Engineering Data Transmittal

2. To: (Receiving Organization) Distribution

3. From: (Originating Organization) Effluent Treatment and Laboratory Projects

5. Proj./Prog./Dept./Div.: Project W-087

11. Receiver Remarks: None

DATA TRANSMITTED

<table>
<thead>
<tr>
<th>(A) Item No.</th>
<th>(B) Document/Drawing No.</th>
<th>(C) Sheet No.</th>
<th>(D) Rev. No.</th>
<th>(E) Title or Description of Data Transmitted</th>
<th>(F) Approval Designator</th>
<th>(G) Reason for Transmittal</th>
<th>(H) Originator Disposition</th>
<th>(I) Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHC-SD-W087-ATR-001</td>
<td>N/A</td>
<td>0</td>
<td>W-087 Acceptance Test Report</td>
<td>N/A</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

KEY

<table>
<thead>
<tr>
<th>(G) Reason</th>
<th>(H) Disp.</th>
<th>(I) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Design Autor</td>
<td>JJ Beyer</td>
<td>52-54</td>
<td>12/16/96</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Design Agent</td>
<td>DS McShane</td>
<td>62-54</td>
<td>12/10/96</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Cog. Eng.</td>
<td>222-S LD Goodwin</td>
<td>S6-70</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Cog. Mgr.</td>
<td>222-S SL Bray</td>
<td>S6-70</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>QA HW Henrik</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>(G) Reason</th>
<th>(H) Disp.</th>
<th>(I) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Design Autor</td>
<td>JJ Beyer</td>
<td>52-54</td>
<td>12/16/96</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Design Agent</td>
<td>DS McShane</td>
<td>62-54</td>
<td>12/10/96</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Cog. Eng.</td>
<td>222-S LD Goodwin</td>
<td>S6-70</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Cog. Mgr.</td>
<td>222-S SL Bray</td>
<td>S6-70</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>QA HW Henrik</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19. Authorized Representative Date: 1/16/96

21. DOE APPROVAL (if required)

<table>
<thead>
<tr>
<th>Ctrl. No.</th>
<th>[] Approved</th>
<th>[] Approved w/comments</th>
<th>[] Disapproved w/comments</th>
</tr>
</thead>
</table>

Signature of EDT Originator:

Signature of Receiving Organization:

Signature of Design Author/Contract Manager:

BD-7400-172-1 (07/91)
W-087 Acceptance Test Report

A. N. Joshi
Fluor Daniel Northwest, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-87RL10930

EDT/ECN: EDT-4607285 UC: 2030
Org Code: 04E00 Charge Code: YL411
B&R Code: EW3130030 Total Pages: 26

Key Words: Acceptance Test Report for Project W-087 Underground Transfer Line from the 222-S Laborator to the S-Tank Farm.

Abstract: An Acceptance Test Report for the testing of Pumps, Leak Detectors, and Controls of an underground transfer line.
ACCEPTANCE TEST PROCEDURE WHC-SD-W087-ATR-001

TEST TITLE Radioactive Waste Transfer Line Equipment, Leak Detection System, and Transfer Pump

LOCATION 219-S, 242-S, 244-S, 222-S Room 3B

PROJECT NUMBER W-087 WORK ORDER

PROJECT TITLE Radioactive Waste Transfer Line Replacement

Prepared By
ICF Kaiser Hanford Company
Richland, Washington

For Westinghouse Hanford Company
Subcontract WHC 380393

PROCEDURE APPROVAL

ICF KAISER HANFORD COMPANY (ICF KH)

Author

3/1/96

Robert B. Jeffress

5/10/96

Robert B. Jeffress

5/10/96

Date

Technical Documents

Date

Quality Assurance

Date

Projects Department

5/13/96

Tom J. Alkemade

5/13/96

Date

Safety

5/13/96

Date

Analytical Services

5/13/96

Date

Quality Assurance - Tank Farm

5/13/96

Date
EXECUTION AND TEST APPROVAL

EXECUTED BY

Arun Toshi / Doug Spencer 10/14/96
Test Director/Organization Date

Cliff Lorsen ICF Kaiser 10/14/96
Recorder/Organization Date

John Stillmenga ICF 10/14/96
Test Operator/Organization Date

A-E APPROVAL

ICF Kaiser Hanford Company (ICF KH)
Without With exceptions With exceptions
exceptions resolved outstanding

Cliff Lorsen 10/14/96 12/5/96
Acceptance Inspection Date Design Engineer Date

Dave McShane ICF Kaiser 10/14/96
Witness/Organization Date

Dave Berg Westinghouse 10/14/96
Westinghouse Hanford Company (WHC)
Witness/Organization Date

Without With exceptions With exceptions
exceptions resolved outstanding

[Signature] 12/4/96 12/4/96
<Title or Department> Date <Title or Department> Date

Bob Shaft Westinghouse 10/14/96
Witness/Organization Date

A. J. Johnson 12/4/96
Project Manager Date

WITNESSES

Dave McShane ICF Kaiser 10/14/96
Title III Inspector Date

Bob Shaft Westinghouse 10/14/96
Witness/Organization Date

TEST APPROVAL AND ACCEPTANCE

Westinghouse Hanford Company (WHC)

