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Many problems in plasma physics involve substantial amounts of ana- 
lytical vector calculation. The complexity usually originates from both 
the vector operations themselves and the choice of underlying coordinate 
system. A computer algebra package for symbolic vector analysis in gen- 
eral coordinate systems, GeneralVectorAnalysis (GVA), is developed using 
Mathernatica. The modern viewpoint for 3D vector calculus, differentia1 
forms on 3-manifolds, is adopted to unify and systematize the vector cal- 
culus operations in general coordinate systems. This package will benefit 
physicists and applied mathematicians in their research where compli- 
cated vector analysis is required. It will not only save a huge amount of 
human brain-power and dramatically improve accuracy, but this package 
will also be an intelligent tool to  assist researchers in finding the right 
approaches to their problems. Several applications of this symbolic vector 
analysis package to plasma physics are also given. 
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1 Introduction 

The analytical calculations using vector calculus that appear in plasma physics, fluid dynam- 
ics, and other fields sometimes can become extremely complex. Even though there are no 
difficulties in principle in performing these complicated calculations by human brain-power, 
practically it is often too involved to get the right result in an affordable amount of time. 

The complexity usually originates from both the vector operations themselves and the choice 
of underlying coordinate system. An example would be the linearized ideal MHD (magneto- 
hydrodynamics) motion equation for a magnetized plasmal 11: 
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where the linear operator F acting on a displacement vector f is given by: 

1 1 
47r 4T F(t> = V ( Y P ~ V - ~ + ~ . V P ~ )  + -(a x Q) x B~ + -(v x B ~ )  x Q, 

and 

Q = V x (t x Bo). (3) 

Bo here is a given magnetic field, and p is a scalar pressure. They both are functions of 
spatial position. The spectrum of F determines a wide range of physical phenomena, from 
the waves propagating in interplanetary space to the instabilities of fusion devices. In the 
simplest situation where Bo is uniform, the computation required to obtain the spectrum 
of operator F is already considerable. For a general Bo field, the number of terms involved 
in the process of obtaining the expression €or F can be of the order of 500. In a realistic 
inhomogeneous Bo field such as that in a fusion device like a tokamak, the task of finding 
the spectrum is too herculean to be analytically doable when the underlying coordinate 
system is chosen to be either flux coordinates or Shafranov coordinates. This much needed 
calculation has never been done analytically, not because it is analytically impossible, but 
rather because it is too algebraically involved. Even for the simpler case where the magnetic 
flux surfaces are assumed to be circular and concentric, the only available result is the 
instability criterion analysis using the energy principle by Bussac e t  a641 in 1975. More 
complicated vector calculus computations can be found in plasma kinetic theory. 

However, in most cases the required analytic calculation can be finished in a finite number of 
steps through a prescribed process. The total number of terms and basic computations needed 
could be as large as 10,000, yet it is still finite. It is this very fact that suggests the possibility 
of performing these complicated symbolic calculations automatically on computers. 

The ideal of performing non-numerical scientific computations using computers is not new at 
all. However only in recent years has this field gained attention in the scientific community. 
A wide variety of applications have been found in biology, chemistry, and physics. Important 
applications in physics include tensor calculations in general relativity and the evaluation 
of Feyman diagrams. In plasma physics, computer algebra made its debut in the analytical 
formalism of the PEST code[5]. Compared with scientific numerical computation, scientific 
symbolic computation is still in a preliminary phase. More and more new applications are 
expected as advanced system become available and efficient algorithms are discovered. 

