2. To: Dist	: (Rec ribut	eiving Organi: iດກ	zation)	3	. From: (O SNE Stora	riginating Org Ge Project	anizati S	on)	4. Relate	d EDT No. 620	123	
5. Pro	j./Pro	g./Dept./Div.			. Design Au	thority/ Desig	n Agent	/Cog.	·7. Purcha	se Order	No.:	
SNF	Proje	ct			Engr.: T Koo	IS' A Bri	chin			N	4	
8. Ori	ginato	r Remarks:		/	<u></u>	<u>73. A.</u> DI	30111		9. Equip.	/Componer	t No.:	
For	relea	se into f	iles.							N	4	
		•							10. Syste	m/Bldg./l	acility:	
									<u> </u>	05KE 8	_105KW	
11. Re	eceiver	Remarks:	11A. De:	sign Basel	ine Documen	t? [X] Yes	[]	No	12. Major	Assm. Di	ig. No.:	
										N	<u> </u>	
		. 063	anares.	890-1961	ne tés A	a ann			13. Permi	t/Permit, N	Applicat 1	ion No
		÷	an an the second se	(ky 14) - 44° 677					14. Requi	red Respo	nse Date	:
	ny 1 9-00-1 19-1 19-1 19-1		-1 642.2					·				
15.				DATA T	RANSMITTED				(F)	(G)	(8)	
(A)				(C)	(D)	(F) Title or D	escription	of Data	Approval •	Reason	Origi-	Rece
Item No.	(B)	Document/Drawi	ng No.	Sheet No.	Rev. No.	Tra	nsmitted	l or Dutu	Desig- nator	tor Trans-	Dispo-	ei Disp
										mittal	sition	sitic
1	HNF-	SD-SNF-DR	-004	A11	0	Design Re	port	for	NA	1,2	1	
			· 1			the Hanfo	rd K	tast in MCO				
						Loading S	vster]	
					•		<u></u>	·		·		
									NUMBER D. LAN.			
16.						KEY			·		eps trafili	
Appro	oval Desi	gnator (F)	an a	Reason fo	r Transmittal (S)			Dispositio	n (H) & (I)		
E, S, Q,	D. or.N/	A	Approval.	4. Revie	w	• •	1. Ap	proved w/co	mment E	Reviewer	i no/comme i w/comme	ent nt
Sec.12.	.7)	3	. Information	6. Dist.	Receipt Ackno	w. Required)	3. Di	sapproved w/	comment (3. Receipt a	icknowledg	ed
					17. SIG	NATURE/DISTRIBU		uraal			•	
(G)	< (H)	<u> </u>		(3	ee Appioval De	(G)	(H)					
Rea-	Disp.	(J) Name	(K) Sigi	nature (L)	Date (M) MS	IN Rea-	Disp.	(J) Nam	e (K) Si	gnature (L) Date (N	A) MSIN
1		Design Autho	prity A.	T. Kee M	Rosal · for	3-86,			· · ·			
		Design Agent	t		www.	199/1971						
-+	1	Cog.Eng. S.	A. Brisb	in lak :-	6: 6-19.97	3-86						
i	1	Cog. Mgr. F	R. W. Rasm	ussen	6-19-97	3-86					·	
		QA		- par	mann							
		Safety									2	
						2						
		Env.						L				
1		Env.	19.	20		20.	• •		21. DOE A	PPROVAL (if requi	red)
18.	riship	Env.	19. B. W.			20.	6		21. DOE A Ctrl.	PPRÓVAL (No. ed	if requi	red)

BD-7400-172-2 (05/96) GEF097

Design Review Report for the MCO Loading System

S. A. Brisbin

Duke Engineering and Services Hanford, Richland, WA 99352 U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN:	620124	UC: 600	
Org Code:	2T154	Charge Code:	LF031
B&R Code:	35EW31354	Total Pages:	413,270 Kmg

Key Words: MCO, MLS, loading, K Basin, SNF, design

Abstract: This design report presents the design of the MCO Loading System. The report includes final design drawings, a system description, failure modes and recovery plans, a system operational description, and stress analysis.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Approved for Public Release

HNF-SD-SNF-DR-004, Rev. 0

DESIGN REPORT

FOR THE HANFORD K EAST AND K WEST BASIN

MCO LOADING SYSTEM

Volume 1

Design Documentation Revision 0

June 6, 1997

Report Number: 444-R-01

Prepared For:

Duke Engineering & Services, Hanford Under Contract Purchase Order MCB-SLD-A01129

Prepared By:

NAC International, Inc. 655 Engineering Drive Norcross, Georgia 30092

ATLANTA WASHINGTON ZURICH LONDON TOKYO MOSCOW

HNF-SD-SNF-DR-004, Rev. 0

N IAC			REVISION		DOCUMENT	FILE
INITEDNA	INITERNIATIONIAL		CONTROL		NO: <u>444</u>	
			SHEET			
DOCUMENT TITL	E:		DOCUME	NT NUMB	ER:	
Design Report M	ICO Loading Sys	tem	444-R-01			
NAME	a allow		TITLE		REVISION	DATE
Tom A. Danner	mu	Directo	or, Government Pr	ojects	00	6-5-97
				.		
·····		. <u></u>				·
			· · · · · ·			
			•			
						,
AFFECTED DO	OC . PREPAR	ED BY	ACCURACY & CF CHECKED BY &	DATE	R	EMARKS
1-48 (0 John DiGr	ande	Tom A. Danner	. (.)	Ori	ginal Issue
	Oaka Mit	winds	Journa al	675197		
	Jour			<u> </u>		
						•
						·
			. •			
-						

