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Abstract 

A universal integral equation has been derived and solved for the nonlinear evolution 

of collective modes driven by kinetic wave particle resonances just above the threshold for 

instability. The dominant nonlinearity stems from the dynamics of resonant particles which 

can be treated perturbatively near the marginal state of the system. With a resonant particle 

source and classical relaxation processes included, the new equation allows the determina- 

tion of conditions for a soft nonlinear regime, where the saturation level is proportional to 

the increment above threshold, or a hard nonlinear regime, where the saturation level is 

independent of the closeness to threshold. It has been found, both analytically and numeri- 

cally. that in the hard regime the system exhibits explosive behavior and rapid oscillations 

of the mode amplitude. When the kinetic response is a requirement for the existence of 

the mode. this explosive behavior is accompanied by frequency chirping. The universality 

of the approach suggests that the theory applies to many types of resonant particle driven 

instabilities. and several specific cases. viz. energetic particle driven AlfvBn wave excitation, 

the fishbone oscillation. and a collective mode in particle accelerators, are discussed. 
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I. Introduction 

A fundamental problem in plasma physics is the evolution of kinetic instabilities driven 

by resonant particles.' Surprisingly, the nonlinear treatment of this problem has not been 

comprehensive and recently new insight has been obtained2 for understanding the behavior 

of the system when the kinetic response of the particles can be treated as a perturbation to 

the linear mode. It is the purpose of this paper to generalize the earlier developed theory 

to lxoblems where the kinetic response is not necessarily a perturbation to the mode and to 

point out that the method of analysis is applicable to a wide range of physical problems in 

plasma physics as well as in other areas. 

One common description for the self-consistent evolution of particles and waves is quasi- 

linear a perturbative approach that involves many overlapped wave-particle reso- 

nances as a basis for diffusive particle transport in phase space. When resonances do not 

overlap global transport is strongly suppressed. Instead, as the mode grows, most of the 

particles respond adiabatically to the wave: and only a small selected group of resonant par- 

ticles will mix and cause local flattening of the distribution function in phase space within 

or near the separatrices formed by the waves. 

The dynamics of this process has been described by Mazitov5 and O'Neil.6 If the ener- 

getic particles are perturbative, and background damping is negligible, the unstable mode 

will grow until the bounce frequency of the resonant particles trapped in the wave, - 
A'''' (with A the amplitude of the wave), reaches a level comparable to the linear growth 

rate.7 The most common example is the bump-on-tail instability problem. This saturation 

mechanism has also been noted for other similar problems' and has been observed in com- 

puter  simulation^.^-'^ When sources and sinks are present, either higher steady state levels 

of saturation are obtained with relatively strong sources or periodic pulsations arise with wb 
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of order the growth rate.8i12 

More recently, the nonlinear dynamics of a system near an instability threshold was 

studied when there is linear dissipation from background plasma present. and the energetic 

particle drive for instability gives a growth rate that just exceeds the damping rate.2 It 

was shown that the dynamics is dominated by the resonant particles: and that a low level 

saturation occurs when the resonant particles are sufficiently collisional. However, as the 

collisionless limit is approached, the saturated state becomes unstable and the mode tends 

to grow explosively. Within the context of the perturbation theory the mode reaches an 

arbitrarily large amplitude in a finite time. The actual limit of applicability of this explosive 

solution is when the bounce frequency of the trapped particles approaches the growth rate 

in absence of dissipation, independent of the closeness to marginal stability. Then to within 

a numerical constant the saturation level near threshold is the same as when dissipation is 

very small. 

A further generalization of this threshold analysis method is to treat nonperturbative 

waves, i.e.. modes whose very existence requires the kinetic response of the particles. A 

well-known example of this is the onset of instability due to a smooth double-humped 

distribution. l4  Attempts have been made to understand the dynamics near threshold15 but 

controversy still exists as to the validity of the solution.16 

Unlike the work on the evolution of the double humped instability, our analysis addresses 

problems that involve either an additional linear dissipation from the background plasma, or 

higher dimensionality when the resonance lines or surfaces give both positive and negative 

dissipation. balanced at the instability threshold. Ironically. the classic double humped 

problem does not fall into this category, but there are host of other problems that do. Some 

examples include fishbone  oscillation^,'^^^^ beam toroidal Alfv6n eigenmodes, 19,20 hot electron 

interchange modes,21 and collective modes in particle accelerators.22 Experimentally, such 

modes often exhibit frequency chirping: their frequency changes in time. This change of 
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the mode frequency, which has not had a satisfactory theoretical explanation, appears as a 

natural feature in our theory. 