To implement automatic symbolic vector analysis in general coordinate systems, we need a 
simple and systematic mathematical framework. The modern viewpoint of 3D vector cal- 
culus, differential forms on 3-manifolds, is utilized for this purpose. On the other hand, a 
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well-developed high level programming language with a symbolic computation capability is 
also necessary. To the end, we chose Mathematica by the Wolfram Research Inc.[2] 

We have successfully developed the GeneralVectorAnalysis (GVA) Mathematica package, 
and used it in the analytical derivation of plasma gyro-kinetic-MHD theory. Compared 
with the Calculus ’VectorAnalysis’ package provided by Wolfram Research as a stan- 
dard add on package, our package GVA is more advanced and efficient. The standard 
Calculus VectorAnalysis ’ package works only on 14 standard right-handed orthogonal 
coordinate systems, while our package GVA works on any mathematically well defined co- 
ordinate system, including all the standard right-handed orthogonal 3D coordinate systems 
as well as on non-standard, non-orthogonal coordinate systems such as the magnetic flux 
coordinate system used extensively in fusion calculations. Moreover, users can define their 
own coordinate systems to work on. This unique ability will be appreciated by researchers in 
different fields where non-st andard coordinate systems are needed. Since mathematically a 
modern viewpoint is used, the algorithm inside GVA is also more general and efficient. Other 
features like the asymptotic analysis capability also make this package more applicable to 
realistic physical and engineering problems. 

The main difference between our package GVA and the Calculus ’ VectorAnalysis ’ pack- 
age by Wolfram Research is the methodology. Our methodology is to look at the problem 
from a higher viewpoint; thus a systematic treatment is possible. This philosophy can be 
found in the core of Mathematica[2], for example, in the function for indefinite integration: 
Integrate I: I ,  and the function for algebraic factoring: Factor [ I .  But such a methodol- 
ogy is not adopted in the add-on package Calculus ’ VectorAnalysis ’ . Modern concepts 
and systematic treatment inside the GVA package provide us with more freedom and new 
utility, by which research time can be saved, accuracy can be improved, analytic derivations 
otherwise impossible can be carried out, and thus researchers are able to concentrate on the 
meaningful physical results of their problems. 

In Section 2, the basic mathematical formulas are summarized in the framework of differential 
forms on a 3-manifold. The advantages of the modern viewpoint will also be discussed. As 
an example, we show that the existence of the well-known Clebsch magnetic coordinates is a 
direct conclusion of the Darboux theorem in the theory of differential forms. The realization 
of the basic algorithm using Muthematica is discussed in Section 3. In Section 4 several 
applications of this GVA package to plasma physics are given. 
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2 The mathematics of vector calculus in general coordinate systems and its 
application to magnetic coordinates 

In this section we briefly summarize the theory of vector calculus using the language of dif- 
ferential forms on 3-manifold[6,7]. Basics vector calculus formulas are derived in this frame- 
work. As an example of the many applications to physics, we show the connection between 
the Clebsch magnetic coordinates[S] and the Darboux theorem[9]. 

A vector field space is isomorphic with a l-form space (i.e. its dual space, or Ti tensor space) 
after introducing the Riemann metric tensor. In a 3-manifold, the Hodge star operator maps 
a l-form space one-one onto a 2-form space, and a O-form space one-one onto a 3-form space. 
If a vector field is viewed as a l-form, and a scalar field as a O-form, then all the elementary 
vector calculus operations can be expressed in terms of the exterior product and the exterior 
derivative of differential forms. 

Actually all physical vector fields can more naturally be treated as l-forms. Let's demonstrate 
this idea by considering the magnetic field B, for example. All the information we can 
get about the B field is from first-hand experimental measurements. What we can directly 
measure is the strength of B in any given direction. Usually the strengths along different 
directions are different. In another words, what we can really measure as the B field is 
nothing but a function of the spatial direction. We can confirm that this function is linear 
from the measurement data. Therefore, B is indeed a l-form. Only after the introduction of 
a metric (the Riemann metric tensor), can this l-form be identified with a vector field[3]. 

In B3, a well-defined coordinate system is given by three independent scalar functions, xl(r), 
x2(r), and x3(r) with Ox1 - (Vx2 x Vx3) non-vanishing everywhere. A coordinate system is 
uniquely determined by its Riemann metric matrix gij, or the inverse of the Riemann metric 
matrix geJ ,  defined by: 

.. 

where the ei and ei are the basis and the dual basis respectively. 

