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Abstract 

An algorithm is presented for updating finite element models based upon a minimization of dynamic 

residuals. The dynamic residual of interest is the force unbalance in the homogeneous form of the equa- 

tions of motion arising from errors in the model's mass and stiffness when evaluated with the identified 

modal parameters. The present algorithm is a modification and extension of a previously-developed Sen- 

sitivity-Based Element-By-Element (SB-EBE) method for damage detection and finite element model up- 

dating. In the present algorithm, SB-EBE has been generalized to minimize a dynamic displacement 

residual quantity, which is shown to improve test-analysis mode correspondence. Furthermore, the algo- 

rithm has been modified to include Bayesian estimation concepts, and the underlying nonlinear optimiza- 

tion problem has been consistently linearized to improve the convergence properties. The resulting 

algorithm is demonstrated via numerical and experimental examples to be an efficient and robust method 

for both localizing model errors and estimating physical parameters. 
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Nomenclature 
~- 

Nominal mass, damping and stiffness matrices 

Experimental frequency (rads) for mode i 

Experimental mode shape vector for mode i 

Dynamic residual (modal force) vector 

Undamped impedance matrix for mode i 

Measured, unmeasured partitions of [ ] 

Mode shape projection operator 

Parameter sensitivities for mode i 

Objective function, linearized gradient and Hessian 

Approximate covariance matrix of dynamic residual 

Covariance matrix of measured mode shape 

Covariance matrix of the experimental eigenvalues 

Covariance matrix of the initial parameters 

Modal assurance criteria 

I. Introduction 

A significant amount of research in structural dynamics system identification has focused on methods 

for reconciling finite element models of structures with modal parameters identified from dynamic testing. 

Early approaches to this problem involved the direct updating of assembled stiffness and mass matrices to 

correlate to the available modes and mode shapes identified from test. In order Fo choose a particular so- 

lution from an infinite number of possible solutions, some quantity, such as the norm of the matrh adjust- 

ment, was minimized1V2. Recent modifications to this general approach involve retaining the connectivity 

pattern of the model through  constraint^^^^^^, or minimizing the rank of the matrix update6. These methods 

are efficient and have been used successfully for both model adjustments and for structural damage detec- 

tion. For this discussion, this class of methods can be termed optimal matrix updating. 
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A fundamentally different approach involves estimating or updating the "physical" parameters of the 

structural design, such as cross-sectional areas, elastic moduli, or added masses, used in the finite element 

model definition7?*?. There are a number of advantages to such an approach over optimal matrix updating 

methods, First, the formulation of the initial model, including its connectivity, is implicitly preserved. This 

is quite important since the original model, if formulated by a skilled analyst, contains a significant amount 

of engineering judgement about the structure of interest. Such judgement supplements the reliable, yet in- 

complete, knowledge gained from experimental data. Secondly, results of model updating can be under- 

stood in terms of errors in design parameters or modeling assumptions. This provides a mechanism, at least 

ideally, for learning and improving the future modeling of similar structures. Finally, the updated model 

is more generally useful for design sensitivity analysis as it retains the flexibility of the finite element 

method, rather than being simply a set of equations which predict the limited dynamic measurements. This 

approach is termed sensitivity-based model updating, as it utilizes the sensitivity of predicted and estimat- 

ed quantities, such as modal parameters or response functions, to the physical parameters of the model. 

The present paper addresses the problem of sensitivity-based model updating through the minimiza- 

tion of a dynamic residual. This residual arises due to errors in the model stiffness and mass matrices and 

is a reflection of the difference between the model's predicted modal parameters and the modal parameters 

from experimental datal0. It is a different approach, however, from directly comparing the predicted and 

measured modal parameters and does not require the computation of the model modes and determination 

of the correspondence between the model modes and the test modes. This is a distinct advantage, both in 

terms of computational expense and in reducing the complexity to the user, since such mode-to-mode cor- 

respondence can be difficult to establish when significant modeling errors exist. The present algorithm is 

a modification and extension of a previously-developed Sensitivity-Based Element-By-Element (SB- 

EBE) method for finite element model updatingg. 