D. O. S. Mar + Shift Mar 12/4/96

WHC-SD-W087-ATR-001
Rev. 0
12/04/96
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE/PROCEDURE APPROVAL</td>
<td>1</td>
</tr>
<tr>
<td>EXECUTION AND TEST APPROVAL</td>
<td>2</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>5</td>
</tr>
<tr>
<td>RESPONSIBILITIES</td>
<td>6</td>
</tr>
<tr>
<td>CHANGE CONTROL</td>
<td>5</td>
</tr>
<tr>
<td>EXECUTION</td>
<td>9</td>
</tr>
<tr>
<td>EXCEPTIONS</td>
<td>10</td>
</tr>
<tr>
<td>PREREQUISITES, EQUIPMENT/INSTRUMENTS, COMPONENT LOCATIONS, AND ABBREVIATIONS</td>
<td>11</td>
</tr>
<tr>
<td>LEAK DETECTION AND MONITORING SYSTEM</td>
<td>13</td>
</tr>
<tr>
<td>TRANSFER PUMP P1 SPEED CONTROL</td>
<td>16</td>
</tr>
<tr>
<td>MOTOR OPERATED VALVES HV-P1 AND HV-305</td>
<td>19</td>
</tr>
<tr>
<td>INTEGRATED SYSTEM (DRY) TEST AND INTERLOCK VERIFICATION</td>
<td>22</td>
</tr>
<tr>
<td>EXCEPTION FORM</td>
<td>25</td>
</tr>
</tbody>
</table>

NOTE: At completion of test, enter pages added during performance of test to this Table of Contents.
PURPOSE

This Acceptance Test Procedure/Operational Test Procedure (ATP/OTP) has been prepared to demonstrate that the Electrical/Instrumentation and Mechanical systems function as required by project criteria and to verify proper operation of the integrated system including the interlocks.

The equipment to be tested includes the following:

a. Leak detection system operation and controls.
b. Electrical interlocks.
c. Transfer pump operation.
d. Vacuum breaker system interlocks.

The following tests will ensure the operation of the equipment used in support of radioactive liquid transfer from 222-S Laboratory Facility to 219-S, 242-S, and then to 244-S. This test will include checks on associated annunciator systems.

The leak detection system uses 3 leak detector elements (LDEs) to monitor the entire length of pipe installed between 219-S and 244-S.

a. LDE-306A monitors approximately 925 feet of pipe between 219-S and LDE-306A.
b. LDE-306B monitors approximately 1000 feet of pipe between LDE-306A and LDE-306B.
c. LDE 306C monitors approximately 1005 feet of pipe between LDE-306B and LDE-306C.

The leak detectors are connected to leak detection panels mounted locally. The signals are transmitted to control panels located at 219-S, 242-S and 244-S. Leak detection annunciation is provided at 219-S, 222-S Room 3B, 242-S and 244-S; and has capability to connect to Central Alarm Surveillance System (CASS).

The leak detection signals are connected to the transfer pump interlock. The pump interlocks are arranged such that evidence of leak in any section of the pipe, or a pump diaphragm leak, or a manual override by the DENY pushbutton will stop pump operation.

The transfer pump is air operated diaphragm type, operated by pneumatic controller. Air supply to the pump is controlled by an in line motor operated valve. If leak detection system is activated, the pump interlock circuit will prevent pump operation. In addition, if pump diaphragm should leak, pump interlock circuit will prevent pump operation.
REFERENCES

2.1 DRAWINGS

2.1.1 Project W-087 Drawings

H-2-820841, Sh 1 and Z, Rev 0 Instrumentation Conn. Diagrams
H-2-820842, Sh 1, Rev. 0 242-S Panel A Modifications
H-2-820843, Sh 1, Rev. 0 242-S Panel A Interconn. Diagram
H-2-820848 Sh 1, Rev 0 Leak Detection, Elem. Diagram

2.1.2 Project W-178 Drawings Showing Interface with Project W-087

H-2-825536, Sh 1, Rev. 0 Cell A & Operating Gallery
H-2-825549 Sh 1, Rev 0 Leak Detection Panel IP2
H-2-825550 Sh 1, Rev 0 Control Panel IP3

2.2 SPECIFICATIONS

W-087-C1, Rev 0 Construction Specification
W-087-C2, Rev 0 Construction Specification

2.3 VENDOR INFORMATION

a. Leak detection system (B/W Magnatek): VI 22687, Supplement No. 8.

b. Diaphragm pump and diaphragm leak detection and speed control unit (Sandpiper): VI 22687, Supplement No. 1.

2.4 OTHER

a. Tank Farm Operating Procedure TO-410-950 (Draft).

c. Building Emergency Plan, WHC-IP-0263-TF.

e. Tank Farm Health and Safety Plan (HASP), WHC-SD-WM-HSP-002.

g. Environmental Compliance Manual, WHC-CM-7-5.

2.5 ENGINEERING CHANGE NOTICES (ECNS)

ECN W-087-12 ECN W-087-23 ECN W-087-26 ECN W-087-46 ECN W-087-50

WHC-SD-W087-ATR-001
Rev. 0
12/04/96
ECN W-087-54

Prior to final test approval, enter ECNs written against this ATP/OTP.

3 RESPONSIBILITIES

3.1 GENERAL

Each company or organization participating in this ATP will designate personnel to assume the responsibilities and duties as defined herein for their respective roles. The designees shall become familiar with this ATP and the systems involved to the extent that they can perform their assigned duties.