A vector field is specified by (al(x), a2(x), 4 2 ) ) .  In the form of a l-form: 
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The Hodge star operator maps it into a %-form, 

*A = J(a3dx1dx2 + a1dx2dx3 + a2dx3dx1), (7) 

where J = ddetlgijl, ai = gijaj ,  i , j  = 1,2,3. The image of *A under the Hodge star operator 
is A itself, i e . ,  

A scalar field f is viewed as a 0-form, on which the Hodge star operator is: 

*f = J fdx'dx2dx3. (9) 

Also, we have 

The 1-form of a vector field is its covariant representation; on the other hand the 2-form of 
the same vector field is its contravariant representation. Similarly, the 0-form of a scalar field 
is it covariant representation while the 3-form of it is its contravariant representation. 

The correspondence between vector calculus operations and differential forms operations can 
be summarized as following: 

A x B e *(AB)  * ( A  x B)' = (~k;jAaBj)/J, 
A B *(A(*B)) + ( A  - B) = A;B', 

O f  e *df * (Vf); = af/axi, 
V - A *d(*A) * V - A = (aJAi/axi)/J, 

V x A e *dA + (V x A)' = (~ijaAj/&~)/J 

The third column in the above equations constitutes the basic formulas which will appear 
in the GVA package. The derivations of these equations are trivial from the corresponding 
differential forms representations in the second column. The advantage of the differential 
forms formalism for 3D vector calculus is obvious by comparing the derivations of the basic 
formulas given here and the derivations which do not using this modern technique[lO]. 

The differential form formalism of 3D vector calculus also makes it possible to perform 
coordinate independent vector analysis using the computer, because the basic vector calculus 
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identities can be unified and systemized in the language of differential forms. As we know: 

and 

V . ( A  x B ) = B * V X  A - A . 8  x B ,  

are nothing but the chain rule for differential forms: 

d(w0) = (&)8 + (-1)d" "wd0; 

(19) 

The formulas V - V x A = 0 and V x (Of) = 0 are nothing but ddw = 0. 

There is an interesting application of the differential form theory in the construction of 
magnetic coordinate systems. We prove the existence of the Clebsch magnetic coordinates 
as following: because *B is closed (i.e. d(*B) = 0 ), in a starshaped region there exists an A 
such that *B = dA (Poincare lemma). According to the Darboux theorem, there exist three 
independent scalar functions a, ,B, and y such that A = ad@ + 7, and therefore *B = dcudp; 
a and ,B are thus the Clebsch coordinates for the magnetic field. Similar arguments can 
be applied to other magnetic coordinate systems including flux coordinates, Boozer-Grad 
coordinates, and Hadam coordinates[ll,lO]. 

3 The realization of automatic symbolic analysis in general coordinate systems 
in the context of Mathernatica 

In the context of Mathernatica, the realization of symbolic vector analysis in general coordi- 
nate systems is a Mathernatica add-on package, GeneralVectorAnalysis( GVA), which provides 
users with about 20 functions to perform vector operations. 

We have for the first time built the 2D conventional vector analysis notation into our system. 
For examples, instead of calling the function Curl[A], we can use V x A; to call the function 
CovariantDerivative[A, B], we can just use (A + V)B. When the CoordinateSystem is set 
to ' 'None' ' , GVA will perform coordinate independent vector analysis. VectorExpand[ ] will 
expand a vector expression into the canonical form, using all the known vector identities (see 
Figure 1). A coordinate system is defined by the inverse Riemann metric matrix. Frequently 
used coordinate systems such as the Cartesian coordinate system, the cylindrical coordinate 
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1 Automatic symbolic vector analysis ( demo 1 ) 

Load in the GenerelVectorAnalysis package 

In[ll:= << -/mathematicalGeneraIvectorAnalysis.m 
Conventional vector analysis notation is built in. 