444-R-01 Revision 0 Volume 1

Table of Contents

Descri	ption	Page
Cover	Sheet	
Record	d of Revisions	2
Table	Of Contents	3
Introd	uction	7
Final I	Design Drawings	9
1.1	Equipment General Arrangement Drawings	9
1.2	MCO Loading System/Contamination Pail System	
	Interface Drawings	9
1.3	Control Equipment General Arrangement Drawings	9
1.4	Detail Drawings	9
1.5	Assembly Drawings	10
1.6	Installation Drawings	10
мсо	Loading System Description	11
2.1	Transfer Equipment System Description	11
	2.1.1 Shuttle	12
	2.1.2 Mast & Grapple	14
	2.1.3 Gantry	17
	2.1.4 Shield Plug Insertion Tooling	17
	2.1.5 Guide Tooling	19
2.2	System Operational Controls	19
2.3	Facility Interfaces	21
2.4	System Check Point Assessment	22
2.5	Basket Lift Height	22
2.6	Manpower Requirements	22
2.7	Equipment Sensors/Control Features	23
	2.7.1 Load Cells	23
	2.7.2 LVDT	23
	2.7.3 Video Cameras	23
	2.7.4 Electric Fail Safe Brake on Bridge Gantry Motor	24
	2.7.5 Electric Caliper Fail Safe Brake on Screw	24
	2 7 6 Switch and Roller-Follower on Mast Drive Belt	

2.0

1.0

Section

4

444-R-01 Revision 0 Volume 1

Table of Contents (Continued)

		2.7.7 Dual Ball Path	
		2 7 8 Back-Up Limit Switches	
		2.7.9 GECM (Grapple Extension Compliance Mechanist	n)24
		2.7.10 Manual Overrides	
	28	Quality Control	25
	2.0	Reliability	25
	2.7	Maintenance Requirements	26
	2.10	Lubrication Requirements	27
	2.11	Equipment Interface/Installation/Assembly Clearances	27
	2.12	2 12 1 Shuttle Installation	27
		2.12.1 Shuttle installation	27 27
		2.12.2 Gality Installation	27
3.0	Failure	e Modes and Recovery Plans	30
4.0	Systen	n Operational Description/Sequencing	32
	4.1	MCO Load Cycle Time	33
	4.2	Operator Dose Exposure	34
5.0	Stress	Analysis	
	5.1	Criteria	35
	5.2	Summary Table	35
		5.2.1 Anchorage Loads Summary	39
6.0	Certifi	ed Materials and Test Report	41
7.0	Design	n Basis Codes and Standards	42
8.0	Refere	ences	48

444-R-01 Revision 0 Volume 1

Table of Contents (Continued)

Appendix A Specification-Report Requirement Matrix, Volume 1

Appendix B Control and Logic Description, Volume 1

Appendix C Design Review Checklist, Volume 1

Appendix D Sample Material Test Certificate, Volume 1

Appendix E Stress Analyses, Volume 1

Appendix F Drawings, Volume 2

Appendix G Catalog Cuts, Volume 3 Please Obtain From HNF -SD-SNF-DR-004 Volume 4 Fabrication Cost and Schedule ommitted from HNF-SD-SNF-DR-004

List of Figures

2.1	MCO Loading System	11
2.2	Shuttle	13
2.3	Mast and Grapple	15
2.4	Ballscrew Drive Device	16
2.5	Gantry	18
2.6	Control Equipment General Arrangement	20
5.1	Shuttle Anchorage Load Points	40

List of Tables

2.4-1	Operator Checkpoints	22
2.12-1	Evaluation of Facility Interfaces	28
2.12-2	Evaluation of Fuel Retrieval & MCO Basket Interfaces	
2.12-3	Evaluation of Loadout Pit Equipment Interfaces	29
3.0-1	Failure Modes & System Recovery Features	30
4.0-1	MCO Loading Sequence	32
4.1-1	Single Basket MCO Loading Timeline	
5-1	Shuttle Stress Analysis	35
5-2	Shuttle Weld Sizing Analysis	37
5-3	Mast Stress Analysis	
5-4	Mast Weld Sizing Analysis	

444-R-01 Revision 0 Volume 1

ACRONYMS

. 6

AC	Alternating Current
ALARA	As Low As Reasonably Achievable
CCTV	Closed Circuit Television
CRT	Cathode Ray Tube
DESH	Duke Engineering & Services, Inc., Hanford
FSO	Full Scale Output
GARM	Grapple Anti-Release Mechanism
GECM	Grapple Extension Compliance Mechanism
LVDT	Linear Variable Differential Transducer
MCO	Multi-Canister Overpack
MMI	Man-Machine Interface
NAC	Nuclear Assurance Corporation International, Inc.
PLC	Programmable Logic Controller
VCR	Video Cassette Recorder
WHC	Westinghouse Hanford Corporation

444-R-01 Revision 0 Volume 1

INTRODUCTION

Duke Engineering and Services Hanford Company has issued contract MCB-SLB-A01129 to NAC International for final design of the K-Basin Multi-Canister Overpack (MCO) Loading System. The scope of service performed under this contract has been directed by the Statement of Work, HNF-SD-SNF-SOW-009. The final design scope develops the system concept design, presented in report "Conceptual Design Report for the Hanford K East and K West Basin MCO Loading System" E-15278, into a final design package. Project deliverables include a design report documenting mechanical and control systems for fabrication. This report includes the following project deliverables:

- 1. General Arrangement Drawing
- 2. MCO Loading System / Contamination Pail System Interface Drawings
- 3. Control Equipment General Arrangement Drawings
- 4. Detail Drawings
- 5. Assembly Drawings
- 6. Installation Drawings
- 7. System Design Description
- 8. Failure Modes and Recovery Plans
- 9. Operational Description
- 10. Stress Analysis
- 11. Catalog Cuts
- 12. Certified Materials Test Report Listing
- 13. Design Basis Codes and Standards
- 14. Cost Estimate
- 15. Schedule

Design Report No. 444-R-01 has been prepared in four volumes. Volume 1 presents items 1 through 13. For convenience of the reader, Volume 2 and Volume 3 present design drawings and catalog cuts discussed in Volume 1. Volume 4 presents cost estimates and fabrication schedule information as required by items 14 and 15 of the project deliverables.

The MCO Loading System is a semi-automated mechanical system for transfer of fueled baskets from the fueled basket queue located adjacent to the South Loadout Pit channel entrance into the MCO. It has been classified as a General Service (non-safety) system, (Reference 8.6). Design of the system permits remote operator control minimizing exposure to high radiation areas supporting site ALARA objectives.

