
96-3619 LA-UR L0-q -'770430--,!

LOS Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: MC*: A PARALLEL, PORTABLE, MONTE CARLO NEUTRON
TRANSPORT CODE IN C*

AUTHORW Stephen R. Lee
Julian C. Cummings
Steven D. Nolen

SUBMITTED TO: 30th Annual Simulation Symposium,
Atlanta, Georgia, April 7-9, 1997

DECLAIMER

This report was prepared as an a m u n t of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied. or assumes any legal liability or respoasi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not nccessarily constitute or imply its endorsement. m m -
rnendation. or favoring by the United States Government or any agency thereof. The views
and opinions of authors e x p r d herein do not nccessarily state or reflect those of the
United States Government or any agency thereof.

By acceptance of this article. the publisher recognizes that the U.S Government retains a nonexclusive. royalty-free license to publlsh or reproduce
the published form of this contribution. or to allow others to do so. for U S Government purposes.

The Los Atamos National Laboratory requests that the publisher identity this article as work performed under the auspices 01 the U S Department 01 Energy

Los Alamos National Laboratory
Los Alamos,New Mexico 87545

FORM NO 836 R4
ST NO 26295181

DISCLAIMER

Portions of this document may be illegible
in electronic image produck Images are
produced from the best available original
document.

OAF-9 70430 - -2
-&-? lo - 3 0 1 9

MC++: A Parallel, Portable, Monte Neutron Transport Code in C++ .

Stephen R. Lee
Transport Methods Group, MS B226

Applied Theoretical and Computational Physics Division
Los Alamos National Laboratory

Los Alamos, NM 87544
Phone: 505 665 2989
Fax: 505 665 5538

Email: srlee @ lanl.gov

Julian C. Cummings
Los Alamos National Laboratory

Steven D. Nolen
Texas A&M University'

Abstract
MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based
on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in
parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of
UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated
Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport
physics framework (TPF), which is a C++ class library containing appropriate abstractions,
objects, and methods for the particle transport problem. The transport problem is briefly
described, as well as the current status and algorithms in MC+t for solving the transport equation.
The alpha version of the POOMA class library is also discussed, along with the implementation of
the transport solution algorithms using POOMA. Finally, a simple test problem is defined and per-
formance and physics results from this problem are discussed on a variety of platforms.

Description of the General Problem
We begin with the time-dependent transport equation for multiplying systems (neglecting
delayed neutrons)2 [Lewis & Miller 19841

1 [l / v z + f i . 4 + X (P , E) a u,(P,E, t) = Q (P , f i , E , t) +

' jdEjd&C,(P, E +E, 8' - fi)y(P, &, E, t) +

Where & represents the direction of travel and u,(P, fi, E, t) represents the angular flux, such
that

7 9 . - (-.*-!,--?
p*#.--..* . . ,., .
tu..;:,., 1.. . * ; '6 . .I ~ .i .. J? IS UpJyED

1. Currently a graduate research assistant working with Stephen Lee at LANL. '1
2. Cross section notation has been modified from the reference to be self consistent in this document, which

generally uses [Bell & Glasstone 19701 notation.

http://lanl.gov

v(P, 8, E, t)dVdQdEdt

represents the total of the path lengths traveled during dt by all particles in the incremental phase
space volume dVdQdE . The term Q represents external sources of neutrons,
Xs(P , E + E, & - 8) is the scattering cross section, and Zf(P, E) is the fission cross section.
The mean number of fission neutrons produced in a fission caused by an incident neutron of
energy E is given by 2) (E) , and x (E) is the energy spectrum of fission neutrons such that

v(E)Zf(P, E)x(E')dEdQ

is the probable number of fission neutrons produced at P , with energies within d E about E ,
within the cone of angles dQ' about 8, per path length traveled by neutrons with energy E.