The structure of the paper is as follows: In Sec. 2 we extend the derivation of Ref. 2 

to ,obtain a universal nonlinear equation for a weakly unstable mode driven by resonant 

particles, that is applicable even to nonperturbative modes. Section 3 presents an analysis 

of various nonlinear scenarios described by the universal equation. Section 4 deals with 

possible applications of the theory and discusses correlations with several experiments. 

11. Basic Equations 

Near the threshold of linear instability, the evolution of the unstable mode can generally 

be analyzed within the assumption of a weak nonlinearity. In this limit, the perturbed 

current J that enters Maxwell‘s equations is a sum of JL, a part that is a linear functional 

of the mode electric field E, and JNL, a nonlinear current whose functional dependence on 

E is calculated with a perturbation technique. Further, in this paper we assume that JNL 

arises solely from resonant particles, and we neglect the other contributions to  JNL which 

are smaller in the range of validity of our calculations. When we use the Fourier transformed 

Maxwell’s equations, we find 

1 dr’g(r, r’, w ,  a )  - E(r’, w) = JNL 

whlere the matrix g(r, r‘, w, a )  includes the contribution from JL and a is a parameter that 

measures closeness to the instability threshold. 

equation 

The linear theory yields the homogeneous 

e(r’, u )  = 0. 

At the threshold, a: a:,, this equation has a real eigenvalue w = wg and a nontrivial 

eigenvector e ( r ,wo)  which is determined up to an arbitrary constant. Also, there exists an 
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adjoint vector et(,, wo), which is a solution t,o the equation 

When 0 < Q/CY,, - 1 << 1 and the nonlinear current is sufficiently small, the eigenfunction 

e(r, w) must be peaked about w = wo. We can then expand g(r, r’, w, a )  about w = wo and 

CY = aCT. To eliminate the lowest order term. we take a dot product of Eq. (1) with et(.. wg) 

and integrate over all space. This procedure reduces Eq. (1) to 

/ drdr’et(r, wo) . [(w - wo)gw(r, r’, wo, acr) + (CY - acr)ga(r, r’, WO, an)] . E(r’> w) 

= /dret(r,wo). JNL(r,w) 

where a subscript indicates a partial derivative. It is now allowable to use the lowest order 

expression for E(r, u) in this equation, namely we put 

E(r ,  w) = c(w)e(r, wo). 

The factor C ( W )  represents the Fourier components peaked at w = wo. The real electric 

field of the mode is 

E(r, t )  = C(t )  exp(-iuot)e(r, wo) + C.C. (2) 

where C( t )  is a slowly varying mode amplitude. Transformation to the time domain gives 

the following equation for C( t ) :  

where 

and 

G(w,  C Y )  = drdr’et (r, wo) . g(r, r’, w, a )  . e(r, wg) s 



G, = d r d r ’ e t ( r ,  .io) .ga(r, r’, wo, a,) e ( r ,  wo). s 
In order to evaluate the nonlinear term in Eq. (3), we first express J N L ( r , t )  in terms of 

the particle distribution function, which gives 

ezwot 1 d r e t ( r .  wo) . J N L ( r ,  t )  = qezwot J d r e + ( r ,  wo) 

Here, q is the particle charge. d r  = drdp is the phase space 

particle velocity. and f N L ( r ,  p. t )  is the nonlinear part of the 

(4) 

volume element, v(r,p) is t i e  

distribution function. 

We now need to find f N L ( r ,  p! t )  from the kinetic equation 

in which the Hamiltonian H splits into H = HO + H1 with Ho being the nonperturbed 

Hamiltonian that determines the equilibrium orbits, and H I  the perturbation from the mode. 

The right-hand side of Eq. ( 5 )  takes into account particle source Q and collision operator, St. 

We assume the nonperturbed motion described by NO to be fully integrable, which allows 

canonical transformation to  action-angle variables. Let I, with i = 1, 2, 3 be the actions and 

& he the corresponding canonical angles, so that all physics quantities are periodic functions 

of cfZ with the period 27~. Then, the Hamiltonian H can be cast into the form 

with 

where e , ,  t 2 .  and l 3  are integers, and &l,ez,e, ( I 1 , 1 2 , 1 3 )  are matrix elements that can be 

calculated in a standard way, given the mode structure and the nonperturbed particle orbits. 

IVe have neglected C2 and other higher order corrections to H as it can be shown that they 

produce small terms in the final equation, compared to the terms we will generate. 
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For nearly resonant particles we can relate HI to the perturbed electric field given by 

Eq. ( 2 ) .  The result is 

With this expression for HI, we find 

Each term in the perturbed Hamiltonian represents a resonance that can be treated 

separately if the resonances do not overlap, which we assume here to be the case. For the 

motion dominated by a single resonance, the summation sign can be dropped in Eq. (7). 