System operation begins with the placement of a fueled basket into the loadout pit channel shuttle cart using the perimeter monorail system and basket handling equipment. Following verification of proper loading, the shuttle cart is transported through the loadout pit transfer channel to the shuttle cart unload location in the loadout pit. Once the operator verifies that the

7

444-R-01 Revision 0 Volume 1

shuttle cart and fueled basket are in their proper location, a ball screw mast with basket grapple is lowered into the basket and secured. The basket is then raised to an elevation that clears the MCO, moved and centered with the MCO loading position, and lowered into the MCO. Following confirmation that the basket is properly positioned into the MCO, the ball screw mast is extracted and returned to the shuttle unload basket pickup point to retrieve the next basket.

While the ball screw mast picks the fueled basket from the shuttle cart and placed it into the MCO, the shuttle cart returns to the load position adjacent to the fueled basket queue. When the system equipment returns to the original start location, the load cycle is ready for the next basket load cycle. Repeating the load cycle for a predetermined number of cycles completes MCO loading. Once the MCO is loaded the MCO shield plug is retrieved and positioned into the MCO.

444-R-01 Revision 0 Volume 1

1.0 FINAL DESIGN DRAWINGS

Six different drawing types have been developed as part of the final design work scope. These sets of drawings include: 1) Equipment General Arrangement Drawings; 2) MCO Loading System/Contamination Pail System Interface Drawings; 3) Control Equipment General Arrangement Drawings; 4) Detail Drawings; 5) Assembly Drawings; and 6) Installation Drawings. Drawings have been assembled as Appendix E under separate cover, Volume 2, for convenience of the reader.

1.1 Equipment General Arrangement Drawings

General arrangement drawings integrating K-Basin facility structure, K-Basin Loadout Pit Operations Equipment, and the MCO Loading System have been prepared to insure interference is not created when the two new hardware systems are installed into the existing facility. This set of drawings presents the MCO Loading System in different operation positions which provide an envelope for Loadout Pit operations. Both side and plan views validate operation free of interferences.

.

×.

1.2 MCO Loading System/Contamination Pail System Interface Drawings

Drawings have been prepared for the interface components between the MCO Loading System and the K-Basin Operations Equipment. These components include: 1) a set of alignment tooling that protects the MCO top lip and MCO shield plug threads when loading the fueled baskets into the MCO and setting the shield plug in place; 2) Contamination (Immersion) Pail/ Immersion Pail Support Structure Base Plate horizontal alignment components; and 3) Shield Plug drain tube alignment reach tool.

1.3 Control Equipment General Arrangement Drawings

General arrangement drawings of the MCO Loading System Controls have been completed defining the two control stations, one located at the basin viewing area and one located at the remote viewing area. Control panel layout drawings, field wiring and a power schematic for each station is also included.

1.4 Detail Drawings

Details of the MCO Loading System have been prepared, including:

- Shuttle drive cylinder mounted spring compliance cable pulleys
- Shuttle segmented overhead vertical supports
- Shuttle seismic restraints
- Mast ball nut, ball screw, disc brake, motor mount

9

444-R-01 Revision 0 Volume 1

• Gantry spur gear drive system, frame assembly weldments, guide shafts

1.5 Assembly Drawings

Assembly drawings of the shuttle, gantry and mast include the shuttle frame, carriage guide wheels, and basket fixture, the structural layout for the gantry, and the orientation of the drive belt, brake, ball nut, grease seals and thrust bearings of the mast.

1.6 Installation Drawings

MCO Loading System support requirements and restraining devices for the mast, shuttle and gantry are shown in the installation drawings. This includes overhead support beams, seismic restraints and pneumatic requirements for the shuttle, gantry mounting requirements, and mast/grapple interface requirements.

The shuttle may be installed independent of the gantry/mast. Overlap in all component travel is provided to assist in installation alignment.

444-R-01 Revision 0 Volume 1

2.0 MCO LOADING SYSTEM DESCRIPTION

Figure 2.1 presents an integrated systems general arrangement for the MCO loading system with the loadout pit operations equipment as to be installed in the K-Basin South Loadout Pit facility.

2.1 Transfer Equipment System Description

The MCO Loading System is divided into five sets of components:

- (1) One (1) queue shuttle, which carries the spent fuel basket from the K-Basin basket queue to the basket unload location in the loadout pit,
- (2) One (1) single motion extending mast with grapple, which lifts the basket from the shuttle and places the basket into the MCO,

444-R-01 Revision 0 Volume 1

- (3) One (1) single axis bridge gantry which traverses the mast from the shuttle unload position to the MCO load position,
- (4) MCO shield plug insertion tooling, and
- (5) Guide Tooling for baskets as they are positioned in the MCO.

2.1.1 Shuttle (Reference Drawing 444-300 and Figure 2.2)

The shuttle is a linear motion device with approximately eleven feet and six inches (11'-6") travel. It will transport the 3200 pound (maximum) MCO basket from the fuel basket queue to the basket unload position in the loadout pit for subsequent MCO loading process. The shuttle cart utilizes corrosion resistant linear motion rollers on parallel rails. The rails are suspended from a structural steel framework anchored to the operations floor. This framework spans the transfer canal without interference with existing structures. Control of the shuttle carriage load and unload positioning is provided by shock absorbers and adjustable "hard stops".

After the shuttle carriage is manually loaded with a basket from the K-Basin queue, an underwater camera is used to verify fuel does not extend above the basket seating surface. To minimize operator radiation exposure during movement of the basket queue to the shuttle carriage, reduce MCO Loading System cycle time requirements, and operate within the system height limitations, basket gauging which verifies the fuel basket fits into the MCO is completed before the basket is moved to the shuttle carriage.

A summary of the shuttle height limitations may be itemized as follows, with the remaining vertical allowable distance listed to the right:

1. The maximum basket lifting height is 5'4"	5'4"
2. The shuttle must be positioned over the 3'8" high exclusion area	1'8"
3. The design height of the shuttle frame is 11.25"	8.75" [°]
4. A clearance of 3" is required between the basket base and top of carriage	5.75"
5. A pilot distance of 1.75" is required for basket loading	4.00"
Therefore, only 4" of the full 23.17" basket height may be gauged by the shuttle.	