In many transport calculations, including MC++, time-dependence is treated implicitly. Therefore,
re-writing (1) in a time-independent form and assuming no external sources,

A system containing fissionable material is said to be critical if there is a self-sustaining time-
independent chain reaction in the absence of external sources of neutrons. That is, after sufficient
time has passed, a time-independent, asymptotic distribution of neutrons will exist such that the
rate of fission neutron production is just equal to the losses due to absorption and leakage from the
system. If such an equilibrium cannot be established, the neutron distribution will either increase
or decrease exponentially in time. Systems are said to be subcritical if the population decreases,
and supercritical if it increases.

To treat the criticality problem, MC++ introduces an auxiliary eigenvalue, k. The average number
of neutrons per fission event, v, is replaced by v k , and k is then adjusted to obtain a time-indepen-
dent asymptotic solution to the transport equation [Bell & Glasstone 19701. Therefore, at
k = keff , the effective multiplication factor, this solution is found. This amounts to varying the
number of neutrons emitted per fission by I k . Therefore, we cast (2) as an eigenvalue problem
and write

[8 - + o(P, E)]v(P, 8, E) =
j dEjd8 'Cs (P , E + E, 81 a)v(P , 8, E) +
x (E) / k j d E u (E) Z f (P , E) jd&v(P , 8, E) (3)

Any chain reaction can be made critical if the number of neutrons per fission is adjusted between
zero and infinity. Clearly the system is just critical if k = l . A value of k<l implies that the hypo-
thetical number of neutrons per fission required to make the system critical is larger then v, the
number physically available. Therefore, such a system is sub-critical. If k>I, the number of neu-
trons required to make the system critical isfewer than that available in reality and hence the sys-
tem is supercritical.

MC++ calculates this effective multiplication factor, kef(which will be called k from now on).

Description of the Algorithm
All transport codes require some sort of numerical description of the geometry and composition
of the system, For MCt t , the geometry description is in the form of a three-dimensional Cartesian
mesh obtained from another simulation code. Each mesh element contains specific information as
to its size in each dimension, location of cell vertices, material composition, and density. MC++
then stores this description (which is read from a NetCDF file) along with isotopic information
supplied by the user to fully describe the materials and composition of the problem. Equation (3)
is then solved in a simple iterative scheme that is widely employed in other transport codes [Bries-
meister 19931 and is described briefly here.

The calculation is started by guessing an initial spatial distribution of neutrons. In MC++, this ini-
tial guess is a simple scheme that places neutrons in cells containing fissile material in a “round-
robin” manner until all particles are exhausted. This, along with an initial guess for the system k-
effective (supplied by the user) begins the first iteration in MC++. This is called the “first genera-
tion” (or “cycle”) of our neutron population. In MCtt , k can be thought of as the ratio between
the number of neutrons in successive generations, with fission events being regarded as the “birth
event” that separates the generations. The mean number of fission neutrons produced in fission
events are estimated and these generated neutrons are stored as the source points for the next
cycle. A cycle is therefore defined as the life of all neutrons in the problem from birth (by fission)
to death (by escape or capture’). Particles in the next cycle are started isotropically at the location
at which the birth took place.

The user controls the nominal number of particles to track per cycle and the number of cycles dur-
ing which to accumulate the results. The user can also specify the number of initial cycles to
“skip” to allow the neutron population to stabilize before accumulating the results.

M C t t estimates the distance to collision in a given mesh cell by computing

cdist = -ln(c)/Xt(E, P) (4)

for each particle in the problem. Here, 5 is a uniformly distributed random number on the interval
[0,1), and E, is the total macroscopic cross section in the mesh cell in which the particle resides.
MC++ also computes the particle trajectory distance to the nearest boundary (which could be a
mesh, problem, or material boundary) [Nolen et. al. 19961. MC++ then selects the smaller of
these distances (since this is the closer event) and does the appropriate physical interaction for
each particle (collision or boundary crossing event).