In[21:= FuWom/@ 1 a -  (b + c), (a + d)x(bxc)) 
Out[21= {DotProduct[a, Plusb, cll, CrossProductplus[a, dl, CrossProduc@, cll) 

In[J]:= FuliFom/@(Vx(a+ax(bxc)), V .(a+bxd)) 
Out[f]= (Curl[plus[a, CrossPmduct[a, CrossProduct[b, cllll, 

DivCplus[a, CrossPmductlb, dl11) 

In[4]:= F U I W O ~ / @ ( V ~  (fg), & IB I, J[rl) 
out[41= &aplacianD’imes[f, gll, UnitVector[A], AbsoluteValue[B], Jacobian[r]) 

Vector calculations independent of coordinate system. 

In[51:= DeclareVecto&4, Bo, B, C, D, E, F, C, H, J, 5, Ql; 

In[6]:= {AxA, A.(AxC), V x(Vf), V .(V xA), VectorExpan~Ax(BxC)]) 
DeclareScalada, b, c, d, e, f, g. hl 

O~t16]= {O, 0, 0, 0, -C A*B + B A.C) 

In[7]:= VectorExpand/@ (Ax (B x C) + B x (C x A) + Cx (Ax B), (AxB)x (Cx D), 
V * (f (AxB + V xC))) 

O~t[7]= 10, -D A *  (B xC) + C A. (B xD), 
-fA-(VxB)+fB.(V XA)+(AxB)*(Vf)+(VXC)-(Vf)) 

An example from ideal megnetohydrodynamics 

In[8]:= V-(Bo)=O: Q=Vx(fxBo); J = V x Q  
Out[8]= V x(V x(tx(Bo))) 

In[9]:= VectorExpanaJ] 
out[%= -(V(V - 5 ) ) ~  (Bo) - V x((5-v) (Bo 1) + V x(((Bo 1-V) 0 - V x(Bo) V 

Fig. 1. Mathernatica note book GVA.demol.nb. 

system, and the spherical coordinate system are built into GVA. Users can easily add their 
own coordinate system by adding in the corresponding inverse Riemann metric matrix. A 
coordinate system has to be chosen before any vector operations can be correctly performed. 
To choose a coordinate system, use the function SetCoordinateSystemC 1. For example, 

SetCoordinateSystem c‘ ‘Car tes ian’  ’1 [x ,y ,zI 

chooses the Cartesian coordinates, and uses x, y, and z as the three coordinates. 

Asymptotic analysis is supported in GVA. The Riemann metric matrix can be a series ex- 
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Fig. 2. Circular concentric tokamak coordinate system. 

pansion to any order. All the vector operations will consequently be carried out to the same 
order. This is an extremely powerful feature of this package. In practice, the coordinate sys- 
tems could be complicated, and asymptotic treatment is often required. This is what happens 
in the coordinate system for fusion devices like tokamaks. For the purpose of applications to 
fusion plasma physics, the “straight” tokamak coordinate system and several other tokamak 
coordinate systems, are built in as well. We can use 

SetCoordinateSystem [‘ ‘TKCircular , &, €1 [r ,e, 51 

to choose the conventional coordinate system for a large aspect-ratio tokamak with circular, 
concentric flux surfaces as shown in Figure 2. The parameter E will be used as the small 
asymptotic expansion parameter. All vector operations can be carried out to a chosen order 
of e. In the GVA package, a vector object has the form Vector[{al,a2,a3},{ai,a2,a3}]. 
{al, a2, a3} are the covariant components, and {a‘, a2, a”} are the contravariant ones. Since a 
vector is not a simple scalar function, it must be created by the Def ineVector [ 3 function, 
or as a result of vector operations. The following two functions first set up the cylindrical 
coordinate system and create a vector A using its covariant components: 
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SetCoordinateSystem['  'Cy l ind r i ca l '  '1 [r,8,z], 

A [ r ,  8, z] = Def ineVector[l, A,[r, 8, z ] ,  A&, 8 ,  z ] ,  A,[r, 8 ,  z ] ] .  