After placing the basket onto the shuttle carriage, the shuttle indexes the carriage to the unload position in the loadout pit. The shuttle drive system is a pneumatic controlled, fixed length cable connected to a power cylinder on opposite sides of the shuttle carriage. The shuttle carriage is fixed to the cable in the center of system travel. Upon activation, one cylinder retracts, the opposite cylinder extends and the carriage is pulled by the cable to one end of the shuttle rail, against hard stops. The pneumatic cylinders are located external to the pool with only cylinder rods exposed to the water. The cable, pulleys and other shuttle drive system equipment is permanently located beneath the water surface. The cylinder rods are immediately sleeved by the cylinders as they are raised from the pool surface, minimizing radiation exposure from airborne contamination.

HNF-SD-SNF-DR-004, Rev. 0

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

444-R-01 Revision 0 Volume 1

Horizontal seismic restraints are attached to the sides of the shuttle cart guide rails to eliminate dynamic response of the shuttle structural system. These seismic restraints, once positioned at the time of system installation, are passive and transfer seismically initiated forces to the adjacent basin concrete structures.

2.1.2 Mast and Grapple

The mast and grapple (Figure 2.3) lifts the fuel basket from the shuttle, supports the basket as the gantry traverses to the center of the MCO load position, and lowers the basket to predefined positions in the MCO.

The mast is a linear guided ball screw drive device (Figure 2.4) which picks the MCO fueled basket from the shuttle unload position and places it into the MCO. The ball screw is driven by a 1.5 horse power servo motor and controller for infinitely programmable positioning capabilities. The mast incorporates a Grapple Extension Compliance Mechanism (GECM) device connected to a Linear Variable Differential Transducer (LVDT). The GECM provides compensation to the extending mast by allowing the column to retract up to two inches before the assembly will be exposed to compressive loading. Position feedback monitoring of mast load is provided by the LVDT. Receiving a signal which indicates system loading outside of normal limits will stop all mast motion.

A video camera mounted at the base of the mast focuses on the grapple. The grapple is pneumatically operated by a cylinder mounted in the GECM. The mast video camera provides monitoring of all grapple operations and a full view of the fuel basket.

In addition to the grapple locked load design, a Grapple Anti-Release Mechanism (GARM) limits grapple operations to directed operator action. Prior to achieving a grapple release, operation procedures require verification that:

- a) the mast assembly is properly positioned;
- b) the compliance device has retracted properly;
- c) the LVDT and monitor verifies all equipment locations.

HNF-SD-SNF-DR-004, Rev. 0

Design Report Hanford K East & K West Basin MCO Loading System

ţ

444-R-01 Revision 0 Volume 1

Figure 2.3

HNF-SD-SNF-DR-004, Rev. 0

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

When the mast reaches a preprogrammed point for basket positioning in the MCO, the following sequence occurs to open the grapple and release the basket:

- 1. Mast descends 1 1/4" travel after initial no load signal.
- 2. Grapple anti-release mechanism (GARM) starts to disengage.
- 3. Mast descends ¼" more to totally disengage anti release mechanism.
- 4. Record 1 1/2" total travel on LVDT.
- 5. No load on load cell.
- 6. Verify height position on controls
- 7. Verify visually using monitor and grapple pin.
- 8. Open grapple.

Steps 1-5 occur automatically using system controls; steps 6 and 7 are manually activated. Step 8 may be manually activated using a push button (following successful completion of all preceding sequential stops) or automatic.

2.1.3 Gantry

The gantry (Figure 2.5) provides the mast transport cycle from the shuttle unload position to the MCO loading position and returns the mast to the shuttle unload position after placing the basket in the MCO.

The single axis bridge gantry is a linear motion device mounted on facility structural steel extending parallel to the loadout pit fuel transfer canal from mezzanine support columns. The travel of the gantry is approximately four feet axially along the centerline of the canal. Drive motion is provided by a rack and pinion gear linear bearing arrangement. The gantry motion control is provided by a ¹/₄ horse power motor drive with a 8:1 gear reducer and limit switch controlled stops.

2.1.4 Shield Plug Insertion Tooling

Part of the MCO Loading System integration with other K-Basin systems is provided with incorporation of the MCO shield plug placement into the MCO following basket loading. The shield plug insertion tooling provides an interface between the K-Basin auxiliary crane and the MCO shield plug. After successful installation is verified by a video camera mounted near the MCO entrance, the operator will manually disengage the tool from the shield plug using a 'j' hook reach tool.

HNF-SD-SNF-DR-004, Rev. 0

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

444-R-01 Revision 0 Volume 1

2.1.5 <u>Guide Tooling</u>

A combination Basket Guide and Retainer/Shield Plug Guide are inserted at the MCO entrance to protect the hardware and align the fuel baskets during loading process.

The MCO Basket Guide is used to protect the MCO internal shield plug retainer threads and seating surface as baskets are inserted.

The MCO Retainer/Shield Plug Guide pilots the shield plug into an aligned position and protects the top edge of the MCO during the placement of the shield plug in the final position.

2.2 System Operational Controls

The MCO loading control system has two control stations, one located at the basin viewing area and one located at a remote viewing area (Reference Figure 2.6). System operations and CCTV camera control and viewing are performed at the basin control station. CCTV camera viewing and recording are performed at the remote viewing control station.

The basin viewing control station consists of two skid mounted cabinets. One cabinet controls basket loading and associated functions, and contains the following components: PLC, CRT-based man-machine interface, motion controller, servo drive with power supply and transformer, and safety shutdown and supervisor override hardware. The second control cabinet contains the CCTV cameral control and viewing hardware. It consists of the following components: three camera controllers with pan and tilt and zoom capability; one camera controller with fixed optics; two monitors; and two four signal video switchers.

All process operations are performed from the control console located at the basin viewing area. The CRT-based man-machine interface (MMI) is used to send commands to and receive the status from the MCO Loading System. The MMI provides continuous display of the system status. A graphic display of the loaded baskets is shown. Safety shutdown and supervisor override functions are hardwired.

All wiring and control equipment shall comply with the National Electric Code, ANSI/NFPA 70. All components are selected for 100% duty cycle as specified in Article 310.