In the Monte Carlo estimation of k, let Nbe the desired number of particles per generation (speci-
fied by the user). During the problem one tracks the particles from birth to death through a series

1. Both fission and absorption events are treated as capture events.

of cycles, M. For any given fission event, the number of expected neutrons is given by

in our formulation. In (5), W is the weight of the particle, and is a statistical contrivance which is
a measure of an individual particle’s relative “importance” in the population. The sum of (5) over
all neutron tracks in the current cycle gives the total number of particles to be tracked in the next
cycle (i.e., these points are tallied and stored for the next cycle). When the next cycle begins, all
particle weights are normalized by setting them equal to the ratio of N and the number of actual
source points written out in the previous cycle (from (5)) . All tallies are therefore also normalized
to N, rather than the sum of (5) for each cycle. Note also from (5) the effect of the v/k term in
computing the number of neutrons per fission event, as shown in (3).

During the cycle, MC++ accumulates information about the likelihood and result of specific
events into tallies, the purpose of which is to compute estimates of k. Three different tallies, or
estimators, are used in MCtt , and are the same as used in MCNP [Briesmeister 19931.

The collision estimator for k is given by

J

where i is summed over all collisions where fission is possible andj is summed over all isotopes in
the material involved in the i* collision. e,, is the total microscopic cross section for nuclide j ,
f j is the atomic fraction of nuclidej , vi is the average number of neutrons’ produced by the fis-
sioning nuclide for a neutron at a given incident energy, c{, is the microscopic fission cross sec-
tion for nuclidej, and & is the weight of the particle entenng the i*collision.

In this criticality scheme, fission and absorption are both treated as capture events. Capture can be
handled in an analog manner, in which the particle undergoing capture is removed from the prob-
lem, or implicitly, in which the weight of the particle is modified by the probability for capture and
a roulette game is subsequently played with the modified weight. In either case, the probability for
capture is (e,, + of, $/ot, j , the sum of the absorption and fission cross sections divided by the
total cross section for isotopej in which the event occurs.

The estimates for the absorption k differ, however. For analog capture

where i is summed over each analog capture event in thejth isotope.

1. This value can include prompt neutrons or total neutrons depending on the cross section data used.

For implicit capture,

where in this case i is summed over all collisions in which a fission is possible, W i is the weight
adjustment for implicit capture (i.e., the incoming particle weight times the capture probability
discussed above), andj is the nuclide involved in the collision.

Finally, the track-length estimator for k is given by

where i is summed over all particle trajectories, p is the atomic density in the mesh cell that the
particle is in at the time of the score, and d is the trajectory distance travelled from the last event.

The estimates fork are accumulated using (6), (9), and (7) or (8) each cycle. The average values
and relative errors of these estimators are computed over all active cycles M using standard equa-
tions.

These are the main tallies in MCtt . However, there are a variety of other, simpler tallies called
event tallies that simply count the number of times something happens. Because tallies are crucial
to Monte Carlo transport calculations, MC+t has an abstract base class, and two derived classes
devoted to handling tallies. As a result, implemented tallies in M C t t know how to clear them-
selves, count themselves, compute their own averages and errors, and even communicate with
other nodes in a parallel computation when needed (e.g., for global summation). These classes are
not discussed in detail here, but are available elsewhere b e e et. al. 1996al.

Brief Overview of POOMA-alpha
The POOMA Framework is a C++ class library intended to support a wide variety of parallel sci-
entific computing applications Wilson & Lu 19961. POOMA stands for parallel Qbject-Qriented
- methods and applications and has been in development since 1994. If one examines code develop-
ment in general and physics software in particular over the last several years, one often finds that
the physics is imbedded in what was (at the time) the latest architecture, software environment, or
parallel paradigm. POOMA was developed in an effort to retain key physics investments in a
changing environment. Therefore, one of the key elements of POOMA is an architecture abstrac-
tion. That is, POOMA was developed to provide the same interface for an end user (a methods de-
veloper in this case) to different computational platforms. This allows the methods developer to
focus on the computational physics algorithm and let POOMA handle the communications, do-
main decomposition, and other parallel-architecture concerns on different platforms. The pro-
gramming paradigm in POOMA is the data-parallel model, which allows for a clean abstraction
with some loss of generality to some physics problems that are not inherently data-parallel (such
as Monte Carlo neutron transport).

