostatic loading, the F{sub R1} {r_arrow} A{sub O} polymorphic phase transformation in unpoled PZT 95/5-2Nb ceramic began when the maximum compressive stress equaled the hydrostatic pressure at which the transformation otherwise took place. More recently, we showed that this simple stress criterion did not apply to nonhydrostatically compressed, poled ceramic. However, unpoled ceramic is isotropic, whereas poled ceramic has a preferred crystallographic orientation and is mechanically anisotropic. If we further assume that the transformation depends not only on the magnitude of the compressive stress, but also its orientation relative to some feature(s) ... continued below

Physical Description

Medium: P; Size: 74 pages

Creation Information

Carlson, L.W.; Grazier, J.M.; Holcomb, D.J.; Montgomery, S.T. & Zeuch, D.H. January 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Some time ago we presented evidence that, under nonhydrostatic loading, the F{sub R1} {r_arrow} A{sub O} polymorphic phase transformation in unpoled PZT 95/5-2Nb ceramic began when the maximum compressive stress equaled the hydrostatic pressure at which the transformation otherwise took place. More recently, we showed that this simple stress criterion did not apply to nonhydrostatically compressed, poled ceramic. However, unpoled ceramic is isotropic, whereas poled ceramic has a preferred crystallographic orientation and is mechanically anisotropic. If we further assume that the transformation depends not only on the magnitude of the compressive stress, but also its orientation relative to some feature(s) of PZT 95/5-2Nb's crystallography, then these disparate results can be qualitatively resolved. In this report, we first summarize the existing results for unpoled and poled ceramic. Using our orientation-dependent hypothesis and these results, we derive simple arithmetic expressions that accurately describe our previously-observed effects of nonhydrostatic stress on the transformation of unpoled ceramic. We then go on to test new predictions based on the orientation-dependent model. It has long been known that the transformation can be triggered in uniaxial compression: the model specifically requires a steadily increasing axial stress to drive the transformation of a randomly-oriented polycrystal to completion. We show that when the stress is held constant during uniaxial compression experiments, the transformation stops, supporting our hypothesis. We close with a discussion of implications of our model, and ways to test it using poled ceramic.

Physical Description

Medium: P; Size: 74 pages

Notes

OSTI as DE00003862

Source

  • Other Information: PBD: 1 Jan 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND99-0077
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/3862 | External Link
  • Office of Scientific & Technical Information Report Number: 3862
  • Archival Resource Key: ark:/67531/metadc683173

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 12, 2016, 1:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Carlson, L.W.; Grazier, J.M.; Holcomb, D.J.; Montgomery, S.T. & Zeuch, D.H. Uniaxial Compression Experiments on PZT 95/5-2Nb Ceramic: Evidence for an Orientation-Dependent, ''Maximum Compressive Stress'' Criterion for Onset of the F(R1)()A(O) Polymorphic Phase Transformation, report, January 1, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc683173/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.