On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Nino

PDF Version Also Available for Download.

Description

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The aim of this paper is to investigate whether the interannual behavior of the MJO is related to tropical sea surface temperature (SST) anomalies, particularly El Nino, and hence whether it is predictable. The interannual behavior of the MJO has been diagnosed initially in the 40-year NCEP/ NCAR Reanalysis. The results suggest that prior to the mid-1970s the ... continued below

Physical Description

45 p.; Other: FDE: PDF; PL:

Creation Information

Sperber, K.R., LLNL March 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 29 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The aim of this paper is to investigate whether the interannual behavior of the MJO is related to tropical sea surface temperature (SST) anomalies, particularly El Nino, and hence whether it is predictable. The interannual behavior of the MJO has been diagnosed initially in the 40-year NCEP/ NCAR Reanalysis. The results suggest that prior to the mid-1970s the activity of the MJO was consistently lower than during the latter part of the record. This may be related to either inadequacies in the data coverage, particularly over the tropical Indian Ocean prior to the introduction of satellite observations, or to the real effects of a decadal timescale warming in the tropical SSTs. The teleconnection patterns between interannual variations in MJO activity and SST show only a weak, barely significant, influence of El Nino in which the MJO is more active during the cold phase. As well as the NCEP/NCAR Reanalysis, a 4-member ensemble of 45 year integrations with the Hadley Centre climate model (HadAM2a), forced by observed SSTs for 1949-93, has been used to investigate the relationship between MJO activity and SST. HadAM2a is known to give a reasonable simulation of the MJO and the extended record provided by this ensemble of integrations allows a more robust investigation of the predictability of MJO activity than was possible with the 40-year NCEP/NCAR Reanalysis. The results have shown that, for the uncoupled system, with the atmosphere being driven by imposed SSTS, there is no reproducibility for the activity of the MJO from year to year. The interannual behavior of the MJO is not controlled by the phase of El Nino and would appear to be chaotic in character. However, the model results have confirmed the low frequency, decadal timescale variability of MJO activity seen in the NCEP/NCAR Reanalysis. The activity of the MJO is consistently lower in all realizations prior to the mid 1970s, suggesting that the MJO may become more active as tropical SSTs become warmer. This result may have implications for the effects of global warming on the coupled tropical atmosphere-ocean system.

Physical Description

45 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98058840

Source

  • The comprehensive ocean-atmosphere response experiment `98 workshop, Boulder, CO (United States), 7-14 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98058840
  • Report No.: UCRL-JC--130235
  • Report No.: CONF-980752--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 289673
  • Archival Resource Key: ark:/67531/metadc683030

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 17, 2016, 3:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 29

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sperber, K.R., LLNL. On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Nino, article, March 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc683030/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.