2%. 
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The modifications of the basic SB-EBE algorithm address a number of practical issues encountered 

when applying the algorithm to complex structures. First, a consistent linearization of the governing min- 

imization problem is derived to improve the rate of convergence of the algorithm. The new linearization 

couples the mode shape projection and parameter estimation stages of the algorithm at a minor computa- 

tional cost, and improves the estimate of curvature in the optimization space. Secondly, the residual gov- 

erning the update problem is redefined as a displacement, rather than force, quantity through a flexibility 

weighting. It is shown that this weighting improves the correspondence of test and analysis modal param- 

eters typically used to assess the model's accuracy. Finally, Bayesian estimation'' is incorporated to con- 

dition the update problem. Bayes estimation involves the use of relative confidence measures for the 

parameters being updated and the observed data used to guide the estimation. This important modification 

leads to a more reliable algorithm, especially in the presence of small sensitivity coefficients, large model 

errors, and correlation between parameters. 

The remainder of the paper is organized as follows. In Section 2, the basic SB-EBE theory and algo- 

rithm is reviewed. In Section 3, the new modified algorithm is developed theoretically and its implemen- 

tation is detailed in Section 4. Numerical and experimental results are given in Section 5,  and Section 6 

offers concluding remarks. 

II. Review of Basic Theory and Algorithm "'. 

The governing equations for linear time-invariant structural dynamics are typically given as 

Mq+Cq+Kq = Bu 

where K, C, and M are the stiffness, damping, and mass matrices from the finite element model, q is a vec- 

tor of displacements, u is a vector of applied forces, and fl maps those forces to the associated degrees of 

freedom of the model. The homogeneous form of Eqn. (1) leads to the following undamped generalized 
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eigenproblem: 

. -  
K@ = AM@ 

where h is the eigenvalue, which is equal to o:, the square of the undamped natural frequency, and @ 

is the associated eigenvector, which is the physically the normal (i.e. undamped) mode shape. 

The basic SB-EBE theoryg determines the change Ap to a set of physical parameters of the model 

which minimize the norm of the dynamic force residual, viz. 

Ri is the dynamic force residual for mode i, defined as 

where o is an experimentally-determined normal frequency of the structure for mode i, and @Ei is the 
Ei 

associated normal mode shape. Unfortunately, the degrees of freedom @OF) at which the mode shape is 

sampled from test is typically much smaller than the number of DOF in the finite element model which 

defines K and M. Therefore, to apply Eqn. (4), either the model must be reduced to the measurement DOF, 

or the measured portion of the mode shape must be expanded to the displacement basis of the model. Al- 

though it is more computationally intensive, the basic algorithm uses an expansion of the experimental 

mode shapes to compute the dynamic residual, because of the errors typically introduced in reducing the 

analytical model to the measured degrees of freedom (see Section IV). 

The theoretical basis for correcting the model using the dynamic force residual is as follows. If the 

“correct” model is given as 

K ,  = K + A K  

M, = M + M  
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and from Eqn. (2) 

then 

Hence, Ri is a function of both magnitudes and locations of the model errors. The basic Hemez algorithm 

consists of three key steps: mode shape projection, error localization (parameter selection), and parameter 

estimation. These are detailed in the following subsections. 

A. Mode Shape Projection 

To derive the proper projection operator from Eqn. (3), we must partition the mode shape qi into its 

measured and unmeasured components, and also partition the associated columns of the mass and stiffness 

matrices. Then 

where qEm is the mode shape for mode i at the measurement DOF, @, is the ulimeasured portion of the 

same mode shape, and K, , M, , KO, and M, are the measured and unmeasured column sets of the stiff- 

ness and mass matrices. The mode shape projection directly results from minimizing the dynamic residual 

with respect to @, , assuming no change in the model parameters, viz. 

i 
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where 

m 

= p .+E oz mi 

Zi can be termed the impedance or dynamic stiffness of mode i. 