3.2 WHC PROJECT ENGINEER

3.2.1 Designates a Test Director.

3.2.2 Distributes the approved testing schedule before start of testing.

3.2.3 Schedules and conducts a pretest kickoff meeting with test participants when necessary.

3.2.4 Schedules prejob safety meetings.

3.2.5 Schedules a dry run when necessary.

3.2.6 Notifies concerned parties when a change is made in the testing schedule.

3.2.7 Notifies the persons supporting the test 2 days before the start of testing.

3.2.8 Coordinates testing with the 219-S, 222-S, 242-S, 244-S, 200-West Area, Tank Farm Managers, Tank Farm Operations Cognizant Engineer, and Shift Manager.

3.2.9 Acts as liaison between the participants in acceptance testing.

3.2.10 Signs Execution and Test Approval page when test is approved and accepted.

3.2.11 Takes necessary action to clear exceptions to the test.

3.2.12 Signs Exception Form when exception has been resolved.

3.2.13 Provides a distribution list for the approved and accepted ATP(ADR).

3.3 TEST DIRECTOR

3.3.1 Coordinates and directs acceptance testing.

3.3.2 Confirms that field testing and inspection of the system or portion of the system to be tested has been completed.
3.3.3 Stops any test which, in his or her judgment, may cause damage to the system until the problem has been resolved.

3.3.4 After verifying there is no adverse impact, may alter the sequence in which systems or subsystems are tested.

3.3.5 Ensures that required environmental conditions are maintained.

3.3.6 If a test is to be suspended for a period of time, ensures that the system is left in a safe mode.

3.3.7 Before restarting suspended test, reverifies the test prerequisites.

3.3.8 Initiates ECNs to document required changes to the ATP.

3.3.9 Reviews recorded data, discrepancies, and exceptions.

3.3.10 Obtains information or changes necessary to clear or resolve objections during the performance of the test.

3.3.11 Signs Execution and Test Approval page when test has been performed.

3.3.12 Signs Exception Form when exception has been resolved.

3.3.13 Obtains required signatures on the ATP Master prior to reproduction and distribution.

3.4 WITNESSES (Provided by Participating Organizations. One witness shall be a Title III acceptance inspector.)

3.4.1 Witness the tests.

3.4.2 Review results of testing.

3.4.3 Assist the Test Director when requested.

3.4.4 Sign Execution and Test Approval page when test has been performed.

3.4.5 Sign Exception Form when exception has been resolved.

3.5 RECORDER (Provided by ICF KH)

3.5.1 Prepares a Field copy from the ATP Master.

3.5.2 Records printed names, titles, and initials of all designated personnel on Field copy of ATP prior to start of testing.

3.5.3 Records test instrument identification numbers and calibration expiration dates, as required.

3.5.4 Initials and dates every test step on the Field copy as it is completed next to the step number or on a data sheet, when provided. Records test data. On data sheets where there is not room for both the initial and date, date may be entered at bottom of column.
3.5.5 Records objections and exceptions on an Exception form. Uses additional Exception forms as needed. Notifies the Test Director at time the objection is made.

3.5.6 Signs Execution and Test Approval page when test has been performed.

3.5.7 After test is finished, assigns alpha numeric page numbers to added data sheets and Exception forms. Records page numbers in the Table of Contents.

3.5.8 Transfers Field copy entries for each step to the Master in index or type, signs, and dates. Transmits the completed Master to the Test Director for approval signature routing. Transmits the Field copy to Construction Document Control for inclusion in the official project file.

3.5.9 Signs Exception Form when exception has been resolved and transmits to Test Director.

3.6 TEST OPERATOR

3.6.1 Performs test under direction of the Test Director.

3.6.2 Provides labor, equipment, and test instruments required for performing tests which have not been designated as being provided by others.

3.6.3 Requests in writing from the Test Director those services, materials, or equipment that have been designated as being supplied by others.

3.6.4 Confirms that all equipment required for performing test will be available at the start of testing.

3.6.5 Signs the Execution and Test Approval page.

3.7 A-E ACCEPTANCE INSPECTION, DESIGN ENGINEER, AND PROJECT MANAGER

3.7.1 Evaluate results.

3.7.2 Signs Exception Form when exception has been resolved.

3.8 TANK FARM SHIFT OPERATIONS MANAGER

3.8.1 Designs an operator to witness and/or complete the ATP/OTP for Tank Farms.

3.8.2 Assumes responsibility for the safe conduct of the ATP/OTP within Tank Farms.

3.8.3 Authorizes the start of the ATP/OTP for Tank Farms.

3.8.4 Signs Execution and Test Approval page when test is approved and accepted.

3.8.5 Signs Exception Form when exception has been resolved.
3.9 TANK FARM OPERATOR

3.9.1 Witnesses the test for Tank Farms.
3.9.2 Operates equipment as designated by the Test Director.
3.9.3 Signs Execution and Test Approval page when test has been completed.
3.9.4 Signs Exception Form when exception has been resolved.

3.10 TANK FARM COGNIZANT ENGINEER

3.10.1 Approves modifications to the ATP/OTP.
3.10.2 Signs Execution and Test Approval page when test has been completed.
3.10.3 Signs Exception Form when exception has been resolved.
3.10.4 Reviews recorded data, discrepancies, and exceptions.

4 CHANGE CONTROL

Required changes to this ATP must be processed on ECNs in accordance with company procedures. If a need for change is discovered in the course of running the test, the test director shall review the change(s) required to the procedure and discuss with the design engineer or representative. If the changes required do not affect the configuration, the changes shall be redlined and signed by the design engineer and the test director for incorporation into an ECN. During this resolution, other portions of the test, unaffected by the change, may proceed.

