Criticality Safety Aspects of K-25 Building Uranium Deposit Removal

M. J. Haire
Robotics and Process Systems Division
W. C. Jordan
Computer Applications Division
Oak Ridge National Laboratory*
Oak Ridge, Tennessee 37831-6305

J. C. Ingram, III
Health and Safety Division
E. C. Stinnett, Jr.
Decontamination and Decommissioning Program
Oak Ridge K-25 Site*
Oak Ridge, Tennessee 37831-7328

Paper for Presentation
at the
1995 American Nuclear Society Annual Meeting
June 25-29, 1995
Philadelphia, Pennsylvania

* Managed by Martin Marietta Energy Systems, Inc., for the Department of Energy
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Criticality Safety Aspects of K-25 Building Uranium Deposit Removal

M. J. Haire
Robotics and Process System Division
W. C. Jordan
Computer Applications Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6305

J. C. Ingram, III
Health and Safety Division
E. C. Stinnett, Jr.
Decontamination and Decommissioning Program
Oak Ridge K-25 Site
Oak Ridge, Tennessee 37831-7328

INTRODUCTION

The K-25 Building of the Oak Ridge Gaseous Diffusion Plant (now the K-25 Site) went into operation during World War II as the first large scale production plant to separate 235U from uranium by the gaseous diffusion process. It operated successfully until 1964, when it was placed in a stand-by mode. The Department of Energy has initiated a decontamination and decommissioning program.

The primary objective of the Deposit Removal (DR) Project is to improve the nuclear criticality safety of the K-25 Building by removing enriched uranium deposits from unfavorable-geometry process equipment to below minimum critical mass. Although the likelihood of a nuclear criticality accident is considered remote, the

1 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-84OR21400. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes.

2 Managed by Martin Marietta Energy Systems, Inc., for the Department of Energy under contract DE-AC05-84OR21400.
existence of large enriched uranium deposits in unfavorable-geometry process
equipment is inherently unsafe. Thus, deposit removal activities are being conducted
in the K-25 Building to enhance safety. Department of Energy orders require that the
calculated probability of a nuclear criticality event be less than one in a million \(10^{-6}\)
per year (Reference 1).

GRADED APPROACH

Original nuclear criticality safety evaluations of diffusion plant equipment were
based on maintaining uranium in the gas phase of UF₆. In the event of a freeze-out,
i.e., deposit formation, a nuclear criticality accident was not likely because levels of
moderation available in an operating diffusion plant are low. In general, uranium
deposits are formed when gaseous UF₆ reacts with moisture in air (from air leakage
into process equipment) to form UO₂F₂ and various other chemical compounds. The
typical reaction of gaseous UF₆ with water vapor at room temperature is

\[\text{UF}_6(g) + 6\text{H}_2\text{O}(g) \rightarrow \text{UO}_2\text{F}_2(s) \cdot 2\text{H}_2\text{O}(s) + 4\text{HF} \cdot 2\text{H}_2\text{O}(\text{fog}) + \text{heat} \]

A graded approach will be used in removing deposits. Deposits will be
removed from the simpler equipment first (e.g., tubing, piping) before attempting to
remove them from equipment with complex geometry. Also, prototype removals will
be conducted for each type of equipment before removing deposits of greater than
the subcritical \(^{235}\text{U}\) mass limit of 760 g. These practice sessions with equipment
containing low amounts of enriched uranium will be used to test methods and
procedures to ensure safe operations.

The Phase I schedule for equipment removal calls for compressor blowout
preventer tube removal in FY 1994; large (12 in. diam) pipe removal in FY 1995; large
(12 in.) valves, cold traps, chemical traps, and surge tanks in FY 1996; compressors
and large pumps in FY 1997; and converters in FY 1998.
FACILITIES

A special facility (Reference 2) has been constructed for deposit physical, i.e., mechanical, removal. The Deposit Removal (DR) Room is a 60x20x10-ft room within the K-25 building and was originally used as a maintenance area. The room contains work tables, temporary storage areas, a nondestructive assay measurement area, a 10x4x6-ft glove box, and a 1-t capacity overhead monorail system for lifting heavy objects. The intent is to remove deposits from equipment within the glove box.

Efforts are underway to examine techniques for removing deposits other than using physical and mechanical methods. For example, a fluorination (ClF$_3$) process is being investigated as a means of converting solid deposits on equipment surfaces, in situ, to volatile fluoride compounds that can be pumped away to gas treatment systems.

METHODS USED IN CRITICALITY SAFETY ASSESSMENTS

National standards, Department of Energy orders, Martin Marietta Energy Systems, Inc. policies and procedures, K-25 Site guidelines, and detailed computer calculations are used in planning and conducting the deposit removals. Wherever possible, detailed calculations are avoided by relating fissile material mass, conditions, and configurations to the ANSI/ANS 8.1 Standard (Reference 3), the K-25 criticality safety guide (Reference 4), and an ORNL report on estimated critical conditions for UO$_2$F$_2$-H$_2$O systems (Reference 5). Where detailed calculations are required, e.g., the design of a critically safe vacuum cleaner, they are performed with the SCALE/CSAS25 (KENO V.a) code (Reference 6) and the ENDF-B/IV 27 group cross section library (Reference 7).
A nuclear criticality safety engineer has been assigned to the project. The removal of highly enriched uranium involves many small process steps, and a nuclear criticality safety assessment is performed for each step. A three-site (K-25, Oak Ridge National Laboratory, and Y-12) team of nuclear criticality safety engineers conduct technical peer reviews for each nuclear criticality safety assessment.

METHODS OF NUCLEAR CRITICALITY CONTROL DURING DEPOSIT REMOVAL

Safe geometry is used as a control wherever possible during the deposit removal process. Many deposits exist in process equipment of unfavorable geometry for non-gas-phase materials. Demonstrated double-contingency control is reestablished by removing the deposit into safe-geometry containers. Safe geometry is used as the primary control in support equipment (e.g., deposit collection bottles, HF traps). The next most desirable control is mass. Since by definition the objective of the project is to remove relatively large masses, limiting \(^{235}\text{U}\) mass handled to less than a minimum critical mass is not always possible. The single most important control for deposits in unfavorable-geometry equipment is the control of bulk moderators such as water, oil, etc. Interaction and reflection are examples of secondary controls.

Immediately prior to its removal, equipment is tested for any free-standing liquid by drilling holes at the lowest points. During equipment removal from the cascade, the fire protection sprinkler system is disabled. Equipment openings are sealed closed during transport to the DR Room and while outside the DR Room glove box. Physical, dry methods (i.e., wire brushes, scraping) are used to remove deposits. Only a small amount (less than 4 L) of liquid is permitted for wiping and cleaning.
The double-contingency principle is applied wherever possible. The principle states that "at least two unlikely, independent, and concurrent changes in process conditions (i.e., controls) must occur before a criticality accident is possible." The deposits, as they presently exist, are the result of ongoing, abnormal conditions of operation and do not meet the double-contingency principle. A change in moderation and/or geometry, for example, could result in criticality in their present condition. Administrative controls are present to prevent changes in moderation and geometry (i.e., such as masses of uranium coming together to form a larger volume) to maintain an acceptable level of nuclear safety.

In summary, the object of the Deposit Removal Program is to remove and place uranium deposits into a safe geometry to meet the double-contingency principle. There are portions of the deposit removal process where the double-contingency principle cannot be met since it is not originally present. Each step of the removal process takes us to safer conditions where multiple controls will be present. Upon completion of the project, nuclear criticality safety concerns will be greatly reduced.
REFERENCES

1. DOE Order 6430.1A, Section 1300-5.