One can then choose a new set of action-angle variables so that one of the new angles is 

< = ti<* + t 2 5 2  + 4?3<3, and I is the corresponding action. The Hamiltonian then reduces to 

the one-dimensional form 

H = Ho(1) + 2 Re C(t)e-ZuotV(I) exp(it) (8) 

where the remaining variables: not shown here, are suppressed as they can be treated as 

parameters in the new Hamiltonian. The resonance action I,. is determined by the equation 

qL) = wo 

where Q(1) 

satisfies the pendulum equation 

9 = C1 2 + !2 9 + l3 e. The collisionless motion of a resonant particle 

d2C 2 - + wb sin([ - wot - to) = o d t2  (9) 

is the nonlinear bounce frequency of the particle (when C is time independent) and <O is a 

constant phase. 
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Sear the resonance? the kinetic equation reads 

af af af 
a t  a< d I  
- + R ( I )  - - 2Re[iC(t)V(I,) exp(i< - zu0t)]-- = Stf + Q.  

In this equation, we have neglected the term + aH a&f which is indeed a justified approximation: 

this term is small compared to the last term on the left-hand side of Eq. (10) because the 

perturbed distribution function of the resonant particles has a steeper gradient in I than 

the perturbed Hamiltonian. For the same reason, we treat the matrix element and dR/dI 

as constants evaluated at I = I, when we solve Eq. (10) for the resonant particles. 

We will consider two different descriptions of collisions in Eq. (10): a simplified Krook 

model and a more realistic diffusive model. For the Krook model, we take 

where F is the equilibrium distribution function with a nearly constant nonzero slope near 

the resonance, and v, is the relaxation rate. The diffusive collisional operator takes the form 

where F is again the equilibrium distribution. Equation (12) and the expression for v& can 

be consistently derived from a specific Fokker-Planck collision operator with an appropriate 

orbit averaging procedure developed in Ref. 23. The specific form for viK is given in section 

(c) of the Appendix. Kote that only second derivative terms with the perturbed distribution 

function need to be retained in the collision operator as these are the dominant terms near 

the resonance where the perturbed distribution is strongly peaked. Equations (11) and (12) 

lead to similar results if one takes v, - v,R. The v-parameter in both equations describes 

the rate particles decorrelate from resonance when C(t) is sufficiently small. 

We explicitly solve Eq. (10) for the Krook model (we shall also present the results for the 

diffusive model) with the use of a perturbation technique that assumes that either the time 
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interval is short compared with the characteristic bounce period, 27r/Wb, or the collisional 

relaxation rate is much greater than wb. This assumption allows us to seek f in the form of 

a truncated Fourier series 

f = F + fo + [fl exp(i< - iwot) + f2 exp(2if - 2iwot) + c.c.] (13) 

where the Fourier coefficients fo. fl: and f 2  are functions of t and I .  Although the second 

harmonic generally needs to be included in the calculations of the nonlinear response: it 

turns out that f2 does not affect the resulting equation for the mode amplitude. Therefore. 

we ignore f:, from the very beginning, a procedure that can be verified in a straightforward 

way. With this simplification, Eqs. (10) and (11) reduce to 

dfl d - - quo - R(l ) ] f l  + v,f1 = iC(t)V - ( F  + fo) at a1 

afo af; dfl - + v,fo = iC(t)V - - iC*(t)V*-. at aI  d I  

We integrate Eqs. (14), and (15) iteratively taking into account that F >> fl >> fo 

and assuming zero initial values for f l  and fo. We first neglect fo on the right-handside of 

Eq. (14) and find f l ~ ,  the part of f l ,  linear in C: 

Next, we use f l ~  instead of fl in Eq. (15) to find fo. We then substitute fo into Eq. (14) and 

calculate f l ~ ~ ,  the part of f1 cubic in C. For wot >> 1, the dominant contribution to f 1 ~ ~  

comes from the terms in which the differential operator & acts on the exponential functions 

in f l ~  and fo. The final leading order contribution to  f l N L  has the form 
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where 

The nonlinear term on the right-hand side of Eq. (3) is a functional of f l , v ~ .  The evaluation 

of this term involves an integration over phase space, including integration over I ,  or alter- 

natively, over R(1). As a function of R, the integrand is a product of a smooth function, 

which can be treated as constant near the resonance, and the exponential functions in f l N L .  