5 EXECUTION

5.1 OCCUPATIONAL SAFETY AND HEALTH

Individuals shall carry out their assigned work in a safe manner to protect themselves and others from undue hazards and to prevent damage to property and environment. Facility line managers shall assure the safety of activities within their areas to prevent injury, property damage, or interruption of operation. Performance of test activities shall always include safety and health aspects.

5.2 PERFORMANCE

5.2.1 Conduct testing in accordance with ICF KH Procedure CON 3.5 (Performance and Recording of Acceptance Test Procedures).
5.2.2 Perform test following the steps and requirements of this procedure.
6 EXCEPTIONS

6.1 GENERAL

Exceptions to the required test results are sequentially numbered and recorded on individual Exception forms. This enables case-by-case resolution and approval of each exception.

Errors/exceptions in the ATP itself shall NOT be processed as test exceptions (see Section 4 CHANGE CONTROL).

6.2 RECORDING

6.2.1 Number each exception sequentially as it occurs and record it on an Exception Form (KEH-428), sample appended.

6.2.2 Enter name and organization of objecting party for each exception.

6.2.3 Enter planned action to resolve each exception when such determination is made.

6.3 RETEST/RESOLUTION

Record the action taken to resolve each exception. Action taken may not be the same as planned action.

6.3.1 When action taken results in an acceptable retest, sign and date Retest Execution and Acceptance section of the Exception Form.

6.3.2 When action taken does not involve an acceptable retest, strike out the Retest Execution and Acceptance section of the Exception Form.

6.4 APPROVAL AND ACCEPTANCE

The customer provides final approval and acceptance of exceptions by checking one of the following on Exception Form:

6.4.1 Retest Approved and Accepted: Applicable when Retest Execution and Acceptance section is completed.

6.4.2 Exception Accepted-As-Is: Requires detailed explanation.

6.4.3 Other: Requires detailed explanation.

The customer signs and dates the Exception Form and obtains other customer internal approvals, if required.

6.5 DISTRIBUTION

A copy of the approved Exception Form is distributed to each participant. The signed original is attached to the ATP Master.
7 PREREQUISITES, EQUIPMENT/INSTRUMENTS, COMPONENT LOCATIONS, AND ABBREVIATIONS

7.1 PREREQUISITES

The following conditions shall exist at start of testing for that portion of the system being tested.

7.1.1 Systems have been inspected for compliance with construction documents.

7.1.2 Vendor data and operating instructions are at hand for each installed instrument, pump, and valve.

7.1.3 Reference documents (including this ATP) have been verified for correct revision number and outstanding ECNs.

7.1.4 A Job Safety Analysis has been prepared by ICF KH and a Prejob Safety Meeting has been conducted.

7.1.5 Test instruments have a valid calibration stamp attached. Test instrument identification numbers and calibration expiration dates have been recorded in Para 7.2.

7.1.6 Methods of water disposal have been approved by Facilities Management.

7.1.7 Power is available to energize the system: Circuit #3.

7.1.8 Annunciator lights have been tested.

7.1.9 Voice communications are available between 219-S, 222-S, 242-S, 244-S, leak detection sensor locations, and other locations determined to be appropriate by the test director.

7.1.10 Radiation Work Permits (RWPs) have been approved by the Operating Contractor. Attach RWPs to ATP.

7.1.11 Pump P1 spool piece is disconnected from Tank 102.

7.1.12 Project equipment and instruments have been identified by tag numbers.

7.1.13 Shop test results for Panels IP1, IP2, and IP3 are on file, for record, with ATP/OTP.

7.2 EQUIPMENT/INSTRUMENTS

Supplied by Test Operator unless otherwise noted.

7.2.1 Voltmeters (VOM): Instrument No. Expiration Date

7.2.2 Switchable Shorting Jumpers: Length, 1 foot through 6 feet as required. ECN-66
7.2.3 Pressure Gages: 0-150 psig. Pressure test assembly used for tank trailers may be used for this ATP.

7.2.4 Container: To hold water for leak detector tests, approximately 1 gallon capacity.

7.2.5 Tubing: 1/4-inch and 1/2-inch tygon.

7.3 COMPONENT LOCATION

<table>
<thead>
<tr>
<th>Component Identifier</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Panel IP2</td>
<td>219-S</td>
</tr>
<tr>
<td>Control Panel IP3</td>
<td>219-S</td>
</tr>
<tr>
<td>Motor Operated Valves HV-P1 and HV-305</td>
<td>219-S</td>
</tr>
<tr>
<td>Panelboard (219-SX)</td>
<td>219-S</td>
</tr>
<tr>
<td>Leak Detector Elements LDE-306A, 306B, 306C</td>
<td>On the transfer piping between Tank-102 and 244-S</td>
</tr>
<tr>
<td>Leak Detector Transmitters LDT-306A, 306B, 306C</td>
<td>Outside, between 219-S and 244-S</td>
</tr>
<tr>
<td>Pushbuttons PERMIT and DENY</td>
<td>Control Panel A in 242-S</td>
</tr>
</tbody>
</table>

7.4 ABBREVIATIONS

CASS Central Alarm Surveillance Systems
ECN Engineering Change Notice
LDE Leak Detector Element
LDT Leak Detector Transmitter
LDY Leak Detection Relay
MOV Motor-Operated Valve
RWP Radiation Work Permit
8 LEAK DETECTION AND MONITORING SYSTEM

This test will verify operation of the leak detection system consisting of LDE, leak detection processor, annunciation and control interlock. This system is based upon conductivity principle. When the liquid due to leak contacts both the ground probe and the leak detection probe of the LDE, leak detection relays deenergize and provide annunciation, local indication by beacon light, and interlock outputs.

