A Diagnostic for Electron Dynamics in Tokamaks

Final Report
December 1997

Frederick Skiff and Derek Boyd

Institute for Plasma Research
University of Maryland

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

December 1997

Prepared for the U.S. Department of Energy
Under Grant Number DE-FG05-92ER54166
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Progress Report: The diagnostic was installed on TdeV and brought into operation. It was optimized to the extent that time and money permitted. A considerable quantity of data was accumulated and analysed. Experiments ended in August 1995. The apparatus has been removed from TdeV and returned to the University of Maryland. Each of these activities is detailed below.

1) Installation and Decommissioning. Shipping and installation of the two chord, four channel electron cyclotron absorption (ECA) measurement system were completed in the spring of 1994. Computer controlled signal generator ramping, and signal acquisition were implemented in the same period. Experiments ceased in August 1995. The apparatus was removed in September 1995 and returned to the University of Maryland in mid 1996.

2) Transmission System. The installed system showed very good performance in vacuum, with only 3db loss between the transmitter and receiver horns. Eliminating the effects of wave-guide dispersion on the time-domain data was achieved by using a nonlinear ramp for the control of the frequency generators. It was found that the dynamic range of the measurements was limited by the return losses from the vacuum feedthroughs and horn transitions. By increasing the asymmetry between the microwave time-of-flight from the generator to the top and bottom horns, respectively, the interference due to return losses was significantly reduced. The final system dynamic range depends on frequency, but is close to 40 db. The signal analysis was found to be very sensitive to noise on the ramp generator input. A technique was found to suppress this interference.

3) Diagnostic verification. The diagnostic was ready for participation in tokamak experiments in June of 1994. Distribution functions measured in the first run were analyzed, discussed, and first presented at the IAEA conference in Seville. Some unexpected features were evident which caused some concern about the data. Repeated measurements, performed through participation in the TdeV LHCD experiments, and improvement in the dynamic range have established the existence of new phenomena. Run time of the diagnostic was limited some by a change in the plans of the TdeV operations which resulted in operation of the tokamak at higher magnetic field a significant portion of the time, starting in late summer 1994.

4) Participation in TdeV experiments. Participation in TdeV lower-hybrid experiments showed that the ECA apparatus produced the best measurements of suprathermal electron distributions that had been achieved to date. In addition to the features of these measurements which were expected, there were three features, in particular, which were not expected and which call for further study. These are the level of fluctuations in the distributions, the existence of electrons at energies above the resonant energy associated with the launched LHCD spectrum, and the magnitude and character of refractive losses.

5) Results

a) Fluctuations
   The amplitude of the measured suprathermal electron distributions are observed to fluctuate in time on millisecond, or even sub-millisecond time scales at a level of 20-30% RMS. We established that the uncertainty in the measurements themselves is much less than 20%. We conclude, therefore, that the fluctuations are real. The fluctuations are not correlated with fluctuations in refractive losses, and only rarely are correlated with the fluctuations which occur at other electron energies. The fluctuations are not correlated between the two vertical chords; therefore are not correlate in the two spatial averages of the chords. One problem we have faced is
that such fluctuations were not predicted to exist, and partially lie outside the time resolution of our current instrument. We are not aware of any theory for these fluctuations.

b) High Energy Electrons

The NII spectrum for the launched lower hybrid waves is very highly peaked. Under such conditions, it is the theoretical expectation that the energy spectrum of the suprathermal current driven electrons will be flat below the resonance energy $E_{r(NII)}$, and fall off very rapidly above this energy. This is approximately what is observed on the central chord, although the distribution does not fall off as rapidly as expected above $E_{r(NII)}$ and is not fully flat below $E_{r(NII)}$ either. The off-axis chord indicates a almost flat distribution which at times extends to energies of, at least, three times $E_{r(NII)}$.

c) Spatially Hollow Distributions

Since the off-axis chord measurements showed electron distributions extending well beyond $E_{r(NII)}$ and the on-axis chord did not, the spatial distribution of current driven electrons is hollow at energies above $E_{r(NII)}$. This occurs independently of the properties of the launched lower hybrid wave spectrum.

d) Refraction effects

We have observed that there are circumstances where the refraction losses are much greater than is predicted by ray tracing which does not include relativistic effects on the ray trajectories. This occurs even with plasma temperatures of 1 keV. Because we can isolate the effects of refraction and absorption, our data are well suited to address this issue. Unfortunately, this new effect can make it difficult to measure absorption losses at low electron energies with the present system because the refraction losses can exceed the instrument dynamic range.

e) Conclusions

The diagnostic worked very well. Although the distribution functions behaved in ways that were not anticipated and the refractive losses were sometimes higher than projected, we were able to adapt to the unexpected. In our estimation, all of the effects listed above are significant, and warrant further study. The diagnostic is ready for use as a tool to study the physics of current drive and current profile modification. A mechanism for steering the launched beams is desirable to cope with the strong variations in refraction which are seen. Phased array launchers seem attractive for this purpose. Tuning of the length of the waveguide run is important to avoid troublesome reflections (return losses). It may be best to build in this capability in a future system. The perpendicular dynamics of the current driven electrons are invisible to us with the present form of the diagnostic. Simultaneous measurements at fundamental and harmonic frequencies would make perpendicular distribution function measurements possible.
Papers Contributed at Scientific Conferences

A) The first presentations of distribution functions obtained with the new diagnostic were presented at the Fifteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, Spain, 26 September-1 October 1994 in a paper presented by R. Decoste.


B) 36th APS-DPP meeting, Minneapolis MN, November 7-11 1994


F) 37th APS-DPP meeting. Louisville KY, November 6-10 1995.


Effect of Refraction in Ray Tracing for the Cyclotron Transmission Diagnostic in TdeV. I. Shkarofsky, D. Boyd, F. Skiff, A. Kritz, G. Smith

I) Seminar: University of Maryland, College Park, MD. February 7 1996

Title of talk: Suprathermal Electron Distribution Function Measurements during LHCD Experiments on the TdeV Tokamak.


I) Seminar at ENEA C. E. Frascati, Italy. June 21 1996

Title of talk: Suprathermal Electron Distribution Function Measurements during LHCD Experiments on the TdeV Tokamak.


Title of talk: Suprathermal Electrons in Versator, Tore Supra and TdeV as seen by Electron Cyclotron Absorption Diagnostics. [To be published in Plasma Physics and Controlled Fusion]

K) 38th APS-DPP meeting. Denver CO, November 11-15 1996