The CCTV camera viewing system will be provided for process step verification by the operator and for maintenance and checkout. Four cameras will be provided. They will be positioned to view the shuttle loading area, the shuttle unloading area, the top of the MCO, and grapple end of the mast.

CONTROL STATION

444-R-01 Revision 0 Volume 1

The mast CCTV camera is the only control component which will receive any significant radiation exposure. Over the lifetime of the MCO Loading System it will receive no more than 20% of the maximum allowable dose for a standard non-radiation hardened industrial CCD color camera. Therefore a standard non-radiation hardened industrial CCD color camera has been selected for this and all four locations.

The remote viewing control station is located in a non contaminated area. It contains CCTV camera viewing and recording hardware. It consists of one fixed control cabinet that contains the following components: one monitor, one VCR, one character generator, and one four signal video switch. This system can view and record any one of the four camera signals independent of the basin viewing system.

Further description and maintenance requirements on the System Controls and Logic requirements are discussed in Appendix B.

2.3 Facility Interfaces

The MCO Loading System is supported by the following facility interfaces:

120 VAC 1 Ø 460 VAC 3 Ø 100 psi, 10-20 cfm, non -lubricated air

444-R-01 Revision 0 Volume 1

2.4 System Check Point Assessment

Table 2.4-1 identifies operator checkpoints and provides descriptions of the verification activities at various points in the MCO Loading Process.

Operator	MCO Loading Step	Operator Verification
Checkpoint	Identifier	Activities
	(Reference Table 4.0-1)	
1	1	Verify equipment positions
2	3	Verify that the cart is loaded
3	5	Verify cart in unload position
4	6	Verify gantry/bridge in shuttle unload position
5	7 and 8	Operator selects basket type and number of baskets to
		be unloaded
6	9	Verify grapple in unlocked position
7	14 and 15	Verify grapple in locked position
		Verify that load on mast is correct
		Verify grapple engagement
8	16	Verify mast position in full up operation
9	22	Verify bridge position over MCO
10	27 & 28	Confirm basket location in MCO
11	29	Verify grapple in unlocked position
12	31	Verify "dead load" on mast

Table 2.4-1 Operator Checkpoints

2.5 Basket Lift Height

The gantry mast has a fixed maximum elevation of -8'6" relative to the operations floor at 0.0. At this elevation, the ballscrew, guide tubes and slide bottom are at the mechanical end of travel (Reference Drawing 444-211, Rev. 0). This fixed elevation meets the -8'-0" basket lift height limit defined in Reference 8.1, Section 4.2.2.

2.6 Manpower Requirements

The majority of the MCO loading operation is automated such that minimum staff intervention is required. One operator may successfully survey all monitors and control the MCO loading operation at the main control station. Placement of the shield plug is the most labor intensive sequence. Using tooling provided with this system, shield plug insertion is accomplished with two (2) operators, meeting the requirement of Reference 8.1 Section 4.2.3.

444-R-01 Revision 0 Volume 1

2.7 Equipment Sensors/Control Features

Specification WHC-S-0546, Rev. O-A, section 4.2.6, states "The MCO Loading System shall include engineered features that preclude damage to the MCO, cask, and immersion pail container during the basket loading and shield plug insertion operations." To support this requirement, the following features are included:

2.7.1 Load Cells

Three (3) load cells are directly mounted in the line of force for the mast and grapple to continuously monitor operating loads during the complete fuel baskets handling operations. These three load cells provide the ability to:

- Verify fuel baskets have been successfully gripped. Following grapple activation, the basket is lifted approximately one inch and temporarily held in position. The load cells are automatically checked for feedback measurements falling within a predetermined range. If the load cells do not provide acceptable measurements or are not equivalent within an acceptable range, the system will be halted.
- Identify extraneous/unplanned loads on the mast. Following verification that the fuel baskets have been successfully gripped, the load cells are "zeroed out." As the basket begins to rise, traverse to and lowered into the MCO, the load cells continuously monitor the operational load. At any time, if a load is measured that exceeds a predetermined limit, the basket motion will be halted.

2.7.2 LVDT

One (1) LVDT is directly linked to the mast compliance device to provide positioning feedback as the mast performs the load and unload operations.

2.7.3 <u>Video Cameras</u>

Four (4) video cameras with lights are strategically located to provide visual monitoring capability for the following processes:

- shuttle load;
- shuttle unload;
- MCO load;
- all mast end of arm tooling operations.

444-R-01 Revision 0 Volume 1

2.7.4 Electric Fail Safe Brake on Bridge Gantry Motor

The bridge gantry traverses the mast (and basket) from the shuttle unload to the MCO. To prevent loss in position the gantry drive motor includes a fail safe break which will automatically lock the motor in position during any power failure or outage.

2.7.5 Electric Caliper Fail Safe Brake on Screw

The drive screw powers the mast (and basket) through all motions and is controlled by a 1.5 horse power servo drive motor and caliper brake. To prevent uncontrolled descent in the mast (and basket), the caliper brake includes fail safe features that lock the drive screw in position if any outages occur.

2.7.6 Switch and Roller-Follower on Mast Drive Belt

A drive belt provides the interface between the mast ball screw and motor. A spring mounted roller connected to a limit switch constantly rides the mast drive belt to prevent the ball screw from dropping in case of belt breakage. If the belt broke, the roller will fall inward and the limit switch would immediately activate the caliper brake, locking the mast in position. This system is provided to add safety to operations even though the drive belt exceeds operating/safety requirements for this application several times over.

2.7.7 Dual Ball Path in the Ball Nut

The drive screw ball nut bearings cycle through the screw thread and grooves in the nut as it turns, driving the screw vertically upward or downward. A second complete set of bearings riding in a separate groove provides backup. If bearing leakage occurred, this second set of bearings will prevent an uncontrolled fall.

2.7.8 Back-Up Limit Switches

The shuttle and gantry drive are non servo, fixed position indexing devices. The shuttle and gantry cycle positions are set using limit switches. To provide additional safety, each limit switch is backed up by a second limit switch slightly offset from the primary limit switch, followed by hard stops.

2.7.9 GECM (Grapple Extension Compliance Mechanism)

A GECM (Grapple Extension Compliance Mechanism) provides continuous monitoring of system operations. Off normal operation is instantly identified activating system interrupt features.