After the projection operator for mode i is determined, the mode shape is projected and the dynamic 

force residual Ri with respect to the model DOF can be computed. 

B. Error Localization 

Recalling Eqn. (7), the DOF exhibiting the largest force residuals will be associated with the set of 

model elements whose parameters are significantly in error. Therefore, it is reasonable to select those pa- 

rameters which cause the largest perturbations to the element matrices associated with a set of model DOF 

j ,  where R(j) is above some threshold level. In the original SB-EBE method this process is termed "zoom- 

ing." 
.->. 

C. Parameter Estimation 

The final step, after projecting the mode shapes and choosing which model parameters to vary, is to 

compute the updated parameter values which minimize the sum of dynamic force residuals over a set of 

modes, viz. 
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-x R T R ~  
AP i 

T T :. C B i  BiAp= - C B i  Ri 
i i 

where 

Here, Bi is the sensitivity of Ri to the parameters being updated. 

III. New Algorithm: Theory 

The motivation for developing a new algorithm based upon the SB-EBE method came from tests of 

that algorithm on a moderately simple beam structure which will be reviewed in a later section. These tests 

revealed a number of problems, including small magnitude parameter updates leading to slow conver- 

gence, and convergence to poor solutions as measured by frequency errors and mode shape correlations. 

Based on the above concerns, the basic theory and algorithm was re-worked to incorporate: 

Consistent linearization of the optimization problem 

Generalization of the modal error vector 
'>, 

Inclusion of Bayesian estimation concepts to regularize the updating equations 

We now proceed to detail these modifications. 

A. Consistent linearization of the optimization problem 

The solution proposed by the basic algorithm is staggered in the following sense. Although the model 

is being adjusted in the overall procedure, this adjustment is ignored in the determination of the mode 
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shape- projection. While this simplifies the theory somewhat,-it may introduce a serious computational 

cost. This is because, by ignoring the coupling between the projection and the parameter estimation, the 

curvature of the parameter space is poorly estimated. The result is that the curvature is artificially large, 

leading to smaller parameter changes and much slower convergence. 

This problem can be alleviated by adding a correction to the projected partition of the mode shapes 

which accounts for its dependence on the parameter estimation problem. Using 

the linearization of the fust-order conditions for Eqn. (3) leads to the following system of equations: 

cN 

0 ... 0 

X B ~ B ~  c1 c2 ... 
i 

T 
c1 z,T1zo1 

0 ZZ2Zo2 ... 0 T 
c2 

T 0 0 ... ZoNZ,, T 
- ' N  

T - C B i  Ri 

0 
0 

i 

0 

Solving for 6@oi and back substituting into the equation for Ap , we determine 

GAp = -E 
i> 

where 

= T ~ ~ B i - c i ( Z o i Z o i )  -' ci '> E = C B i R i  T 
i 

I- 1 

Comparing Eqn. (1 1) to Eqn. (16), it is seen that the consistent linearization reduces the magnitude of 
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' , which is the curvature of the design space. This formulation introduces only 

putations as the factorization of Z ~ i Z o i w  is already computed during the mode 

a modest increase in com- 

shape projection step and 

thus can be saved for use in Eqn. (15). The introduction of this consistent linearization, however, dramat- 

ically improves the convergence of the algorithm, as will be shown in the numerical example problem. 

B. Generalization of the modal error vector 

The functional selected for the optimization problem is by no means the only clear choice for perform- 

ing finite element model update. Its advantage is that it does not require solving for the modes of the finite 

element model, and tracking those analytical modes with respect to the test modes. Its disadvantage, how- 

ever, is that the updated model may not improve the errors between the analysis and test frequencies, or 

improve the correlation of the mode shapes. In fact, these accuracy indicators may be significantly degrad- 

ed, and the resultant model cannot be judged as accurate as the initial model. 