To create a vector using its contravariant components, we use the constant 2 as the first 
argument of Def ineVector  [ 1 instead: 

B [ r ,  8,2] = Def ineVector[2, B,[r, 8,z], Be[r, 8,z], B,[r, 8, z]]. 

The vector operation functions of GVA are easy to use. To calculate the cross product of A 
and B and name the result as C, for instance, we execute: 

C[ r ,  8,2] = A [ r ,  8, z] x B[r ,  8,2]. 

The command 

D[r,8,z] = A[r,8,z] x V x B[r,8,z] 

gives the result of the cross product between A and V x B as D. 

The elementary functions provided by GVA are listed below: 

- SetCoordinateSystem. SetCoordinateSystemC' 'Coordsys' ,p l ,p21 [cl ,c2,c31 will set 

- Metric. Metrich] [c lyc2 ,c3]  is the metric matrix gij, MetricC21 Ccl,c2,c31 is the 

- Jacobian .  Jacobian  [cl , c2,  c31 gives the Jacobian. 
- C h r i s t o f f e l .  Chr i s to f f e lC l ]  [cl ,c2,c3] is the Christoffel symbol of the 1st kind, 

C h r i s t o f f e l  [21 Ccl,c2,c3] is the Christoffel symbol of the 2nd kind. 
- Definevec tor .  DefineVector[l,Al,A2,A3] defines a vector with A l ,  A2, A 3  as its co- 

variant components, Def ineVector  [2 , A 1  ,A2 ,A31  defines a vector with A 1  , A2, A 3  as its 
contravariant components. 

up a Coordsys coordinate with coordinates c l  , c2 ,  c3 and parameters p l  ,p2. 

metric matrix gij. 

- Dotproduct .  DotProduct [A,BI or A .  B gives the dot product. 
- CrossProduct .  CrossProduct [A,BI or A x B gives the cross product. 
- Grad. GradCf] or Vf gives the gradient of the scalar f .  
- D i v  . Div [A] or V - A gives the divergence of the vector A. 
- Curl .  Cur l  [A] or V x A gives the curl of the vector A. 
- Covar ian tDer iva t ive .  Covar ian tDer iva t ive  [A ,XI or (A - V)x gives the directional deriva- 

- Laplacian.  LaplacianCfl  or V2f gives the Laplacian of the scalar f .  
- AbsoluteValue. AbsoluteValueCA] or IA I gives the absolute value of the vector A. 

tive of x in the A direction. x is either a scalar or a vector. 
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- Unitvector.  Unitvector [A] or i gives the normalized vector in the direction of A. 
- Parallel .  Parallel [A, B] gives the projection of A in the direction of B. It returns a 

- Perp . Perp [A, B] gives the perpendicular components of A with respect to B. It returns 

- VectorExpand. Vect orExpand [A] expands the vector expression A into canonical form. 

scalar. 

a vector. 

4 Applications to plasma physics 

A lot of problems in theoretical plasma physics require substantial amount of vector analysis, 
as in the example discussed in Section 1. In many situations, the real physics is camouflaged 
under the drudgery work of algebra. What makes things worse is that quite often we have 
to make some assumptions to simplify the algebra, with the risk of losing some important 
physical effects. We employ three examples here to demonstrate how the GVA package can 
be used to facilitate tedious algebraic derivations such that we can focus directly on the 
underlying physics. 

4.1 Application I: ideal MHD waves in a homogeneous magnetized plasma 

As the simplest application of the GVA package, we examine the ideal MHD waves in a 
homogeneous magnetized plasma. With the help of GVA, the things we need to do are 
simply to set up a coordinate system and field variables, and to  define the linear force 
operator, as is done in the Mathematica note book file wave.nb. The rest of the file is pretty 
straightforward (See Figure 3). It is easy to see that there are three eigenmodes; the first one 
is the shear Alfven wave, the second one is the slow magnetosonic wave, and the last one is 
the fast magnetosonic wave. 