Aframework can be thought of as something that captures reusable software design and supports
common capabilities within a specific problem domain [Appley & Gallaher 19961. It is an inte-
grated and layered system of classes, in which classes in higher layers utilize the classes from
lower layers to build capability. POOMA is built from 5 such class layers, as shown in Figure 1.

POOMA

Application Layer

Component Layer

User Application

Global Layer

I Parallel Abstraction Layer I
Local Layer

Figure 1: The POOMA Framework hierarchy. The user application can actually access
POOMA at any level.

The higher levels in the Framework hierarchy represent abstractions that are directly relevant to
the application (such as distributed data structures and standard numerical methods) while classes
at the lower level represent parallel abstractions and computational kernels. The typical user ap-
plication works only with classes in the higher levels although the user can access any level of the
Framework,

POOMA provides the user with data-parallel representations for a variety of data types. These
data types, called global data types (GDT), include matrices, fields, and most importantly for
MC++, particles. In an application code, the user typically calculates only with the GDT objects.
Class member functions for GDTs in POOMA have been designed to seem similar to familiar
procedural, data-parallel language syntax where possible. However, it does not prevent users from
using inheritance and polymorphism to create new classes that map directly into problem domains
of interest. This, combined with the parallel abstraction that POOMA provides, is what first inter-
ested us in the Framework technology.

The Particles Classes
In POOMA, particles are free to move about a given domain while interacting with a fixed grid.
Naturally it is important to maintain particle locality within a given region on a local processor,
otherwise the simulation will be dominated by interprocessor communication as each particle will
potentially fetch field data across nodes. The particle classes provide a data-parallel expression
syntax while handling the processor communication within the Framework.

The particle classes consist of a double-erecision particle field, or DPField, class, and a class that
represents a distribution of particles (called Particles). DPFields represent physical attributes of a
particle, such as its position, direction cosines, weight, and so on. A Particles object contains a
set of DPFields that completely describe all of the particle attributes. While both of these objects
point to the same data, through the class member functions each of these objects operate on the at-

tributes of the particles in different ways. Generally speaking, the DPField class allows one to op-
erate on individual attributes of the particle (there are many examples of this in MC++), whereas
the Particles class operates across particle attributes.

For example, the DPField class contains overloaded operators that allow one to update all parti-
cles positions in a native data-parallel statement,

x += u*dist; (10)
where x represents the x-coordinate of all particles in the problem, dist is the distance to move all
particles in the problem, and u is the u-direction cosine of all particles in the problem. In this way,
all particles in the problem have their position updated in parallel on all processors. Because the
multiplication operator (*) is overload, POOMA handles the computations for DPFields with no
intervention from the user, even though the particles in the problem will reside on different pro-
cessors.

The Particles class contains even higher-level member functions that allow scattedgather opera-
tions, interpolation functions, and so on. Among these, a swap() function is provided, which in
combination with the problem domain-decomposition (also provided by POOMA), provides load-
balancing capabilities as particles move in the simulation. This function is responsible for ensur-
ing that particles are located on the same processor as local mesh data, and is invoked in MC++
after particle positions are updated.

Through the specifications of the DPFields, particles are constructed within POOMA. Using spec-
ifications of the problem domain, which in this case is a computational mesh provided by another
code, the Particles object and data layout are constructed. Once complete, the problem is fully
specified within the POOMA Framework, and one can then take advantage of the functions
POOMA offers.

There are many other details about POOMA that are not discussed here. For more information
about POOMA, see Wilson & Lu 1996, http://www.acl.lanl.gov/PoomaFramework].

POOMA Implementation of "lamport Physics
Naturally, to build physics simulation software using POOMA, one must buy-in to the virtual
node construct and other POOMA class implementations. The problem also needs to be castable
into data-parallel form.