In seeking to understand the convergence of the basic algorithm to poor solutions as measured by rel- 

ative frequency and mode shape errors, it is helpful to compare the dynamic residual to traditional modal 

parameter-based error metrics. First, we can re-write the mode i contribution to the objective function in 

equivalent modal parameter terms, viz. 

T 2 2 2  

i 
Ri Ri = a i x ( W j  - W E , )  (MACii) 

wherej ranges over all possible modes of the f i t e  element model, and 

Here MACu is the modal assurance criterion, which is a normalized measure of the correlation be- 

tween two mode shapes, in this case model modej and test mode i. The parameter ai is the modal mass 
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of the test mode shape. From Eqn. (17), the conkibution to the overall dynamic force residual from test 

mode i is equivalent to summing up the squares of the differences between test eigenvalue i and each of 

the eigenvalues of the model, which are scaled by the correlation between the test model shape and the 

associated model mode shape. Thus, if small correlations exist between the test mode shape and any model 

mode shapes with vastly different frequencies, the product of (0, - oE ) (which is large) with a small 

correlation coefficient MACii can lead to a term which can dominate the error index being minimized. 

This has the undesirable effect of biasing the algorithm away from reconciling test and model modes 

which correspond more closely in both mode shape and frequency. 

2 2 2  
i 

To alleviate this problem, we can replace the modal force error by a generalized modal error 
- 
R, = WR,, where 

This result can be obtained approximately by defining Was 

which implies that the generalized modal error is a dynamic displacement residual quantity, rather than a 

dynamic force residual. In this way, the problem of large error terms resulting from small correlations be- 

tween modes with large differences in frequency has been mitigated by normalizing the error index by oj . 

... 
**1 

2 

C. Including Bayesian estimation concepts 

Although the parameters being estimated usually evolve from some nonzero initial estimate, the basic 

algorithm places no relative confidence on these initial values with respect to the test data used for model 

adjustment. The quantitative result is that there is no penalty placed on the magnitude of the parameter 
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change. Therefore, any fmal parameter value, no matter what magnitude or sign, is judged as superior to 

the original estimate as long as the sum of the dynamic force residuals have been reduced. In actuality, 

there are usually both hard constraints placed on the parameter values and some degree of confidence in 

the initial parameter estimates. Furthermore, the test data used for model adjustment is often imperfect, 

and the confidence in the data varies depending on whether frequency or mode shape component estimates 

are being considered. 

A popular approach in estimation theory to address the aforementioned concerns is the use of Bayesian 

estimation [ 111. For linear structural dynamics applications such as the present model updating problem, 

Bayesian estimation reduces to a generalized least-squares problem [12]. We can modify the performance 

index of the basic algorithm as follows: 

m i n J  
AP2 @ oi 

where 

N 
-T -1- T -1 J = Ri Qi R i + A p  Qp Ap 

i = l  
m m m  

Qi = diag(2.P.Q Pf Zi + Q 2MPi(@mi@ki)Pf A4) 
L 1 (Pmi "i  

Qp is the covariance matrix of the initial parameters being estimated, Q is 'the-covariance matrix of the 

components of measured mode shape i, Q is the variance of the square of the measured modal frequen- 

cy, and Pi is the mode shape projection matrix. The covariance matrix Qi represents the variances of each 

component of the dynamic residual vectors Ri . 

@mi 

" i  

The primary difficulty in introducing the Bayesian estimation concept, or equivalently a maximum 

likelihood estimator, is that the error quantity being minimized is not directly a measured quantity, hence 

the covariance being introduced is not simply the variances of the test data. Instead, the dynamic residual 
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. -  
. is a nonlinear function of the data, the model matrices and the mode shape projection, which is itself a 

function of the model and based on the Animization of the overall functional. Therefore, although intro- 

ducing statistical measures can, in general, increase the robustness of the algorithm, the approach leads to 

nonlinearities because the mode shape projection and modal error covariance estimates are coupled. 