8.1 PREPARATION

8.1.1 Verify all prerequisites of Para 7.1 and 7.2 have been met.

8.1.2 Notify 219-S, 222-S, 242-S, and 244-S Building Managers.

8.1.3 Notify Tank Farm Operations Manager.

8.1.4 Verify that energized electrical work permits have been obtained.

NOTE: Keep appropriate personnel informed as to test status.

CAUTION: TEST INVOLVES WORKING WITH LIVE CIRCuits. ENSURE THAT THE IMMEDIATE AREA IS NOT WET. ENSURE THAT HANDS AND APPAREL ARE DRY.

8.2 LEAK DETECTION AND MONITORING SYSTEM TEST

Record the following steps for each LDE/LDT loop on Data Sheet 8.2.

8.2.1 Remove LDE from pipe.

8.2.2 Apply power to monitoring units (Circuit 24, Panelboard B at 244-S, Circuit 3 at Panelboard 242-S, and Circuit 27 at 219-S).

8.2.3 Immense LDE in liquid.

8.2.4 Verify white indicating beacon light at 244-S is ON.

8.2.5 Verify contact 1-7 of LDT in Panel IP2 at 219-S is CLOSED.

8.2.6 Verify Annunciator Window 1-1, ENCASEMENT LEAK on Panel A at 242-S is FLASHING and audible alarm is ON.

8.2.7 Verify Annunciator Window 3-5, TRANSFER LINES TO 244-S on Panel IP3 at 219-S is FAST FLASH and audible alarm is ON.

8.2.8 Verify Group Annunciator A1-3B, Window 9, DRAIN LEAK DETECTION at 222-S Room 3B is FLASHING and audible alarm is ON.

8.2.9 Verify leak indicating light at LDT on Panel IP2 is ON.

8.2.10 Verify leak indicating light at Panel IP3 is ON.

8.2.11 Depress ACKNOWLEDGE pushbutton at 219-S and verify Annunciator Window 3-5 is STEADY ON and audible alarm is OFF.
8.2.12 Depress ACKNOWLEDGE pushbutton at 242-S and verify Annunciator Window 1-1 is STEADY ON and audible alarm is OFF.

8.2.13 Depress ACKNOWLEDGE pushbutton at 222-S, Room 3B and verify Annunciator Window 9 is STEADY ON and audible alarm is OFF.

8.2.14 Remove LDE from liquid and dry it off.

8.2.15 Verify white indicating beacon light at 244-S is OFF.

8.2.16 Verify leak indicating light at LDT on Panel IP2 is OFF.

8.2.17 Verify Annunciator Window 3-5 at Panel IP3 is SLOW FLASH and audible alarm is ON.

8.2.18 Depress RESET pushbutton at Panel IP3 and verify Annunciator Window 3-5 and audible alarm are OFF.

8.2.19 Verify Group Annunciator A1-3B Window 9 at 222-S Room 3B is OFF.

8.2.20 Verify Annunciator Window 1-1 at 242-S is OFF.

8.2.21 Reinstall LDE in pipe.
<table>
<thead>
<tr>
<th>STEP</th>
<th>PERFORM/VERIFY</th>
<th>LDE/LDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1</td>
<td>Remove LDE from pipe</td>
<td></td>
</tr>
<tr>
<td>8.2.2</td>
<td>Apply power to monitoring units</td>
<td></td>
</tr>
<tr>
<td>8.2.3</td>
<td>Immerse LDE in liquid</td>
<td></td>
</tr>
<tr>
<td>8.2.4</td>
<td>Verify white beacon light at 244-S is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.5</td>
<td>Verify Contact 1-7 of LDT at Panel IP2 is CLOSED</td>
<td></td>
</tr>
<tr>
<td>8.2.6</td>
<td>Verify 242-S Annunciator Window 1-1 is FLASHING and audible alarm is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.7</td>
<td>Verify 219-S Annunciator Window 3-5 is FAST FLASH and audible alarm is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.8</td>
<td>Verify 222-S Group Annunciator Window 9 is FLASHING and audible alarm is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.9</td>
<td>Verify leak indicating light at LDT on Panel IP2 is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.10</td>
<td>Verify leak indicating light at Panel IP3 is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.11</td>
<td>Depress ACKNOWLEDGE pushbutton at 219-S and verify Annunciator Window 3-5 is ON and audible alarm is OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.12</td>
<td>Depress ACKNOWLEDGE pushbutton at 242-S and verify Annunciator Window 1-1 is STEADY ON and audible alarm is OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.13</td>
<td>Depress ACKNOWLEDGE pushbutton at 222-S Room 3B and verify Annunciator Window 9 is STEADY ON and audible alarm is OFF.</td>
<td></td>
</tr>
<tr>
<td>8.2.14</td>
<td>Remove LDE from liquid and dry it off</td>
<td></td>
</tr>
<tr>
<td>8.2.15</td>
<td>Verify white beacon light at 244-S is OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.16</td>
<td>Verify leak indicating light at LDT on Panel IP2 is OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.17</td>
<td>Verify Annunciator Window 3-5 at Panel IP3 is SLOW FLASH and audible alarm is ON</td>
<td></td>
</tr>
<tr>
<td>8.2.18</td>
<td>Depress RESET pushbutton at Panel IP3 and verify Annunciator Window 3-5 and audible alarm are OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.19</td>
<td>Verify Group Annunciator Window 9 at 222-S Room 3B is OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.20</td>
<td>Verify Annunciator Window 1-1 at 242-S is OFF</td>
<td></td>
</tr>
<tr>
<td>8.2.21</td>
<td>Reinstall LDE in pipe</td>
<td></td>
</tr>
</tbody>
</table>

All tests or leak detection elements for acceptable

END OF SECTION 8
TRANSFER PUMP P1 SPEED CONTROL

This test will verify speed control operation of Pump P-1 in 219-S.