4.2 Application 11: particle drift motions in tokamaks 

In a large aspect ratio tokamak, the inverse aspect ratio E is usually used as the small 
parameter for asymptotic approximation. The capability of asymptotic analysis is built into 
the GVA package. As a demonstration, we calculate the particle drift velocity in tokamaks 
to the order 0(c2). Again, the things we need to do are simple: loading in the GVA package, 
setting up the coordinate system and B field, and defining the drift velocity. This is all done 
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Ideal MHD Waves in a Magnetized Plama 

I Load in the GeneraIVectorAnaIysis package, set up coordinate system and 
field variables 

31 In[l]:= << -/mathematica/GeneraIVe~r~~ysis.m 

In[3J:= Bo = DefineVectorll, Bx. BY, Bz]; 

In[4]:= t[x, y, z] = ExpD ( KX x + KY y + KZ z 11 DefineVectorll, ex, t y  , & 1; 

SetCoordinateSyste~Cartesian"][x, y. 21; 

9 

3 
7 

Define the linear force operatoc 

3 Create the matrix for the force operator, solve for the eigenvalues : 

3 
inv]:= matrix = 

Table[Coefficient[fomforceEl, iB, Switchti, 1, tx, 2, 3,5211, {i, 31, lj, 311; 1 
In[8]:= eigenfkq = FullSimplify~xpand[Eigenvalues[~~~]]] 

Out@]= ( ( B ~  K~ + B ~  K~ + B ~  K ~ ) ~  
4 X P  

1 
~ ( p ( 4 p n y c B :  +B'y +Bi)(K$ + K t  +Kg)- 

d(pz (K; +K'y +Ki)(-16pny(Bx Kx +By Ky +Bz Kz)' + 

(4p*y+Bf, +B'y +Si) (K; +K'y +K$)))), 2 

1 
8 K p 2  

( p ( 4 p x y + B i  +B$ +B$)(Kf, +K'y +K$)+ 

,/(2 (Ki +K$ +Ki)(- l ( ipny(Bx KX +By KY +Bz K z ) ~  + 
(4pny+Bf ,  +B$ + B i f  (Ki +K'y +Ki))))) 

iI I 

Fig. 3. Mathematica note book waves.nb 

in the Mathematica note book file drift.nb (See Figure 4). The physics is clear from the 
output. The drift in the radial direction is caused by the toroidicity, and is of order O(c);  
the O(E)  poloidal drift is a result of the toroidicity also, and the O(e2) poloidal drift is the 
result of the weak poloidal field. The drift in the toroidal direction is of order O(c2) and is 
caused by the toroidicity; this is the higher-order toroidal precession. 
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1 rn Drift Motion in a Tokamak 

Load in the GeneralVectorAnalysispackage 3 
In[I]:= ii - / m a t h e m a t i ~ G e n e V e ~ r ~ a l y s i s . m  ja  

Set up the coordinate system for a large a..pect ratio tokamak, 
CaIcuIate every operation to the order O (3 ) . 

Set up the model equilibrium 3 
In[3]:= Needs~Utilities'Notation'"] 

Symbolize[T,, ] ; SymbolizeD',] ; Symbolize[Bo]; 3 

3 Define the guiding center drift velocity: 

In[6]:= b = Simplify[h]; 9 

Vd = FullSimplify[Vg + Vc]; 
To the order 0(c2) ,  the covariant form of drift velocity is : 

3 
1 

I@]:= Vd[ll 
c (2 T,, + T, ) Sin[@] E cr(ZT,, +T,)Cos[@]e 

Out[S]= (- + 0[€i3, - + 
Bo eRo Bo eRo 

c r (2 T,, + T, ) Cos[@] 
+o[€i3] 