444-R-01 Revision 0 Volume 1

2.7.10 Manual Overrides

Manual overrides are provided on the shuttle, mast, gantry, and grapple systems permitting operations to interface in the event of equipment failure. The mast and gantry may be operated independent of the primary driving system by inserting a drill motor. The shuttle may be manually driven by a reach tool. The grapple may be manually activated by special tooling accessing the grapple release mechanism.

2.8 Quality Control

Per Reference 8.6, "The Multi-Canister Overpack Loading System has been classified as a General Service (non-safety) system. Design control has been implemented through independent checking and verification of the design and engineering calculations.

2.9 Reliability Analysis

The following table identifies system component operation life, including Design Limits and Mean-Time-To-Repair (MTTR) for the control system components, sensors, and actuators. Data has been obtained from manufacturers where available.

ITEM #	DESCRIPTION	DESIGN LIMITS	MTTR (Hrs.)
1	PLC	90,000	6
2	Servo/resolver	45,000	. 8
3	Bridge motor	60,000	8
4	Control relays	>100,000 hours	2
5	Power supply	40,000	4
6	Limit switches	>100,000 hours	2
7	LVDT	40,000	4
8	Load cells	40,000	4
9	Misc. Switches	>40,000 hours	2 .
10	Cables	>100,000	8
11	Annunciator	40,000	4
12	CCTV camera	10,000	25
13	Camera controls	50,000	10
14	CCTV monitor	10,000	10
15	CCTV VTR	5,000	20

444-R-01 Revision 0 Volume 1

2.10 Maintenance Requirements

The MCO Loading System has been designed to provide a high degree of system reliability with minimal maintenance, using easily replaceable equipment where maintenance may be required. The shuttle drive system consisting of a cable, pulleys and two pneumatic cylinders has no maintenance requirements. The gantry drive system is a dual rack and spur gear system capable of significantly faster speeds, cycle times and loads than required for MCO loading. The stainless steel ball screw, guide shafts and grapple interface tooling are designed for operation in the K-Basin water.

It is recommended that conformation of the control equipment set points be subject to periodic evaluation to assure proper system operation. This maintenance will consist of checks on the digital inputs, digital outputs, analog inputs, and motion control inputs & outputs. The following table provides recommendations for maintenance checkout/calibration of the control equipment.

DEVICE	MAINTENANCE/CALIBRATION	FREQUENCY
	Dervers E Sten Check for removal of 120 VAC central review and for	
Emergency Stop	deeperaization of all control outputs	Monthly
Emergency stop	Manually activate each limit switch one at a time. Verify that the control	Wohuny
Primary & hackup	system indicates activation of the appropriate limit switch	Annually
limit switches	system indicates activation of the appropriate mint switch.	7 minutiny
Supervisory override	Activate override switch. Verify that the control system indicates	
switch	activation of the override switch input.	Annually
	In the MANUAL operational mode activate the bridge motor TRAVEL	
	& RETURN outputs. Verify that the bridge moves in the appropriate	Annually
Bridge motor	direction.	·
	In the MANUAL operational mode activate the alarm output. Verify that	
Alarm beacon	the beacon alarm is activated visually and audibly.	Monthly
· · · · · · · · · · · · · · · · · · ·	In the MANUAL mode backup the GECM until the load cells are all	
	unloaded (i.e., read a nominal zero output). Check for a zero output on	
	each load cell. Then activate the shunt calibration resistor for each load	
Load cells	cell. Check for the correct output from each load cell (should be a	Quarterly
	nominal 80% of FSO)	
	Replace one of the 3 load cells with a calibrated load cell (secondary	
	standard). Apply two loads to the load cells (nominally 20% & 80% of	
	full scale load) and compare the outputs of the two existing load cells	
	with the secondary standard. Any imbalance in the load cells should be	Annually
Load cells	taken into account.	
	With no backup of the GECM check for zero output from the LVD1.	
	Then in the MANUAL operational mode backup the GECM to a nominal	
LVDT	80% of its FSO. Compare the LVD1 output with a dimensional	Ammoliu
LVD1	In the MANUAL energicanel mode moves the most on incremental	Allinually
wast motor/resolver	distance. Compare the amount of movement indicated by the control	
	system with a dimensional measurement of the actual mast travel	
· · ·	system where a contentioner measurement of the actual must have.	Annually

2.11 Lubrication Requirements

The MCO Loading System has been designed for minimal lubrication, eliminating foreign material in the K-Basin water while supporting system operation requirements. As identified below, materials for the main wear surfaces (shuttle rollers, ball screw and gantry spur gear/rack) have been selected to operate without lubrication.

Device	Lubrication Specifications	
Shuttle Rollers	Corrosion resistant wheel and shaft with non lubricating bearings; 440C roller	
	with graphite bushing riding on 400C hardened stainless steel.	
Mast Screw Drive	Grease seals are mounted at the ball nut. No other lubricant is required.	
Gantry Spur Gear and Rack	No lubricant required.	

2.12 Equipment Interface/Installation/Assembly Clearances

All components of the MCO Loading System have been designed to accommodate installation limitations in the K-Basin East and West structures.

2.12.1 Shuttle Installation

The shuttle hardware is to be mounted directly above the exclusion area in the K-Basin fuel transfer canal The shuttle is suspended from the operating floor and supported laterally using the basin walls for load bearing surfaces. To accommodate limited ceiling clearance, the suspension arms are segmented rectangular tubing sequentially bolted together as the shuttle is lowered into the basin.

To compensate for possible variation in dimensions and provide lateral support, adjustable wedges are welded to the side of the shuttle. Following vertical positioning and anchorage of the shuttle, the wedges are expanded using a reach tool to laterally fix the shuttle against the K-Basin walls.

2.12.2 Gantry Installation

γ,

Site structure provides two beams extending from WF 6 @ 15.5 columns with it's top surface eleven foot, one inch (11' 1") from the floor and one hundred inches (100") center to center to support the gantry.