9.1 PREPARATION

9.1.1 Verify all prerequisites of Para 7.1 and 7.2 have been met.

9.1.3 Notify Tank Farms Operations and Shift Manager.

9.1.4 Verify that energized electrical work permits have been obtained.

NOTE: Keep appropriate personnel informed as to test status.

CAUTION: TEST INVOLVES WORKING WITH LIVE CIRCUITS. ENSURE THAT THE IMMEDIATE AREA IS NOT WET. ENSURE THAT HANDS AND APPAREL ARE DRY.

9.2 TRANSFER PUMP P1 SPEED CONTROL TEST

9.2.1 Verify Air Valve CA-V-660 is CLOSED.

9.2.2 Energize Circuit 3 for Panel A from Panelboard C at 242-S.

9.2.3 Energize Panels IP2 and IP3 at 219-S.

9.2.4 Pull to reset DENY switch.

9.2.5 Press and release PERMIT pushbutton.

9.2.6 Verify TRANSFER PUMP P-1 indicating light on 242-S is ON.

9.2.7 Rotate pump speed control knob to 0% position.

CAUTION: High pressure air may be present. Perform following operation slowly.

9.2.8 Disconnect instrument air tubing at the outlet of Regulator HY301.

9.2.9 Install a tee fitting between the regulator outlet and the process tubing. Connect an instrument pressure gauge to the remaining end of the tee fitting.

NOTE: Readings taken from this pressure gauge, and recorded in this ATP/OTP, are for information only and have no bearing on the acceptance of this test.

9.2.10 Verify Valve HV-305 OPEN (red) indicating light on Panel IP3 is ON and Valve HV-P1 CLOSED (green) indicating light on Panel IP3 is ON.

9.2.11 Verify pump speed control knob is turned to 0% position.

9.2.12 Apply power to the electropneumatic controller (Circuit 8 at 219-SX).

9.2.13 Open Air Valve CA-V-660.

WHC-SD-W087-ATR-001
Rev.0
12/04/96
Record reading on the pressure gauge. 0 psi

Turn Hand Switch HS-305 to CLOSE position and hold while verifying the following.

As the valve travels toward the closed position, verify both OPEN (red) and CLOSED (green) indicating lights are ON.

When the valve reaches the fully closed position, verify OPEN indicating light is OFF and CLOSED indicating light is ON.

Release Hand Switch HS-305 to AUTO position.

Turn Hand Switch HS-P1 to OPEN position and hold while verifying the following.

As the valve travels toward the open position, verify both OPEN (red) and CLOSED (green) indicating lights are ON.

When the valve reaches the fully open position, verify CLOSED indicating light is ON and OPEN indicating light is OFF.

Release Hand Switch HS-P1 to AUTO position.

Slowly rotate pump speed control knob clockwise to 50% position.

Record reading on the pressure gauge. 10 psi

NOTE: This reading should be higher than that taken with pump speed control knob at 0%.

Slowly rotate pump speed control knob to 100% position.

Record reading on the pressure gauge. 28 psi

NOTE: This reading should be higher than that taken with pump speed control knob at 50%.

Slowly rotate pump speed control knob back to 0% position.

Record reading on the pressure gauge. 0 psi.

NOTE: This reading should be approximately the same as that taken when pump speed control knob was first at 0% position.

Turn Hand Switch HS-P1 to CLOSE position and verify the following.

As the valve travels toward the closed position, verify both OPEN and CLOSED indicating lights are ON.

When the valve reaches the fully closed position, verify CLOSED indicating light is ON and OPEN indicating light is OFF.

Verify the closing of Valve HV-P1 has caused Valve HV-305 to OPEN.

Close Air Valve CA-V-6608.
CAUTION: HIGH PRESSURE AIR MAY BE PRESENT. PERFORM FOLLOWING OPERATION SLOWLY.

9.2.27 Reconnect the tubing to outlet side of Regulator HY301.

9.2.28 Remove power from Regulator HY301.

END OF SECTION 9
MOTOR OPERATED VALVES HV-P1 AND HV-305

These tests will verify that Motor Operated Valves HV-P1 and HV-305 operate in accordance with their respective elementary (control) diagram requirements.

HV-P1 is controlled by a 3 position (OPEN-AUTO-CLOSE) control switch which can be maintained in either AUTO or CLOSE position but will spring-return from OPEN to AUTO.

HV-305 is controlled by a 3 position (CLOSE-AUTO-OPEN) control switch which can be maintained in either AUTO or OPEN position but will spring-return from CLOSE to AUTO.

Operation of HV-P1 is dependent on the operation of HV-305. HV-P1 is designed as automatic CLOSE and manual override CLOSE while HV-305 is designed as automatic OPEN and manual override OPEN. In other words, HV-P1 will not OPEN unless HV-305 is CLOSED.