Bo e &I Ro 

T- 
t 

-- 

Fig. 4. Muthemuticu note book drift.nb 

4.3 Application 111: analytic derivation of gyrokinetic-MHD formalism 

The direct motivation for developing this GVA package is to automate the sophisticated 
vector analysis appearing in the full gyrokinetic-MHD theory[l2]. We have derived the gy- 
rokinetic moment equation with all the important physical factors as: 

+ (VAII x bo) - 0"" (21) 
d c2 1 c (V x V x A) * Bo 
at 4T V A  Bo2 BO 

--[-v * (,Vl4)] + q,(Bo - 0) 

12 



and the perturbed distribution functions fj for species j will be solved for as functions 
of 4, $11, and the velocity space independent variables, E and p, from the gyro-kinetic 
equation[l2], where 4 is the perturbed electrostatic potential, $11 is defined by the perturbed 
vector potential All as All = ckl~$~l /u ,  E is the energy, and p is the magnetic moment. The 
special case of this equation when all the kinetic effects are neglected can also be derived 
from the ideal MHD equations. Many physics features are captured inside this equation. The 
background inhomogeneity responsible for the TAE (Toroidal Alfven Eigenmode) modes, 
the kink instabilities, and the density gradient instabilities are completely localized in the 
left hand side, while the perturbed pressure effects, the Landau damping effects, and the 
FLR (Finite Larmor Radius) effects appear on the right hand side of the equation. This 
equation will be a key to investigate systematically some bewildering questions in today’s 
fusion plasma physics, such as the interaction between the hot kinetic particles produced in 
an ignited tokamak and the long wavelength electromagnetic waves studied before using the 
ideal MHD theory. As one can imagine, the left hand side of this equation as a scalar function 
of $11 and 4 is extremely complicated when applied to tokamak geometries. To study the TAE 
modes kinetically, we have to evaluate this equation to order O(E) .  For internal kink modes, 
it has to be calculated to order O(e2). Even if assuming circular, concentric surfaces, the 
total number of terms involved to order O(c2) is about 1,000, which is obviously problematic 
if calculating by hand. With the assistance of the GVA package, we can obtain the needed 
results very quickly with 100% accuracy. The simplest model equilibrium assumes circular 
concentric flux surfaces, and uses the coordinates ( r ,  8, S) shown in Figure 2. 

The magnetic field is given by 

where 

h(8) 3 1 + EcosO, 
r 

Ro 
Assuming the general 2D expansion 
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we work out the left hand side of the GKM equation in this coordinate system to 
O(e2).  There are more than 100 terms. 

the order 

where 0 2 ,  03, 04, etc. are differential operators acting upon every pair of $llm(r) and 
.I . 

0 2 ,  0 3  and 0 4  are O(eo), O ( 8 )  and O(c2) ,  respectively. The expressions for these operators 
are printed out below: 

4 m2 w2 Ri 7~ p(r) 
Bo2 r2 

-2 m n q'(r) 2 m2 q'(r) 2 m3 n m4 m2 n2 4(4;  +-- - -) + I I ( ' )  + r q(r)3 r2 q(r )  r2 r2 + 
f 4(rI2 

+( 

4'W -i m r sin(8) 

2 i m r sin(8) q'(r) 

2 rn nr  cos(8) 

2 m n r cos(8) q'(r) 

8 w2R: T r cos(8) p ( r )  
- 2 n2 r cos(8)) $l((r) - 

BO2 0 3  = ( + 
+( 

q ( d 2  
2 i n  sin(8) i m sin(8) 2 m n cos(8) + - - - 

4 w 3  Q(d2 4(r )  q(rl2 44 
) 4 w  +m2 cos(8) -8w2Rg T r cos(8) p'(r) - 20w2R; T cos(8) p(r )  

BO2 BO2 
- 3 n2 cos(8)) $;I(r) + ( 

q(rI2 
- 2 i m  sin(O)q'(r) 4 m n  cos(e)qyr)  2 m 2  cos(O)q'(r) 2 i m 3  sin(O) + - + 

q(r>" 4 w 2  4.)" r 4(rI2 
+( 

i m n2 sin(8) 2 m3 n cos(@) 2 m n cos(8) 2 m2 n2 cos(8) + r ) $11 ( r )  - - 
r d r )  a(r> 