2.12.3 Component Travel Overlap

An evaluation of Facility Interfaces is shown in Table 2.12-1 below. The shuttle, gantry and mast extension travel include additional stroke distance to compensate for installation/assembly tolerance requirements. Programming positions for the shuttle and gantry to accommodate any

27

444-R-01 Revision 0 Volume 1

additional stroke requirements is provided by adjustable position limit switches. Extended stroke in the mast is provided by program adjustments.

WILC C 0546 WILC C 0546 Dominant Interface Englished					
WHC-5-0540	WHC-3-0546 Requirement		Interface Evaluation		
Section					
6.2.1	Existing Monorail System	Exi into	Existing monorail system will not be integrated into the MCO Loading System design.		
6.2.2	Existing Basin Structures	The	The MCO Loading System design will utilize site		
		pro	provided structure over the loadout pit.		
6.2.3	Loadout Pit & Transfer	a.	Integrating with current design of immersion		
	Channel	1	pail system using adapter components		
		b	Accommodates existing equipment in		
	(·		transfer canal.		
6.2.4	Transfer Bay Crane/Auxiliary	a	Tooling is provided with the MCO system to		
	Crane		integrate with the auxiliary crane, providing		
	1		interface with the shield plug for placement		
			into the MCO.		
		b	The MCO Gantry will retract against the bay		
			mezzanine, providing clearance for the crane		
	1		block and MCO during MCO loading.		

Table 2.12-1 Evaluation Of Facility Interfaces

An evaluation of the MCO Loading System interfaces with the fuel retrieval system and MCO baskets relative to system specifications is provided in Table 2.12-2. Specific elevation requirements have been revised as this design contract was completed, with final dimensions as defined per drawing SK-1-80220, Rev. F. The shuttle is positioned over the exclusion area (3'8') and below the maximum basket lifting height (5'4").

Table 2.12-2

Evaluation Of Fuel Retrieval System & MCO Basket Interfaces

WHC-S-0546	WHC-S-0546	Interface Evaluation	
Section	Requirement		
6.3.1	Fuel Retrieval System	The shuttle system is designed to interface with the	
	Interface	fuel basket queue at appropriate elevations.	
	1	Seismic restraints and queue loading height limits	
		have been included in the design.	
6.3.2	MCO Basket Size Variables	The shuttle and mast will accommodate all	
L		specified basket dimensions.	

444-R-01 Revision 0 Volume 1

An evaluation of the MCO Loading System interfaces with the loadout pit equipment is provided in Table 2.12-3.

Evaluation of Eoadout The Equipment methaces				
WHC-S-0546	WHC-S-0546	Interface Evaluation		
Section	Requirement			
6.3.3	Gauging fuel baskets to ensure MCO loading within specified limits.	Due to the elevation of the shuttle and the operational limit maintaining the fuel basket below - 8.0', the MCO gauging operation is limited to the fuel queue.		
6.3.3	MCO Shielding	MCO has been designed with two (2) adapters to protect MCO seal flange, MCO shield plug nut threads, and overall MCO opening during loading. These adapters are termed the "Basket Funnel Guide" and the "Shield Plug Guide".		
6.3.4	Transportation System	The MCO Loading System is fully integrated with the loadout pit operations equipment.		
6.3.5	MCO Shield Plug Insertion	The MCO Loading System includes tooling to interface the shield plug to the auxiliary crane and remotely disconnect from the shield plug following shield plug placement.		

Table 2.12-3

3.0 FAILURE MODES & SYSTEM RECOVERY PLANS

The following procedures are listed as hypothetical cases for failure modes and system recovery.

Failure Mode	Failure Mode Description	System Recovery Feature		
1	Basket fails to fit into	Examine basket handling using pan and tilt capabilities of		
	shuttle	can	nera mounted at shuttle load and correct as needed. If basket	
		still	does not fit, return basket to storage area and record	
L		discrepancies.		
2	Shuttle does not operate or binds	a	Remove basket from carriage and return to queue.	
		b	Evaluate shuttle pneumatic system and controls, cycling	
]		carriage if possible to identify binding	
		C	Check all accessible features of the shuttle drive system.	
	1	d	Manually move carriage to "cart removal position" and	
		Ē	lift from shuttle.	
		e	Check all guide wheels, bearings and wear areas for binding.	
		f	With carriage removed, cycle cylinders, cabling for	
		Í	correct operation. Check installation components	
			including wedges, seismic restraints, support channels.	
		g	Correct or replace defective component.	
3	Mast fails to lift basket or	a	Observe all monitoring features of mast including	
	stops in the basket lifting	1	LVDT's, load cells and video camera to determine source	
	cycle		of problem.	
		b	Manually lower the basket to the shuttle.	
		c	Manually release the grapple.	
		d	Manually raise the mast to the full up position.	
		e	Correct, service or replace the defective component.	
4	Bridge/gantry fails to move	а	Observe all monitoring features of mast including	
	or stops while in transit		LVDT's, load cells and video camera to determine source	
	with a basket	of problem.		
		b Manually move the gantry to the shuttle unload position.		
		¢	c Lower/return the basket to the shuttle.	
		d	d Raise the mast to the full up position.	
5	Most fulls subils from	<u>e</u>	Correct or replace the defective component.	
3	hasket into the MCO	a	Observe all monitoring features of mast including	
	vasket linto the MICO	LVD1's, load cells and video cameras to determine		
		b Manually miss the meet to the full		
		0	Manually raise the mast to the full up position	
		C d	Manually move the gantry to the shuttle unload position	
		a	Manually lower basket to shuttle	
		- <u>e</u>	Manually release the basket to the shuffle	
•		I	Manually raise the mast to the full up position	
		g	Correct or replace the defective component.	