Once integrated over s2, the exponential functions generate two &functions: 6 ( t  - T - T~ + T ~ )  
and 6( t  - T + T~ - T*), of which only the first one falls into the time domain of Eq. (16). This 

observation leads to the following structure of Eq. (3): 

dC 
d t  ZG, - + (a  - acr)GaC = 

2 ,  C (.) C ( 7 1  C* ( T2 1 2 --V+(t--7 K d 7  dT1 dT26(t - T - 71 + 7 2 ) ( 7 1  - 7 2 )  e j i j !  0 0 0 

~~~ ~ 

andl for simplicity we have taken u, independent of phase space position. 

When Eqs. (17)-(19) are applied to specific problems, transformation from I to more 

natural variables can be useful. For example, natural transformation of the operator & for 

a tokamak is given in section (a) of the Appendix. 

It is convenient to measure time in Eq. (17) in the units of y-' ,  where y is the linear 

instability growth rate. In addition. we introduce a new unknown function 

A = aCexp(ibt) 

where a and b are real constants whose values are such that Eq. (17) takes the standard form 

tI2 t -2T  
dA - = A - elQ 1 r2dr 1 dT1e(-2Vr-V71)A(t - T ) A ( ~  - T - 71)A*(t - 27 - 71) 
d t  

0 0 
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where u = uT /y ,  and 4 is a constant angle defined by the relation 

et@ = Z K ~ G u ~ / ( ~ K ~ G u ) .  

A similar derivation can be carried out with the diffusive collision operator (12). The 

resulting dimensionless equation has the form 

t I 2  t-27 dA - = A - ei@ 1 r2dr 1 d?le-v372(27’3+11)A(t - ?)A(t - r - rl)A*(t - 27 - 7-1) 
dt 

0 0 

where u = u , ~ / y .  

. In the perturbative case: the matrix g in Eq. (1) is nearly Hermitian, which gives et = e* 

and Vt = V*. The factor K is real in this case. One can also show that G, is purely 

imaginary for any Hermitian matrix g and that ImG, has the same sign as the mode 

energy. We thus conclude that the value of 4 can only be 0 or T in the perturbative case. 

Note that d = 0 applies for the frequently studied situation of a positive energy wave with 

negative dissipation from resonant particles. 

The absolute value of the dimensionless amplitude A in these Eqs. (20), (21) measures 

the square of the nonlinear bounce frequency wb, namely 

with y L  the growth rate when 1 - a,/a = 1. It should also be noted that the presence of a 

small parameter in Eq. (22) is the basis of justifying the neglect of higher order 

nonlinear terms in this derivation, as long as IAJ << [Q,/(Q - a,)]5/2. Further discussion of 

the applicability range of Eqs. (20) and (21)  is given in section (b) of the Appendix. 

111. Steady-State Saturation, Limit Cycle, Explosion 

Equation (20)  is of the form derived in Ref. 2, except for the additional phase factor ei@ 

and the complex conjugate appearing in the nonlinear term. In the limit of large t ,  Eq. (20) 
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has a periodic solution with constant amplitude: 

2u2 
(cos &)@ A =  exp( -it tan 4) ,  

a generalization of the steady state solution found in Ref. 2 for 4 = 0. A similar solution 

can be readily obtained for Eq. (21): 

Y2 
exp(-it tan 4). ( 2 4  1 l I2  

A =  

cos 4 dz exp( - 2 z 3 / 3 )  ( 4  
Solutions (23) and (24) imply that the nonlinear term has a stabilizing effect; this requires 

cos cp to be positive. For a system with a negative value of cos #, weak nonlinearity can never 

balance the linear drive in an unstable system, and this always leads to  a hard nonlinear 

scenario where the mode grows to a large amplitude regardless of closeness to  the instability 

threshold. Note that cos4 > 0 is a necessary but not a sufficient condition for the mode 

to saturate at a low level. A hard scenario is possible even when cos$ > 0. In this case, 

however: it requires sufficiently low collisionality (see below). We also note that the hard 

regime can arise in a linearly stable system if the initial perturbation is sufficiently large. 

We now address the question of stability for the constant amplitude solutions (23) and 

(24). In order to make the analysis more compact, we use the transformation 

A = a ( t )  exp( -it tan $) (25) 

and also combine Eqs. (20) and (21) into 

- da = (1 +i tan$)a  - - I d .  ~ ~ T I Q ( Y T ,  vi-l)a(t - 7 ) a ( t  - ~ - ) a * ( t  - 27 - T I )  
d t  Y2 (26) 

wit11 Q(lt-,y) = x2e-2r-Y fo r Eq. (20) and &(x,y) = 52e-z2(2r/3+Y) for Eq. (21). We have 

extended the integration limits in Eq. (26) to  infinity, reflecting the limit of large t .  We now 

linearize Eq. (26) about the steady state a = a0 = const with 

0 0 -  

-1 
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and look for a solution of the form 

a = a0 + Sal exp(vXt) + 6az exp(vX*t) (28) 

with X an eigenvalue. The solvability condition for the ensuing linear equations for 6al and 

Sa; yields the dispersion relation 

0 0  J 0  0 

z: y )dy]  -' I d z  TdyQ(z, y) exp(-2Xz - Xy) Q d X )  = [ T d x I Q (  
0 0  0 0  

