Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

PDF Version Also Available for Download.

Description

The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment ... continued below

Physical Description

13 p.

Creation Information

Sand, J.R. & Fischer, S.K. January 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 44 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

Physical Description

13 p.

Notes

OSTI as DE97001367

Source

  • International congress and exposition of the Society of Automotive Engineers (SAE): dedicated to the advancement of the global mobility industry, Detroit, MI (United States), 24-27 Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97001367
  • Report No.: CONF-970210--2
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 435331
  • Archival Resource Key: ark:/67531/metadc682763

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Jan. 22, 2016, 6:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 44

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sand, J.R. & Fischer, S.K. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems, article, January 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc682763/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.