IV. New Algorithm: Implementation 

In this section we review the step-by-step procedure for the new modified algorithm and discuss im- 

plementation issues. The procedure is given in Box 1 and represents one pass or iteration through the up- 

dating algorithm. Because of the inherent nonlinearity of the optimization, convergence to a solution can 

require many iterations. As noted previously, the mode shape projection and residual covariance compu- 

tation given in Step 2b is actually a coupled problem, because the projection is dependent on the scaling 

provided by the covariance matrix, while the covariance matrix depends on the projection. In the present 

work, this nonlinearity is handled in a very cursory manner by computing an initial estimate of Qi using 

only the measured component of the mode shapes. That estimate is used to compute a estimate of the mode 

shape projection. The mode shape projection estimate is used to re-compute a better estimate of Qi , which 

is then used to complete the algorithm. This is basically a predictor-correction approach and seems to work 

adequately for the applications studied. Other possibilities might include using a completely different 

mode shape projection algorithm to compute Qi . 

A. Control of Curvature Estimate 

As mentioned in the preceding sections, a consistent linearization of the optimization is employed in 

the modified algorithm to improve its convergence properties. Caution must be exercised, however, as this 

linearization does not guarantee a positive-definite hessian. The present procedure offers two mechanisms 

for controlling the curvature to avoid this result. The first is the use of Bayes estimation, which conditions 
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Box 1: Summary of the Present Algorithm 

Step 2. For modes i=l to N 

Step 2 a  

Step 2b. 

Step 2c. 

Step 2d. 

Step 2e. 

Step 2$ 

2 Zi = W ( K -  a,.M) and partition into Z i  = [zmi zed 
T -1 Compute Q i  using Eqn. (22), factor ZoiQi Zoi and &the mode shape projection: 

aK 2 a ~  Compute Ri = Zi$i ,  sensitivities Bi = [bil b,  ... binJ where bii = W(F.-aE =J-)$~ 
j ' P j  

T T -1 ComDute ci = [cil ci2 ... cinJ , where cii = biiQi Zo i+  

T -1 J = J + R ,  Q p  Ri 

g = g + B i Q i  Ri 
- T -1 T G = G + B i Q i  B i - c i d i  

T -1 

Step 3. Solve GAp = -g 
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the estimation problem by contributing a penalty term on the change in the parameter estimates. Numeri- 

cally, this term provides a positive-definite contribution to the hessian which can be adjusted to reflect the 

analyst's relative confidence in the initial parameter estimates; 

The second mechanism for controlling the curvature estimate is through the use of a constant p which 

parameterizes the linearization between that of the basic algorithm (p = 0) and the modified algorithm 
/ 

(p = 1). This parameterization is accomplish by computing z! in Step 6 of the procedure as 

T -1 T G = G + Q~ B~ - p(ci di )  

This constant controls the degree of coupling between the mode shape projection and the parameter 

estimation. Note that the basic algorithm is always guaranteed positive-definite, but that guarantee comes 

at the cost of a poorer estimate of the curvature. The use of the parameter p allows that cost to be con- 

trolled by the user. 

B. Model Reduction 

Rather than projecting the mode shapes, reduction of the model to the measurement degrees of free- 

dom can be empl~yed'~. This is often avoided because the reduction of a refined model down to the small 

number of DOF measured will introduce errors in the predictive accuracy of the model, leading to nonzero 

dynamic residuals and inappropriate parameter corrections. A compromise i s  t-o employ a component 

mode synthesis type of reduction such as the Craig-Bampton technique14, which augments a static con- 

densation to the measurement DOF with a set of generalized DOF spanning the lowest eigenmodes of the 

omitted dynamics. Typically, the addition of a small number of generalized DOF is sufficient to ensure 

that the reduced model can predict the eigenmodes of the full-order system. The experimental modes 

would then be projected into this slightly larger subspace. 
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C. Statistical Significance of the Parameter Estimates 

. _ .  
An advantage of Bayes estimation is that it allows the analyst to assess the confidence intervals for the 

final estimates of the parameters, as a function of their initial covariances, their sensitivity to the experi- 

mental modal parameters used in the estimation, and the covariances of those parametersI2. A linearized 

estimate of the covariance of the updated parameters is given by 

6 P  

evaluated at the point of convergence. From this result, the standard deviation of the parameters can be 

determined by taking the square root of the diagonal elements of bP. Of course, this statistical quantity is 

only as valid as the covariances of the experimental data and the initial parameters. The updated variances 

relative to their initial values are useful, however, in determining whether the change in parameters is sig- 

nificant and based on the measured data. 