For large values of u(v >> 1) all roots of Eq. (29) have ReX < 0, while if u is sufficiently 

small unstable roots are found. The critical value of u (for each of the two relaxation models) 

at which the first unsta.ble root appears is shown in Fig. 1 as a function of 4. When the 

steady state nonlinear solution is unstable, the mode cannot converge to the steady level. 

What develops instead when v is close to the critical value, is a limit cycle of the type 

discussed in Ref. 2. Examples of such behavior are shown in Fig. 2. As v goes deeper into 

the unstable range. bifurcations destroy periodicity of the cycle but the mode amplitude can 

still be limited in this regime (see Fig. 2). Further, at even smaller values of v, the mode 

develops an explosive singularity, evolving into a hard nonlinear regime that runs out of the 

applicability range of Eqs. (20) or (21). 

Examples of the explosive solutions were found in Ref. 2. Here, we present similar, though 

somewhat different analytic solutions of the Eqs. (20), (21). As in the analysis in Ref. 2, 

we set u = 0 and neglect the linear drive, looking for a solution that evolves very fast and 

becomes singular at a finite time to .  In this limit, there is no difference between Eqs. (20) 
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arid (21). We look for a solution of the form 

A(t )  = g[X(t)](to - t ) - 5 / 2  

w:here g[X] is a periodic function of X = ln(to - t ) .  One readily observes that this structure 

of A allows a coriimon time factorization and then we can reduce Eqs. (20) and (21) to 

e-i@' (i g - $) = T d J  T d v U ( < ,  q)g[X+ln( 1+<)]g[X+ln( l+J+~)]g*[X+ln( 1+2J+q)] (31) 
0 0  

with 

We now observe that 

g(X) = p exp(iaX) = p exp[iu ln(t0 - t ) ] .  (32) 

is an exact solution to Eq. (31) if the constants p and u, with (T real, satisfy the complex 

relation 

CG 

e-z@ (: - iu) = IpI2 1 dz F ( z )  exp(iaz) 
0 

with 

Thus. in order for 0 to be real, we require 

(33) 
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A plot of o vs. # for two roots of Eq. (34) is shown in Fig. 3. Note that these roots are 

related by symmetry: if a(#) is a root of Eq. (34), then a(-$) = -a($) is also a root. 

An interesting feature of the presented explosive solution is that it describes the effect 

of chirping: it follows from Eq. (32) that the mode frequency increases with time if o is a 

positive number and vice versa [decreases if cs is negative]. When the kinetic response is 

non-perturbative, the frequency shift in the explosive regime can reach a substantial fraction 

of the mode's initial frequency before solution (30) breaks due to higher nonlinearities. An 

=E=.- 

example of such a behavior is shown in Fig. 4. 

When Q = 0, the numerical solution to Eq. 

symmetric explosive solution described in Ref 

20) for small values of v seems to follow the 

2 . However, for I # \  2 7r/8, the numerical 

solutions is closer to the chirping explosive solution [given by Eqs. (30) and (32)] where the 
- . _-1 u- 

smaller absolute value of o, plotted in Fig. 3, is taken. 

It should be noted that the oscillations of the mode amplitude described by Eqs. (30)-(32) 

are not directly due to particle trapping (indeed, particle trapping would only occur when 

the explosive solution is beyond its range of validity). The qualitative explanation for these 

oscillations is that when the slope of the particle distribution function decreases nonlinearly 

at the location of the original resonance, steeper slopes build up on both sides of the resonance 

next to  it. In the symmetric case (4 = 0) discussed in Ref. 2, the mode frequency splits 

into two sidebands that tend to grow faster than the original mode. Hence, an explosive 

overall growth of the amplitude with the oscillations at the beat frequency that increases as 

the sidebands move apart. This process continues until the mode traps resonant particles 

and forms the plateau on the distribution function near the resonance. The corresponding 

peak amplitude of the mode is unrelated to the closeness to the instability threshold. For 

the bump-on-tail problem, this peak amplitude can be estimated from the condition wb y~ 

where y~ is the instability growth rate without the background damping. This is a much 

higher level than the underestimated value #b M y presented in Ref. 2. For those instabilities 
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that have y = w far above the threshold. 

applicability range for the explosive solution much broader than originally expected. 

can grow up to M LJ. This makes the 

IV. Applications 

A. Toroidal Alfvh Eigenmodes in TFTR 

Regimes in which the Toroidal Alfvh Eigenmode instability is at threshold have been 

found in TFTR when ICRF minority-ion heating produces fast tail ions which are sometimes 

augmented by alpha particles in DT discharges.24 Many features observed in this experiment 