10.1 PREPARATION

10.1.1 Verify all prerequisites of Para 7.1 and 7.2 have been met.

10.1.2 Notify 219-S and 242-S Building Managers.

10.1.3 Notify Tank Farm Operations and Shift Manager.

10.1.4 Verify that energized electrical work permits have been obtained.

NOTE: Keep appropriate personnel informed as to test status.

CAUTION: TEST INVOLVES WORKING WITH LIVE CIRCUITS. ENSURE THAT THE IMMEDIATE AREA IS NOT WET. ENSURE THAT HANDS AND APPAREL ARE DRY.

10.2 MOTOR OPERATED VALVE HV-P1 AND HV-305 TEST

10.2.1 Place Circuit Breaker 7 in Panelboard 219-SX, at Building 219-S, in the OFF position.

10.2.2 Verify there is NO VOLTAGE across Terminals TB2-205 and TB2-206 at Panel IP3.

10.2.3 Place Circuit Breaker 7 in Panelboard 219-SX, at Building 219-S, in the ON position.

10.2.4 Place Circuit Breaker 27 in Panelboard 219-S, at Building 219-S, in the ON position.

10.2.5 Place Circuit No. 3 in Panelboard C, at Building 242-S, in the ON position.

10.2.6 Verify DENY pushbutton in Panel A, at Building 242-S, is in PULL TO RESET position.

10.2.7 Press and release PERMIT pushbutton in Panel A at Building 242-S.

10.2.8 Using VOM verify 120 V ac across Terminals TB2-201 and TB1-7N2.
Verify PERMITTED indicating light on Panel IP3 is ON.

Verify TRANSFER PUMP P-1 indicating light on Panel A, in 242-S, is ON.

Turn and Hold selector switch for HV-305 to CLOSE.

Verify that HV-305 is CLOSED.

Turn and Hold selector switch for HV-P1 to OPEN.

Verify that HV-P1 is OPENED.

Release selector switch for HV-305 to AUTO.

Release selector switch for HV-P1 to AUTO.

Turn selector switch for Valve HV-305 on Panel IP3 to OPEN.

Verify Valve HV-305 position handle at top of valve actuator indicates OPEN and valve CLOSED (green) indicating light on Panel IP3 is OFF and valve OPEN (red) indicating light is ON.

Verify that HV-P1 closes.

Verify HV-P1 starts to close.

Verify valve HV-P1 position handle at top of valve actuator indicates CLOSE and valve CLOSED indicating light on Panel IP3 is ON.

Using VOM verify Relay K-V on Panel IP2 is ENERGIZED.

Turn selector switch for HV-P1 from CLOSE to AUTO.

Verify Valve HV-P1 position handle at top of valve actuator continues to indicate CLOSE and valve CLOSED indicating light on Panel IP3 remains ON.

Turn and hold selector switch for HV-P1 in OPEN position.

As Valve HV-P1 travels toward the open position, verify both OPEN and CLOSED indicating lights are ON.

When Valve HV-P1 reaches the fully open position, verify CLOSED indicating light is OFF and OPEN indicating light is ON.

Release selector switch for HV-P1 to AUTO.

Verify Valve HV-P1 begins to close.

As Valve HV-P1 travels toward the closed position, verify both OPEN and CLOSED indicating lights are ON.

When Valve HV-P1 reaches the fully closed position, verify OPEN indicating light is OFF and CLOSED indicating light is ON.
10.2.25 Turn and hold selector switch for HV-305 in CLOSE position.

10.2.26 As Valve HV-305 travels toward the closed position, verify both OPEN and CLOSED indicating lights are ON.

10.2.27 When valve position handle on Valve HV-305 shows fully closed, verify CLOSED indicating light is ON and OPEN indicating light is OFF.

10.2.28 Deleted

10.2.29 Turn and hold selector switch for HV-P1 in OPEN position.

10.2.30 As Valve HV-P1 travels toward the open position, verify both OPEN and CLOSED indicating lights are ON.

10.2.31 When valve position handle on Valve HV-P1 shows fully open, verify OPEN indicating light is ON and CLOSED indicating light is OFF.

10.2.31a Release selector switch for HV-305 to AUTO.

10.2.32 Release selector switch for HV-P1 to AUTO position.

10.2.33 Turn selector switch for HV-305 to OPEN position.

10.2.34 Verify Valve HV-305 starts to OPEN.

10.2.35 Verify HV-P1 begins to CLOSE as soon as HV-305 is fully OPEN.

10.2.36 Turn and hold selector switch for HV-305 in CLOSE position until HV-305 is CLOSED and Step 10.2.37 is complete.

10.2.37 Turn and hold selector switch for HV-P1 in OPEN position until HV-P1 is OPEN.

10.2.37a Release selector switch for HV-305 to AUTO.

10.2.37b Release selector switch for HV-P1 to AUTO.

10.2.38 Depress DENY switch to Push to Deny position on Panel A in 242-S Control Room.

10.2.39 Verify PERMITTED indicating light on Panel IP3 is OFF.

10.2.40 Verify TRANSFER PUMP P-1 indicating light on Panel A in 242-S is OFF.

10.2.41 Pull DENY switch to Pull to Reset position on Panel A in 242-S.

10.2.42 Verify HV-P1 begins to CLOSE.

10.2.43 Verify HV-305 begins to OPEN.

10.2.44 Using VOM verify Relay K-P on Panel IP2 is ENERGIZED.

10.2.45 Verify HV-305 position handle at top of valve actuator is in OPEN position.

END OF SECTION 10
INTEGRATED SYSTEM (DRY) TEST AND INTERLOCK VERIFICATION

This test will demonstrate overall system operation by verifying the various interlocks perform the design functions. During this test no liquid will be pumped out of the tanks. Pump vendor assures that the pump can be run "DRY" for certain time duration.