V. Applications 

A. Numerical Data: Planar Truss Structure 

The first example from Reference [9] was chosen to test the implementation of the modified algorithm 

and assess its performance relative to the basic SB-EBE procedure. This example considers a free-free pla- 
‘A, 

nar truss with 44  translational DOF, 7 of which are measured. For this comparison, the first 5 flexible 

modes are used to update the model, and the only parameters being updated are the elastic modulus of the 

two of the elements. Furthermore, the test data is assumed to be perfect (zero variance), which implies that 

the Bayesian covariance weights are not used. Thus the only differences between the two algorithms are 

the consistent linearization of the optimization problem and the weighting of the modal force error. 
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The results are documented in Table 1. Note that, although-the use of the flexibility weighting does 

help to speed the convergence, it also introduces a large computational overhead, especially when the 

weighting matrix is full rather than sparse. Note also that updating the weighting matrix at each iteration 

as the stiffness was updated did not improve the convergence of the algorithm. The need for weighting the 

modal error vector is dictated more by the quality of the final solution when the data is imperfect than by 

the convergence of the algorithm. Finally, it was found that using the full extent of the consistent linear- 

ization led to a negative definite curvature which caused the algorithm to diverge. Therefore, p was re- 

duced to 0.95, which results in the fastest convergence. 

Table 1: Comparison of Convergence Using Modified Algorithm 

Method # update Weighting Matrix iterations 

Basic SB- N/A 180 
EBE 

Modified W=I 
p = 0.95 (modal force error minimization) 
Modified 
p = 0.95 

25 

+ W = KO 
(held constant) 

8 

Modified 
p = 0.95 

9 + W = K, 
(updated each iteration) 

The cases documented above were based upon the same convergence criterion. The parameter results 

for the basic SB-EBE algorithm and the modified algorithm with W=I are shown in Figure 1. Note here 

that, even at 180 update iterations, the basic algorithm has still not reached the correct updated parameter 

values, while the modified algorithm with its consistent linearization has converged to within 1% of the 

correct values in less than 30 iterations 
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B. Experimental Data: LADDER Structure 

The experimental example problem is a tubular welded structure representative of an automotive en- 

gine support. The goal of the model updating was to determine unknown joint compliance parameters, and 

to adjust the basic properties, in order to correlate the first 14 modes identified from test. The test setup is 

shown in Figure 2. 

The structure was instrumented with 96 accelerometers grouped in 16 locations in order to extract both 

translational and rotational response at beam cross-sections throughout the structure. The finite element 

model of the structure is shown in Figure 3; it is aNASTRAN model consisting of CBEAM elements, with 

spring elements introduced to model the joint compliances. Rigid offsets were used to determine the re- 

sponses at each accelerometer location, and instrumentation mass was included. The correlation of the 

modal parameters between the test-identified modes and the initial (pre-test) analysis model is documented 

in Table 2. 
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Table 2: Initial LADDER ModeVTest Comparison 

Modal 
Assurance 

Criteria 
%difference 

Test Frequency Mode Frequency Mode Frequency Model Test. 