are consistent with inferences that can be drawn from our nonlinear theory. 

One example, shown in Fig. 5a, is the situation when the TAE signals decrease in ampli- 

tude but still persist when the applied RF power is shut off. This feature illustrates the role 

of collisional relaxation of resonant fast particles in maintaining a steady level of the TAE 

sigaal. Prior to t = 3.805s (indicated by arrow in Fig. 5a), the RF power is on, and fast ions 

are produced at a heating rate vh that is roughly proportional to  the applied power. The 

ICRF heating is a diffusive process that renews the distribtution function of the resonant 

particles at a relatively quick rate v,ff M (~hw;~~)''~, with UTAE the TAE frequency. When 

the heating is turned off, the principal relaxation mechanism that persists is collisional pitch 

angle scattering of resonant ions, with v, M O.lvh, so that v,ff decreases t o  roughly half of 

the RF-on value. This leads to a lower level of quasi-stationary oscillations, as seen after 

t =: 3.805s. Figure 5b presents a model for the two quasi-stationary levels seen in the ex- 

periment, a numerical solution of Eq. (21) (generalized to the case of time dependent v) 

which shows a decrease in saturation level when v is abruptly reduced by 1/2.  The TAE 

signal in Fig. 5a eventually disappears after RF turn-off. The reason is that the fast ions slow 

down. As a result, their instability drive becomes weaker than the dissipative effects from the 

background plasma. This appears to occur on a time scale about l/lOth the slowing-down 
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time, presumably because the original fast-ion distribution is only slightly above marginal 

st ability. 

A second example is the time evolution of a single mode that grows from the onset of 

instability to a saturated state as shown by the dots in Fig. 6. This figure also shows a 

theoretical fit to  the experimental data for the system that goes through the instability 

threshold. In the simulation. the mode growth rate, y ,  is taken to vary linearly in time. 

from 7 = 0 to  3: = 0 . 1 ~ ~  where y~ is the energetic particle growth rate in the absence of 

dissipation. From the fitting. we infer that the ratio of perturbed to equilibrium magnetic 

field is roughly and the RF heating time is 0.2 s; results that are consistent with the 

experiment .24 This correlation indicates that the collisional relaxation process can indeed be 

an important ingredient in the long time evolution of a weak TAE instability. 

B. Fishbones 

A fishbone is an internal rigid '(kink" displacement of the plasma column in a t ~ k a m a k . ' ~ ? ' ~  

It, develops within the magnetic surface on which the safety factor q equals unity, with q < 1 

in the interior. If the perturbed MHD potential energy is positive, continuum damping pre- 

cludes the ideal kink mode from existing in absence of energetic particles. However, with a 

large enough energetic particle pressure confined within the q = 1 surface, kinetic drive from 

the precessional drift resonance can overcome continuum damping and make the kink mode 

unstable. 

To illustrate the link between our theoretical model and the evolution of the fishbone 

instability. we neglect such additional factors as plasma resistivity, thermal ion diamagnetic 

frequency effects, finite ion Larmor radius effects and fluid-type nonlinearities. In reality, 

these factors are not always negligible and can play an important role in the interpretation of 

the experimental results. To simplify the discussion even further, we consider the energetic 

particles to be deeply trapped in the equilibrium mirror field of the torus and to have thin 
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"banana" orbits. The distribution of these particles is taken to  be Maxwellian in energy 

and to have a flat density profile that abruptly goes to zero at some radius inside the q = 1 

surface. With this idealization, the dispersion relation derived in Ref. 25 can be schematically 

written in the form 

G(w,o,S) = -1 - 2- 5 +ia 7dxx;:;-x) = o  
w 

0 
(35) 

where w is the normalized frequency relative to typical precession drift frequency, the positive 

parameter 6 is proportional to the perturbed MHD energy, and cy is the normalized pressure 

of the energetic particles. 

At marginal stability, Eq. (35) yields w real, which translates into the following relations 

for 6 and cy: 

One can infer that both 6 and cy are monotonic functions of w in the range where 6 > 0. 

Taken together, relations (36)  determine acr for the onset of instability as a function of the 

parameter 6. The plot of cycr vs. 6 shown in Fig. 7 indicates that the system is stable at 

a sufficiently large perturbed MHD energy and can be destabilized by increasing energetic 

particle pressure. 

A separate calculation shows that the value of K determined by Eq. (18) is nearly real 