11.1 PREPARATION

11.1.1 Verify all prerequisites of Para 7.1 and 7.2 have been met.

11.1.2 Notify 219-S, 222-S, 242-S, and 244-S Building Managers.

11.1.3 Notify Tank Farm Operations and Shift Manager.

11.1.4 Verify that energized electrical work permits have been obtained.

NOTE: Keep appropriate personnel informed as to test status.

11.1.5 Verify all previous ATP sections have been completed satisfactorily.

11.2 SYSTEM TEST

11.2.1 Verify Panel IP2 is ENERGIZED.

11.2.2 Verify Panel IP3 is ENERGIZED.

11.2.3 Verify Panel A in 242-S is ENERGIZED.

11.2.4 Close Air Inlet Valve CA-V-6600.

11.2.5 Verify DENY switch in Panel A at 242-S is in Pull to Reset position.

11.2.6 Press and release PERMIT pushbutton in Panel A at 242-S.

11.2.7 Verify TRANSFER PUMP P-1 indicating light at Panel A 242-S is ON.

11.2.8 Verify PERMITTED indicating light on Panel IP3 is ON.

11.2.9 Verify Siphon Valve HV-305 is OPEN.

11.2.10 Verify leak detection indicating light on Panel IP2 is OFF.

11.2.11 Verify leak detection indicating light on Panel IP3 is OFF.

11.2.12 Verify pump diaphragm leak indicating light on Panel IP3 is OFF.

11.2.13 Verify Pump P1 (air inlet) hand switch on Panel IP3 is in CLOSE position.

11.2.14 Turn HV-P1 hand switch to OPEN and hold it momentarily in that position.

11.2.15 Verify HV-P1 begins to OPEN as indicated by both RED and GREEN indicating lights ON.
Verify HV-P1 begins to OPEN as indicated by both RED and GREEN indicating lights ON.

Release HV-P1 hand switch allowing it to return to AUTO.

Verify HV-P1 begins to CLOSE.

Turn and Hold selector switch for Siphon Valve HV-305 to CLOSE.

Deleted

Deleted

Turn and hold HV-P1 hand switch on Panel IP3 to OPEN.

Deleted

Release selector switch for HV-305 to AUTO.

Release HV-P1 hand switch to AUTO.

Open Air Valve CA-V-6607.

Rotate speed control knob until it reads approximately 10 psig on pressure gauge.

Verify Pump P1 continues to run as indicated by indicating OPEN light.

Lift wire marked LD-306A-4 at terminal 7 at panel IP2.

Verify valve HV-P1 starts to CLOSE.

Verify siphon Valve HV-305 starts to OPEN.

Observe LEAK DETECTED indicating light is illuminated, TRANSFER LINE TO 244-5 LEAK annunciator FAST FLASH and audible ON.

Acknowledge annunciator.

Reconnect wire at terminal 7 at panel IP2.

Verify Pump P1 remains STOPPED.

Turn and Hold selector switch for HV-305 to CLOSE.

Turn and Hold selector switch for HV-P1 to OPEN.

Verify Pump P1 STARTS.

Release selector switch for HV-305 to AUTO.

Release selector switch for HV-P1 to AUTO.
Verify Pump P1 continues to run as indicated by OPEN light.

Depress DENY switch to Push to Deny position at 242-S Panel A.

Verify HV-P1 starts to CLOSE. EXP NS

Verify Pump P1 cannot START when Pump P1 hand switch is turned to OPEN.

Verify Siphon valve is OPEN as indicated by indicating light ON.

Pull DENY switch to Pull to Reset position.

Deleted EXP NS

Press and release PERMIT pushbutton at 242-S Panel A.
11.2.42 Verify TRANSFER PUMP P-1 indicating light is ON at 242-S Panel A.

11.2.43 Verify PERMITTED indicating light on Panel IP3 is ON.

11.2.43a Turn and hold selector switch for HV-305 in the close position.

11.2.43b Verify that HV-305 is CLOSED.

11.2.43c Turn and hold selector switch for HV-P1 in the OPEN position.

11.2.44 Verify pump P1 starts.

11.2.44a Release selector switch for HV-305.

11.2.44b Release selector switch HV-P1.

11.2.45 Simulate a leak in the P1 diaphragm at LDY-P1 by disconnecting power at TBI-8H1.

11.2.45a Verify DIAPL LEAK indicating light at IP3 is illuminated.

11.2.45b Verify TANK 102 Pump P1 DIAPL LEAK annunciator window FAST FLASH and audible ON.

11.2.45c Acknowledge annunciator. Verify annunciator window STEADY ON and audible OFF.

11.2.46 Verify Pump P1 air inlet valve starts to CLOSE.

11.2.47 Verify valve HV-305 opens.

11.2.48 Return LDY-P1 to the Normal Mode by reconnecting power at TBI-8H1.

11.2.48a Verify DIAPL LEAK indicating light is not illuminated.

11.2.48b Verify TANK 102 PUMP P1 DIAPL LEAK annunciator window SLOW FLASH and audible ON.

11.2.48c Reset annunciator.

11.2.49 Close air valve CA-V-6608.

11.2.50 Return system to normal and safe configuration.

END OF SECTION 11