For Monte Carlo transport, the alpha version of POOMA is a bit cumbersome to use. This is mag-
nified by the nature of the problem being solved which is not inherently data-parallel. At any time
in the simulation, individual neutrons in the distribution can undergo different interactions with
their surroundings. This presents a problem, as it becomes difficult to write nice tidy data-parallel
statements all the time as in (lo), which is one of the nice features of POOMA.

Considering the transport problem to be solved, one is lead to a set of particle attributes that are
required to simulate the criticality problem. As mentioned before, to create particles in POOMA
all one needs to do is describe their attributes using DPFields. Once the DPFields have been spec-
ified, one then creates the Particles object (class instantiation) based on the layout of the prob-

http://www.acl.lanl.gov/PoomaFramework

lem. In our case, the layout is defined by the mesh information. The details on how this is done are
important, but far to detailed to describe here [Nolen et. al. 19961. The Particles object is created
by specifying the layout, number of DPFields, and other information.

During tracking, particle attributes are retrieved from the Particles object in a straight-forward
way. Occasionally in the transport algorithm, data-parallel updates of particle attributes are done,
as shown in (10) for updating the particle positions. However, whenever individual particle inter-
actions must be treated, MC++ loops over all nodes’ in the problem, and all particles local to each
node, and handles the interactions. This operation, while serial on individual nodes, is parallel
across nodes. Due to the non-data-parallel nature of the problem being solved, this happens often
(e.g., some particles undergo collision events, other particles pass through a given cell without a
collision and therefore cross a cell boundary into the next cell).

Even given these constraints, the problem has been properly formulated using POOMA. For more
details on how the transport algorithm was formulated using POOMA, see p e e et. al. 1996b,
Nolen et. al. 19961.

A Simple Test Problem
To facilitate testing our implementation of physics in MC++, we used a “collision-only” version,
in which there are no problem boundaries and no way for particles to “escape” from the problem.
Thus this forms an infinite medium problem, in which k is given by the ratio of the number of neu-
trons produced in a single generation to the number absorbed in the previous generation [Glass-
tone & Sesonskel9941. That is

-

k, = VGf
GLl+ Of

Using (1 l), we generated a specific 1-group cross section set with appropriate values for all quan-
tities that would produce a k of 1.0. It is this problem that we used to test MC++.

Preamble
Before discussing physics and timing results, some background information is needed on the plat-
forms tested and on portability experiences with MC++.

Phtforms
MC++ was tested on a wide variety of platforms and, where possible, tested on multiple nodes.
MCNP version 4B was also run on the same problem on the same platforms to provide a compar-
ison for physics (and to a lesser degree, performance). MCNP is a long-standing, well known,
powerful and very well-tested Monte Carlo transport code. For more information on MCNP, see
[Briesmeister 19931.

1. In POOMA, the concept of a virtual node is used, which is a useful abstraction to enable load balancing,
architecture independence, and so on. In this paper, virtual nodes and nodes are used interchangeably.
One can think of a node as a physical processor for the purpose of this discussion, although in reality it is
not.

Table 1 is a summary of the platforms used throughout these tests.

Table 1: Tested Platforms

SGI64

SGI5

SGIMP

W6K
T3D

SGI64-MPI

TFLOP

SuN4SOL2

Platform Name Platform
Abbreviation

wort.acl.lanl.gov 64-bit SGI R8000

kent.acl.lanl.gov, et. al.

black.acl.lanl.gov

cluster.lanl.gov

t3d.acl.lanl.gov Cray T3D with MPI

jasper.acl.lanl.gov

tinyflop.cs.sandia.gov ASCI Red Intel Teraflop

u2.1anl.gov

32-bit SGI cluster with MPI

32-bit multi-headed SGI with MPI

IBM RS6000 cluster with MJ?I

64 bit multi-headed SGI RlOOOO with MPI

Sun SparclO with Solaris 2.5

Description

I . . -

In Table 1, all platforms listed in bold have parallel capability. MC++ was tested in both single
and multi-node mode on all of these platforms. Unfortunately, while MCNP will run in parallel
using PVM, we were unable to test MCNP in parallel on any platform other than the T3D. This
was due to a variety of reasons, including the restriction to PVM (which was not available on all
tested platforms) and problems with its implementation on other platforms.