and positive in our idealized model of the fishbones. Therefore, the phase 4, that appears in 

the nonlinear Eqs. (20) and (21), is arg(idG*/dw) or equivalently 

- Z T ( W  - l>e-" . 1 dxx exp( -x) 

L 0 J 

A plot of 4 vs. 6 is shown in Fig. 7 .  We see that - ~ / 2  < #J < 0, for 0 < S < S,, and that 

< --7r/2 for 5 > 6,. 

The case c$ < - ~ / 2  corresponds to a very hard nonlinear response with a destabilization 

from the cubic nonlinearity. In this case there is no steady nonlinear solution. 
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The case where 0 > 4 > -7r/2. and v + 0; is what we conjecture describes fishbone 

oscillations. It is clear that the mode can arise at a broad range of parameters. The finite 

d value leads to a downward frequency shift as the mode blows up. This follows from the 

numerical solutions of Eq. (21): where the mode frequency is observed to decrease as the 

mode gets larger. A preliminary comparison of the explosive solution with the experimental 

data26 on the onset of the fishbone instability reveals a promising correlation between the 

two (see Fig. 8). 

C .  Single Bunch Microwave Instability in Circular Accelerators 

A microwave instability usually arises when the number of particles in a circulating bunch 

exceeds a critical value that depends on parameters of the accelerating regime. The mode 

emerges as a result of interaction of the perturbed beam with the high-frequency impedance 

of the vacuum chamber. The instability causes “turbulent bunch lengthening” and increases 

the energy spread of the beam.22 

Recent observations in the SLC damping ring at SLAC27 with a new low-impedance 

vacuum chamber revealed interesting nonlinear regimes of this instability. In some cases: 

initial exponential growth was found to saturate at a level that remained constant through 

the accumulation cycle. In other cases, relaxation-type oscillations occurred at the nonlinear 

stage of the instability. The frequency of the unstable mode tends to be close to the second 

harmonic of the synchrotron oscillations. Similar effects have been observed in LEP for the 

oscillations of the bunch length.28 

A vast literature devoted to this instability is mostly focused on the linear analysis 

aimed to quantify the instability threshold and the mode structure for a given wake in the 

accelerator (see e.g. Ref. 29). Recent efforts3’ to address the nonlinear problem rely on 

sophisticated numerical tools rather than on developing simplified analytical models. The 

theory presented in this paper adds to a purely numerical approach by offering an analytical 
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model for the interpretation of the experimental results. Another attempt to treat the 

problem semi-analytically with an emphasis on the resonant particle response was recently 

made in Ref. 31. 

In order to  quantitatively compare our theory with experiment. detailed computations 

for specific experimental conditions are needed to determine the values of the parameters in 

the nonlinear equations. However, even without the calculation of the exact values of the 

parameters. we can compare the patterns of the signal measured in the experiments with the 

solutions of Eq. (21). Note that the diffusive collisional operator (12) used in the derivation 

of 1Sq. (21) is a relevant model for the quantum diffusion of beam particles in phase space due 

to  synchrotron radiation. In our comparison, we only pay attention to qualitative features 

of the signal, such as growth, oscillation and saturation. 

The signal presented in Fig. 5 of Ref. 27 demonstrates the mode saturation at a steady 

level after the initial growth. The time scale of the transition is comparable with the syn- 

chrotron damping time. This signal looks very similar to the solution of Eq. (21) shown in 

Fig. 2 for u = 6.69. In another case (see Fig. 4 of Ref. 27), decreasing oscillations of the 

mode amplitude are observed. This response can be compared with the plot in Fig. 2 for 

v =: 2.71. In unpublished work by B. Podobedov and R. Siemann, purely periodic behavior 

of the mode was found, which resembles the limit cycle shown in Fig. 2 for v = 2.03. The 

period of the cycle tends to agree with the measurements, although more quantitative work 

is needed to verify preliminary interpretations. 

Acknowledgments 

FVe are appreciative of the useful discussions with J. Candy and h4. Mauel. We would 

like to thank J .  Strachan for providing data for Fig. 8. 

This work is supported by the US. Department of Energy, Contract No. De-FG03-96ER- 

54346. 

I 20 



Appendix: Technical Details 

a. Operator 8/81 in a symmetric torus 

For the quiding center motion in a toroidally symmetric magnetic field: the operator a / a I  

can be expressed in terms of the three conserved quantities in the nonperturbed field: the 

