Characterization of recombination processes in epitaxial thin films and substrates for antimonide based thermophotovoltaic devices

PDF Version Also Available for Download.

Description

Recombination processes in antimonide-based materials for thermophotovoltaic (TPV) devices have been investigated using a radio-frequency (RF) photoreflectance technique, in which a Nd-YAG pulsed laser is used to excite excess carriers, and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. Double-capped lattice-matched GaInAsSb organometallic vapor phase epitaxy (OMVPE)--grown layers on GaSb substrates have been used to evaluate bulk lifetime and surface recombination velocity with different layer thicknesses. With an active layer doping of 2 {times} 10{sup 17} cm{sup {minus}3}, effective bulk lifetimes of 95 ns and surface recombination velocities of 1,900 cm/s have been obtained. ... continued below

Physical Description

14 p.

Creation Information

Saroop, S.; Borrego, J.; Gutmann, R.; Dutta, P.; Ostrogorsky, A.; Charache, G. et al. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recombination processes in antimonide-based materials for thermophotovoltaic (TPV) devices have been investigated using a radio-frequency (RF) photoreflectance technique, in which a Nd-YAG pulsed laser is used to excite excess carriers, and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. Double-capped lattice-matched GaInAsSb organometallic vapor phase epitaxy (OMVPE)--grown layers on GaSb substrates have been used to evaluate bulk lifetime and surface recombination velocity with different layer thicknesses. With an active layer doping of 2 {times} 10{sup 17} cm{sup {minus}3}, effective bulk lifetimes of 95 ns and surface recombination velocities of 1,900 cm/s have been obtained. As the laser intensity is increased the lifetime decreases, which may be indicative of radiative recombination under these high level injection conditions. Similar measurements have been taken on both commercially available GaSb boules as well as in-house grown quaternary GaInAsSb boules. A two-step decay is observed with the quaternary boules, an initial decay of nominally 15 ns which is relatively independent of laser intensity and a second decay of 30--60 ns which increases with decreasing laser intensity. This behavior may be indicative of free charge separation as a result of short-range ordering in the quaternary crystals. GaSb boules, both commercially available and those grown in-house, exhibit more classical characteristics.

Physical Description

14 p.

Notes

OSTI as DE99001634

Source

  • 40. electronic materials conference, Charlottesville, VA (United States), 24 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001634
  • Report No.: KAPL-P--000098
  • Report No.: K--98107;CONF-9806176--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 307874
  • Archival Resource Key: ark:/67531/metadc682652

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 12:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Saroop, S.; Borrego, J.; Gutmann, R.; Dutta, P.; Ostrogorsky, A.; Charache, G. et al. Characterization of recombination processes in epitaxial thin films and substrates for antimonide based thermophotovoltaic devices, article, June 1, 1998; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc682652/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.