(Hz) 
1 78.9674 1 72.3633 -8.36 0.9973 
2 170.6259 3 174.9456 2.53 0.9963 
3 174.4670 2 161.5404 -7.41 0.9934 
4 214.7231 4 206.3898 -3.88 0.9981 
5 250.9062 5 255.1062 1.67 0.995 1 
6 312.1717 7 318.6140 2.06 0.9580 
7 315.7890 6 312.8396 -0.93 0.95 16 
8 317.7661 9 368.6281 16.01 0.9486 
9 330.2652 8 333.6956 1.04 0.9968 

10 432.5194 10 451.6765 4.43 0.9937 
11 518.5953 11 534.4661 3.06 0.9890 
12 563.6540 14 806.4039 43.07 0.8115 
13 612.8141 12 631.6433 3.07 0.9816 
14 674.3648 13 678.9766 0.68 0.7993 

After attempts to reconcile the model using the basic SB-EBE procedure failed, the modified algorithm 

was developed and applied to this problem. The update evolved as follows: the joint spring parameters 

were estimated based on the first 8 flexible modes with the model statically reduced to the 96 sensor DOF. 

This implied that no mode shape projection was performed. Then, cross-sectional parameters I,, I, and 

J were added and estimated along with joint rotational springs using test modes -1-9 and model statically 

reduced to the sensor DOF. The final values were estimated based on modes 1-12 with the same parame- 

ters plus K, and using the model reduced to measured DOF plus torsional DOF for model grids. This 

final estimation thus required that the mode shapes be projected. 

The resultant parameter values are given in Table 3. The correlation of the updated model to test for 

the first 14 modes are documented in Table 4. Observe that the frequency errors have been reduced from 

a maximum of 43% to below 4%, while the mode shape correlations have been maintained or slightly im- 
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.proved. Note also from the parameter update results that the updated coefficients of variation (COV), 

which is the standard deviation of the parameter expressed as a percentage of the parameter value, is sig- 

nificantly smaller than the assumed initial COV. This implies that the parameters were highly sensitive to 

the modal data used in the estimation. In conclusion, the present modified algorithm performed very well 

using the experimental data, resulting in a highly accurate updated model. 

Table 3: Parameter Update Results for LADDER Structure 

Final Value Initial COV Updated COV (relative to initial) Parameter 

0.4250 100% 0.49% 

0.2580 

104.0 

1.4621 

0.9415 

0.9178 

1.009 1 

100% 

100% 

100% 

3% 

3% 

3% 

0.00153% 

3.58% 

1.39% 

0.00663% 

0.019 1% 

0.00661 % 
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TabIe 4: Final LADDER ModeVTest Comparison 

Modal 
Assurance 

(Hz) Criteria 

%hiffereici 
Frequency Frequency Test Model 

Mode Test Frequency 
(fi) 

Mode 

1 78.9674 1 78.8034 -0.21 0.9978 
2 170.6259 2 169.6736 -0.56 0.9963 
3 174.4670 3 174.6665 0.11 0.993 1 
4 214.7231 4 218.2671 1.65 0.9984 
5 250.9062 5 249.0289 -0.75 0.9957 
6 312.1717 6 307.9859 -1.34 0.9894 
7 315.7890 7 315.5987 -0.06 0.9789 
8 317.7661 8 323.0028 1.65 0.8792 
9 330.2652 9 324.1070 -1.86 0.9521 
10 432.5194 10 435.3196 0.65 0.9955 
11 518.5953 11 514.9591 -0.70 0.9894 
12 563.6540 12 542.8199 -3.67 0.8724 
13 612.8141 13 615.0687 0.37 0.9732 
14 674.3648 14 673.2796 -0.16 0.8250 

VI. Concluding Remarks 

An algorithm for updating finite element models using modal data has been presented. The algorithm 

minimizes a generalized dynamic residual which is a function of the experimental modal parameters and 

the model mass and stiffness matrices. The present algorithm is a modification of a previous method for 

sensitivity-based element-by-element model updating and incorporates a generalized error weighting, 
:., 

consistent linearization and Bayesian estimation. The algorithm has been demonstrated on numerical and 

experimental data and has been shown to be an efficient and effective approach for estimating parameters 

to reconcile test and analysis models. 
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Figure 1: Convergence of Parameters for Numerical Example 
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Figure 2: Modal Testing Setup for LADDER Structure 
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Figure 3: Finite Element Model of LADDER Structure 
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