particle energy E ,  the canonical t.oroida1 angular momentum Pd, and the magnetic moment 

p. One can readily establish that 

It can also be shown that it is always allowable to take I2 = P4 and I3 = pmc/q;  here q is the 

particle charge. The particle energy E as a function of I1, 12  and I3 is the Hamiltonian of the 

system. We now choose I1 to be the action for the poloidal motion, so that the quantities 

w1 a E / a I 2  and w3 = aE/aI3 are the frequencies of the poloidal, toroidal 

and gyromotion, respectively. We can then rewrite the operator a / a I  in the form 

a E / d I l ,  w2 

At the resonance, the sum e,wl + !2w2 + t3w3 equals the mode frequency w. In addition, 

!3 must be taken zero for the low-frequency modes, and !2 is nothing else than the toroidal 

mode number n. Hence, we find 

a a d / a I = w d / d E + n d / d P 4  

with Pi = P@ - n E / w  and E’ = E - wP4/n .  
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b. Validity limit of cubic integral equation and explosive solution 

It is clear from Eq. (9) that the particle motion can be described perturbatively for short 

enough time scales, satisfying the condition 

0 

With collisions present, the time of validity of perturbation theory can be indefinitely long 

if the decorrelation time T ~ ,  which is l / v e ~  or l / v r  depending on description of collisions, is 

less than w;'. Hence, a perturbative treatment is expected to be applicable if 

min (/ Wbdt; wbTc) << 1. ( A - 1 )  

The explicit evaluation of the next (fifth) order nonlinear terms in Eq. (17) shows that those 

terms are indeed smaller than the cubic term when condition (A-1) is satisfied. 

Condition ( A - 1 )  sets the limit on wb for which the explosive solution is valid. For the 

explosive solution, the d C / d t  term in Eq. ( 1 7 )  equals the nonlinear term with v, = 0. This 

relation gives the following estimate: 

whlere y~ is the instability growth rate far above the threshold (at a = 20,). We t.hen find 

tha.t the breakdown occurs when 
1 d C  
C d t  = TLl -- 

which determines the characteristic time scale near the singularity: At M 1 I - f ~ .  The corre- 

spolnding limit for wb is thus, wb M l /At  M y ~ .  

c .  Form of v,ff 

Suppose the Fokker-Planck operator is of the form 
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where & is a velocity space derivative with the spatial position r fixed, and D a dyadic 

describing velocity space diffusion. The distribution function, f ,  is in general a function of 

I (R) :  and two additional action variables, but only the derivative with respect to I is large 

near the resonance. Hence, the dominant part of the collisional term is 

with 
2 veff 3 = - a I  * De--(-) aI an 

dV dv 8 I  

where the bar denotes bounce average over the nonperturbed orbit. 

Using the result of section (a) of this Appendix we can take I = P,/n a t  constant E'. 

Then we find 
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FIGURE CAPTIONS 

FIG. 1. Stability boundaries for the steady state nonlinear solution. These curves plot the 

value of v, vs. # with the dotted curve for the Krook collisional model and the solid 

curve for the diffusive collisional model. v < v, corresponds to instability of the 

steady state. 

FIG. 2. Transition from steady state saturation to the explosive nonlinear regime as v de- 

creases. Plots of the absolute value of the normalized amlitude, IAI, vs. normalized 

time t for the diffusive case with q3 = 0. 

FIG. 3. Nonlinear eigenvalues a(4)  for the explosive solution. 

FIG. 4. Explosive solution of nonlinear integral equation for 4 = -7r/8. The oscillatory 

curve shows the normalized amplitude proportional to Re[A(t) exp( -iwot)], and the 

monotonic curve shows the frequency shifting down in time. 

FIG. 5 .  Decrease and persistence of Alfvkn signal. Figure (a) shows the TFTR signal after 

turnoff of RF power. Figure (b) shows the replication of this effect achieved with 

the nonlinear mode equation by an abrupt decrease of v , ~ .  

FIG. 6. Comparison of theoretical prediction of mode evolution to saturation with TFTR 

data (dots). 

FIG. 7 .  Stability boundary ac,(6) and phase factor #(6) for the fishbone model. The mode 

is linearly unstable at cr > a,. For 141 < 7r/2 (6 < b C ) :  both the soft and the hard 

nonlinear regimes are possible, depending on collisionality. For 141 > 7r/2 (6 > bC) ,  

weak nonlinearity always leads to the hard regime above the linear threshold. 
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FIG. 8. Fit of fishbone onset with the explosive chirping solution (open circles show the 

experimental data from Ref. 26). Note a frequency downshift and a faster than 

exponential growth of the mode amplitude, which is consistent with the theoretical 

explosive scenario for -n/2 < 6 < 0. 
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