Portable Parallelism
For the most part, MC++ has been developed and debugged on a single platform (Sun workstation
running Solaris 2.5). Once it was mature enough to run test problems, it was simply compiled on
all platforms of interest and run there. However, not only did the code run on these different plat-
forms, but it did so in parallel, with no additional work or special considerations on any of the
platforms in question. This highlights one of the benefits of the POOMA Framework, portable
parallelism. Through POOMA's virtual node model and architecture and communications
abstractions, MC++ is not only portable to different platforms, but also runs in parallel on these
platforms. This has allowed us to do most development locally in a robust computing environment
rather than on somewhat experimental architectures with poor development environments.

With the exception of some tuning of our sourcing algorithm and some problems with NetCDF on
the T3D, the code was compiled and run in parallel without incident on all platforms. As the code
grew in complexity, and we added additional physics and features, we continued to enjoy the
abstractions offered by POOMA. POOMA greatly facilitated getting MC++ up and working in
parallel across all of these platforms in a short period of time (MCtt has been developed in about
5 months).

Physics Results
The problem as defined previously was run with 40,000 nominal source particles per cycle for a
total of 10 cycles. 9 of these cycles were used to compute the average quantities and relative errors

http://wort.acl.lanl.gov
http://kent.acl.lanl.gov
http://black.acl.lanl.gov
http://cluster.lanl.gov
http://t3d.acl.lanl.gov
http://jasper.acl.lanl.gov
http://tinyflop.cs.sandia.gov
http://u2.1anl.gov

in the estimators.

Relative
Error

0.0005

0.0006

Table 2 shows the final k-effective estimators for MC++ and MCNP for the problem in question.
The track-length and collision estimators are shown here. Because we are using implicit capture,
and due to the nature of the problem, the absorption estimator is identical to the collision estima-
tor, and is not shown.

Table 2: MC++ and MCNP Physics Results

Track- Relative
length K Error

0.9993 0.0013

1.0016 0.0010

I

7
M C u

~ M C u (4

~ M C u 1 8

/ M C u I 1 6

Collision
K

0.9996

1.0003

1.0003

0.9998

0.9998

0.9999

~ 0.9999

0.0006 1.0016 0.0010

1.0028

0.0003 1.0007 0.0012

0.0005 I 1.0010 I 0.0016 I
0.0005 I 1.0010 I 0.0016 I

MCU same-node results on all platforms are identical, so only the node number, rather than the
platform, are shown in table 2 (e.g., an 8 node run on RS6K yields identical results to an 8 node
run on the T3D).

Note that good agreement with MCNP is seen. The fact that the results are different (although sta-
tistically identical) using differing number of nodes is due to the different random number
sequence used on each node. Repeated runs using the same number of nodes produces the exact
same results, of course.

Figures 2 and 3 show representative plots of both the collision k estimator and the track-length k
estimator for this problem. Note the convergence of the solution to the correct answer, and note
the overlapping MCNP and M C u results. Similar results were seen for all estimators on all plat-
forms tested.

+

MCNP Y

MC++, 2 node -I-
MCNP and MC++ Collision K

-

-

2 4 6 8 10
Cycle Number

Figure 2: MCNP and MC++ collision k-effective for 2 nodes. Note that the error bars overlap
in the final result.

+

MCNP and MC++

1
Track-length K

%keff
1.01

MCNP -
MC++, 8 node -I-

1.005 -

1 -

0.995 -

0.99
0 2 4 6 8 10

Cycle Number ,

Figure 3: Track-length K for MCNP and MC++, 8 nodes.

Performance Results
Both a comparison with MCNP and parallel performance are described in this section. It should

4 50.9 51.4 - 2.1

1

1

2

293.9 324 - -
207.3 217.5 1.5 -

133.9 277.0 - 0.8

be noted that while these comparisons are interesting, they are here to illustrate that MC++ is not
unreasonably slow, and is even competitive, with its Fortran counterpart. However, MCNP has
physics capabilities far beyond that of MC++, which was written for a specific target application.

