Textile Finishing Process

Benefits
- Lower energy consumption (50% reduction per unit weight of fabric) is projected
- Reduced emissions (55% reduction or over 1,400 tons of waste per unit saved annually)
- Higher production speeds resulting in greater productivity

Applications
This new finishing process will apply to the extensive textile finishing industry in the United States and will help the industry improve its competitiveness in the global textile market.

Reducing liquid and increasing speed results in energy-efficient fabric finishing

Finishing fabric—improving shrinkage control, softness, stain resistance, and so on—requires immersion in chemical solutions followed by moisture removal and drying on a tenter frame. A tenter frame holds the fabric by its edges in a continuous chain and dries the fabric by passing it through a series of nozzles that apply air at elevated temperatures. Heating the fabric, evaporating the liquid, and powering motors consumes large quantities of energy. The finishing operation is slow, resulting in long hours of operation, higher labor costs, and increased waste.

In this project, the finishing chemicals will be applied with foam rather than liquid. By reducing the water usage by 60% and lowering the overall evaporative requirements, this technology decreases natural gas consumption and increases production speed. Other improvements increase the speed and energy efficiency of the drying process. Lower maintenance costs, material savings, and higher productivity are other expected benefits.

Working with the Marshall and Williams manufacturer of tenter frames for fabric drying, Brittany Dyeing and Printing Corp. is developing an energy-saving approach to fabric finishing.

Office of Industrial Technologies
Energy Efficiency and Renewable Energy • U.S. Department of Energy
Project Description

Goal: The goal of this project is to assemble equipment that can finish textiles with 75% less moisture than conventional finishing processes, with the added benefit of increasing textile finishing capacity.

Finishing chemicals applied in a foam allow reduction of water usage by up to 60%, significantly cutting the evaporative requirements. Secondly, a chain and rail redesign in the tenter frame will increase production from 120 to 275 yards per minute. The redesign employs a monorail to transport the chain, eliminating the need for constant lubrication and lowering horsepower requirements from 50 to 40 horsepower.

Progress and Milestones

- A contract was finalized between Brittany Dyeing and Printing Corp. and the state Office of Technical Resources in August 1997.
- Brittany Dyeing and Printing Corp. commenced work in September 1997.
- All capital equipment has been ordered and installed.
- Brittany continues to operate and optimize the system, with data collecting scheduled for 1st Quarter 1999.

PROJECT PARTNERS

NICE3 Program
U.S. Department of Energy
Washington, DC

Brittany Dyeing and Printing Corp.
New Bedford, MA

Division of Energy Resources
Boston, MA

Marshall and Williams Company
Greenville, SC

FOR PROJECT INFORMATION, CONTACT:
Bob Cruise
Brittany Dyeing and Printing Corp.
1357 E. Rodney French Blvd.
New Bedford, MA 02744-2124
Phone: (508) 999-3281
Fax: (508) 997-7001

FOR PROGRAM INFORMATION, CONTACT:
Lisa Barnett
Program Manager, NICE3 Program
U.S. Department of Energy
1000 Independence Ave., SW
Washington, DC 20585
Phone: (202) 586-2212
Fax: (202) 586-7114
lisa.barnett@ee.doe.gov

Visit our home page at
www.oit.doe.gov

Office of Industrial Technologies
Energy Efficiency and Renewable Energy
U.S. Department of Energy
Washington, DC 20585

DOE/GO-10099-611
January 1999