-12 i m w2 Ri 7r p(r )  sin(8) 
Bo2 r 

8 m2 w 2 g  7r cos(8) p(r )  + Bo2 r )4(d; +( 
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-i m r2 sin(28) q'(r) m n r2 cos(28) q'(r) + + m n r2 q'(r) 

QW3 9 w 2  Q(d2 )4'W + ( 2 w2 Ri 7r r2 p ( r )  

2 2 )  2 2 )  2n T q ( r )  6 m n r 2 q ' ( r )  4 m  r q ( r )  

- 
BO2 

+ 

3 i n r  sin(28) m n r  cos(28) m n r  - -- + - + 
4 r I 4  !m5 d r )  a(r> 4(r )  

4w2Ri  7r r2 p'(r) 
Bo2 q(r)2 

2w2@ 7r r2 cos(28) p'(r) 2w2R2 7r r2 p'(r) 8w2Ri  7r r2 p(r )  q'(r) - - - 
BO2 BO2 Bo2 q(rI3 +( 

12 w2 Ri 7r r p(r) 8 w2 Ri 7r r cos(28) p(r )  8 w2 R; 7r r p(r )  n2 r2 q'(r)2 

4 w 4  
1 4 w  + (- - - 

Bo2 BO2 + 
Bo2 QW2 

im3 sin(28) 3 i  m3n cos(28) 3 m n  cos(28) 2 m n 3  

m3n 3 m n  m2cos(28) 6 m 2 n 2  3 m 2  6m3n 4 m n  2 m 4  4 m 2  

3 m2 n2 cos(28) 3 m2 n2 -6 imw2Ri7rp(r )  sin(28) 8mnw2R27rp(r)  

-- 
a(r> 

+Y+T 

Bo2 a(.) 

- + - mn2 sin(28) + + 
4(rI2 2 qb-1 q(r)  

------ +-+-- + 
a(r> 2 m2 2Q(r)2 d r l 3  4 w 3  a(.> 

+ 
BO2 ) +ll(r> + ( - - 

2 2 
8rn2w2Ri7rp(r) 2m2w2Ri7r cos(28)p(r) 2m 2 2 2  w R , , ~ p ( r ) ) ~ ( ~ )  

BO2 
+ 

BO2 + - 
Bo2 

Some expressions similar to the right hand side of Equation (21) have been derived before 
to study TAE modes [13-151 . Usually, only a few terms of the toroidal correction are kept. 
As we know from the expression for 0 3  above, there are 23 terms for the first order toroidal 
correction. Being aware of this problem, Berk e t  aZ[15] argued that keeping only the first order 
correction for the second derivative terms would be sufficient to obtain the main features of 
the TAE modes. However, the instability criterion will be substantially affected by other first 
order corrections. As for the internal kink modes, every term up to order O(e2) is important. 
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5 Conclusions and future work 

GVA has been tested and has proved to be reliable and efficient in doing automatic symbolic 
calculation in general coordinate systems for those problems where the real physics contained 
in the basic starting equations is obscured by the complexity of the detailed algebra. Its 
usefulness in carrying out asymptotic analysis in practical problems is greatly appreciated. 
In the field of fusion plasma physics, all the important physics phenomena happen in the 
order O(6) and O(c2) ,  or even O(e3),  where many more applications of the GVA are expected. 
New functions such as factoring will be added in so that the capability of doing coordinate 
independent vector calculus derivations will be enhanced. In the framework of the differential 
forms formalism, we believe that there are no difficulties in principle in implementing these 
functionals. Not only will this save a huge amount of the researcher’s time and improve the 
accuracy dramatically, but also this GVA package will be an intelligent tool in finding the 
right approaches for theoretical problems. The GVA package and other related documents 
are available at h t t p  : //w3. pppl . gov/whongqin/. 
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