No timing studies were done beyond 16 nodes due to the size of the test problem. Because it is a
small problem, further increasing the number of nodes degraded performance due to the lack of
work for each node to perform.

MCNP Comparison
In Table 3, timing results are shown for single and multi-node runs of MC++, and single node
runs for MCNP. In addition, multi-node runs for MCNP are shown on the T3D.

Table 3: MC++ and MCNP Timings

MC*/MCNPb
(wall)

Parallel Speedup' Platform

MCwe SGI64

1 I 115.5 1 179.0

1 1 100.9 I 102.2

1 mcnp I SGI64-MPI 1 134.6 I34

MC++ SGI64-MPI

mcnp RS6K . 119.6 127.4

73.0 85.4

I MC++ I RS6K 4 I 41.8 I 46.6

146.5 I ::f
120.4 3 0.89

I MC++ I RS6K

I mcnp I SGIMP

107.4 * I 1.2

a. Wall-clock times were taken on non-dedicated resources.
b. Ratio of MCNP wall-clock to M C t t wall clock (same number of nodes only).
c. Ratio of sing1e:multiple node wall clock times for MC++.
d. Times reported for MCNP are those from the “time” command.
e. Times reported for MC++ are from POOMA timers used within the code.
f. On the T3D, the only CPU time available was that reported by the operating system. When the CPU time

consumed is less than around 20-30 seconds, the T3D OS often reports 0.
g. MCNP is not available on this platform.
h. TFLOP is a dedicated resource, so the CPU and wall-clock times are identical.

.-

From this table, single node runs of MC++ are on average 1.2 times faster than MCNP (i.e., it is
essentially the same speed). This is better than expected considering the lack of sophistication in
some C++ compilers, and the table look-up performance of C++ compared to Fortran (MCNP is a
Fortran 77 code). The parallel runs of MC++ are all faster than their serial MCNP counterparts.
Note also that the 16 node T3D MC++ run is 6 times faster than the single node MCNP run, and 3
times faster than the 16 node MCNP run. Overall, parallel MC++ is on average around 5 times

faster than serial MCNP . MCNP’s maximum parallel speed up is 2.2, and MC++’s is 6.9. As the
work load increases, so will the efficiency of parallel MC++. For example, early tests of the
boundary-crossing algorithms combined with collision physics show factors of 20-30 improve-
ment over MCNP.

The single-node performance of MC++ is reasonable, but could be improved. The multi-node effi-
ciency of MC++ is good. Therefore, while the one-node POOMA efficiency is not too bad, the
multi-node speedups are reasonable given the size of this problem (not large) and the complex
mapping of the transport calculation into the POOMA Framework. We anticipate additional
improvements in single-node performance with the next POOMA release and careful perfor-
mance tuning of MC++.

Parallel Performance
Figure 8 shows parallel performance on all platforms for MC++.

300

IBM Cluster +-
jasper -I-

T3D *
TFLOP c

250 - Wall Clock V.S. Number of Nodes black - -
200 -

150 -

100 -

TFLOP
I *

6 8 10 12 14 11

50 -

0
0 2 4

Number of Nodes

Figure 8: Parallel speedups on each platform for MC++.

As can be seen in Figure 8 and Table 3, the parallel performance of MC++ is quite reasonable,
particularly without any special work on each platform to tune for parallel performance. We just
compiled and ran.

Future Work
From the perspective of MC++ itself, there are several things that need to be done. First, the
boundary crossing algorithm needs to be fully implemented and tested (which is underway). Also,
careful performance tuning should be done. Beyond this, there are some new techniques and new
physics that need to be added. MC++ can serve not only as a computational physics tool, but also

as a platform on which to try some new methods for Monte Carlo transport. These methods
include the implementation of an “importance combing” technique, in which particle tracks and
weights are manipulated in different ways to enhance convergence Booth 19961, or even the
investigation of the application of genetic algorithms to further enhance convergence.

However, this work was not intended to just provide computational physics support for ASCI. It
was also intended to help a group of people involved in simulating transport phenomenon with
legacy Fortran code to learn a new paradigm, and enable the migration of capabilities encapsu-
lated in these codes to different computing platforms. MC++ is the beginning of a transport phys-
icsfrarnework (TPF), which is a class library containing proper abstractions for transport physics,
just as POOMA is a class library containing proper abstractions for portable parallelism. This
TPF will include proper abstractions for events, energy deposition, variance reduction techniques,
spatial differencing, synthetic accelerations, sources, and so on. It will encapsulate transport phys-
ics, and will include Monte Carlo as well as other methods to solve the transport equation under
different circumstances. MC++ is the first step in this direction. Additional development is
required, however, and to this end, some of the methods within MC++ will be re-designed using
full object-oriented methods, much as the tally classes were done. Further abstractions will then
be made to different mesh types, particle types, problem regimes, and so on. This will provide a
TPF which would not only be used for ASCI applications, but also for the development of new
methods to be tested and applied within the ASCI program.

Conclusions
Initially, we have concentrated on getting the physics right in MC++ and being portable, rather
than on performance. The timing studies presented were our first look for show stoppers, and
nothing more. The fact that we did not tune MC++ for performance, yet were able to achieve
these results on this many platforms in such a short period of time is a significant accomplish-
ment. POOMA-alpha provides an appropriate architecture-independent abstraction for our prob-
lem. Although not inherently data-parallel, we have shown that the Monte Carlo problem is
castable into data-parallel form, and that our implementation of transport physics in C++, using
object-oriented methods and POOMA, can produce a code that is reasonably fast and efficient in a
short period of time. This is critical from an ASCI perspective, as platforms and computing envi-
ronments will rapidly change. It will be crucial to be able to respond to these changes, yet main-
tain a physics capability while always developing new capabilities and new methods. MC++ is a
big step in this direction.

References
[Appley & Gallaher 19961 G. Appley, M. Gallaher, A Framework for Manufacturing-Process

Simulation Software. Object Magazine, May 1996. (page 33)

[Bell & Glasstone 19701 G. Bell, S. Glasstone, Nuclear Reactor Theory. 1970, Litton Educa-
tional Publishing, Inc.

[Booth 19961 T. Booth, A Weight (Charge) Conserving Importance-Weighted Comb for Monte
Carlo. Proceedings of the 1996 American Nuclear Society topical meeting, “Radiation
Protection and Shielding” Falmouth, Massachusetts, April 21-25, 1996. Volume 2, pg.
770.

. -

Priesmeister 19931 J.F. Briesmiester, ed., MCNP -- A General Monte Carlo N-particle Transport
Code, Version 4A. Los Alamos National Laboratory. LA-12625-M.

[Lee et. al. 1996al S.R. Lee, J.C. Cummings, S.D. Nolen, Some C++ Classes for Monte Carlo
Tallies. X Division Research Notes. XTM-RN(U)96-004.

[Lee et. al., 1996bl S.R. Lee, J.C. Cummins, S.D. Nolen, Building a Transport Code using
POOMA and Object-Oriented Methods. X Division Research Notes. XTM-RN(U)96-003.

[Lewis & Miller 19841 E.E. Lewis, W.F. Miller, Computational Methods of Neutron Trans-
port. 1984, John Wiley & Sons.

[Glasstone & Sesonskel9941 S. Glasstone, A. Sesonske, Nuclear Reactor Engineering. 1994
Chapman & Hall.

[Nolen et. al. 19961 S.D. Nolen, S.R. Lee, J.C. Cummings, Adding Mesh Tracking Capability to
MC++. X Division Research Notes. XTM-RN(U)96-019.

[Wilson & Lu 19961 G. Wilson, P. Lu ed. Parallel Programming using C++. 1996, MIT Press.
(Chapter 14)