Table 3.0-1 Failure Modes & System Recovery Features

Table 3.0-1	Failure Modes & System Recovery Features (Continued)
-------------	--

Failure Mode	Failure Mode Description	System Recovery Feature		
6	Grapple fails to release the basket	a	Observe all monitoring features of mast including LVDT's, load cells and video cameras to determine source of problem.	
		Ь	Select the combination of manual and powered steps to return the basket to the shuttle.	
		C	Manually raise the mast to the full up position.	
	-	d	Correct or replace the defective component.	
7	Shuttle cylinder pressure is gone.	a	No change in cylinder position will occur because they are tied by a single cable. (If the carriage is moving during pressure outage, all motion will stop.) If a cylinder drops, pulley guards will keep excess cable aligned.	
		b	Examine all cylinder plumbing for leakage.	
		c	Manually move carriage to shuttle load or unload position (if needed) using external pressure supply.	
8	Shuttle cable breaks	a	Determine accessibility of cable break relative to pulley system and carriage. If broken ends of cable are inaccessible, shuttle must be removed and a new cable must be installed.	
		b	If accessible, using a reach tool, retrieve broken end of cable.	
		c	Splice new cable to failed cable at break closest to a cylinder.	
;		d	Reel one end of failed cable backward though pulley system using accessible part of failed cable, thereby simultaneously lacing new cable through a portion of pulley system.	
		e	Manually remove carriage. Attach opposite end of new cable to second segment of failed cable.	
		f	Reel opposite end of failed cable backward through pulley system, thereby lacing new cable through remaining portion of pulley system.	
		g	Return carriage to shuttle.	
9	Load cells do not "zero out" at basket "resting" position.	a	Observe grapple positioning using video camera and monitor.	
		b	Raise basket to home position.	
	. ·	c	Check operating parameters and test load cells. Observe MCO loading history based on recordings of previously loaded baskets for reasons of discrepancy.	
		d	The basket may be unloaded with out load cell "zero out" using the supervisor-key lock mode.	

4.0 SYSTEM OPERATIONAL DESCRIPTION/SEQUENCING

The following table outlines sequential steps for cycling one spent fuel basket from the loading queue to the MCO. Estimated cycle times for each step are in parenthesis following the text describing that step. Component speeds used to estimate each operation requiring system operation are as follows:

Mast	1"/second
Gantry	0.4"/second
Shuttle	1.1"/second

1 able 4.0-1	MCO Loading Sequence
--------------	----------------------

Step	Operational Task (estimated cycle time in minutes follows each task for estimated cycle				
Identifier	time-section 4.1 and dosage estimate-section 4.2).				
1	Verify initial positions with video cameras. Cart at Load Position; Mast retracted; Gantry in				
	Store Position; (All positions have limit switches and back-up switches). (.5)				
2	Load basket from queue.				
3	Cart Loaded—verify with camera. (.5)				
4	Actuate shuttle cart, cart moves to unload position;(2)				
-5	Verify cart position with cameras.(.25)				
6	Mast home position verified with camera. (.25)				
7	Select program for basket type.(.5)				
8	Select number of baskets to be loaded in the MCO. (.5)				
9	"0" the LVDT (occurs automatically); check the manual grapple indicator with mast				
	camera. (.5)				
10	Extend mast to basket. (0)				
11	Mast extends to predetermined position plus slight back-up of the GECM, (grapple				
	extension compliance mechanism) (1.0 inch)(3)				
12	Energize the grapple cylinder. (.5)				
13	Grapple anti locking, locks automatically.(0)				
14	Verify grapple with camera and observe grapple manual position indicator,				
15	Retract mast for approximately 1-inch, verify with load cell that load is appropriate.(.5)				
16	Retract basket to-(8ft-6in) level, (hard stop at 8ft-5in) (3)				
17	Actuate shuttle, cart returns to shuttle load position (internal cycle time).				
18	Verify mast position with encoder readout from screw,				
	(All PLC controlled readouts have battery back-up in case of power loss)(.5)				
19	Verify that MCO is in place (externally completed).				
20	Energize bridge-move function, moves to MCO load position (.5).				
. 21	Bridge stops at switch—backed up by a hard stop (2).				
22	Verify bridge location (.5).				
23	Energize down movement of mast (steps 23, 24, 25 & 26-3.3 minutes)				
24	Watch with camera looking at MCO				
25	Monitor load cell readout carefully.				
26	Mast descends to preset point, plus slight back-up of GEMC (1.5 inch).				
27	Monitor load cell - Confirm proper basket nesting.(.5)				

444-R-01 Revision 0 Volume 1

28	Verify basket location. Touch screen monitor will show exact basket position. (.5)
29	Release grapple, verify with manual grapple position indicator.(.5)
30	Retract mast 2-inches. (.5)
31	Verify "dead load" (approx. 1400#) with the load cell readout, (If the load cell is not "dead load" the system reverts to "supervisor-keylock mode") (.5)
32	Continue retraction of mast to home position. (3.3)
33	Return bridge to home position. (2)

4.1 MCO Load Cycle Time

γ.

Loading of a single basket into the MCO is depicted in the timeline presented in Table 4.1-1. The timeline is based on conservative estimates and does not account for overlapping action sequences.

Component travel speeds used to estimate each loading sequence are as follows:

Mast 1"/second Gantry 0.4"/second Shuttle 1.1"/second

Table 4.1-1 Single Basket MCO Loading Timeline

Loading Sequence Action	Time (minutes)	Cumulative (minutes)
Shuttle Basket Loading	external to cycle time	
Shuttle travel	3	3
Mast extension	5	8
Grapple activation and verification	1	9
Basket raised 1", verification	0.5	9.5
Mast raised to upper location	. 3	12.5
Bridge translation	3.5	16
Basket lowered into MCO	3.3	19.3
Grapple release, verification	2.5	21.8
Mast retraction	3.3	25.1
Shuttle and bridge return	3.5	28.6

Based on the timeline presented above, a six (6) basket MCO installation would be completed in less than 3 hours, allowing an hour for shield plug placement interval to maintain the cycle time at the 4 hour maximum limit defined in Specification WHC-S-0546, Rev. D, section 4.2.3, 8.1.1.

Consideration of parallel operations for the shuttle and MCO loading, and reduced mast extension as each basket is loaded results in a further reduction in cycle time.

33

444-R-01 Revision 0 Volume 1

4.2 Operator Dose Exposure

Operator dose for the MCO Loading System incorporates all sequential automatic operations following manual basket loading at the shuttle queue up to manual loading of the shield plug.

The location of the control station has been defined as corridor 7 of K-Basin East and West with a background dose of less than 0.5 mrem/hr. Therefore, normal operation will not expose the operator to any average dose field greater than 0.5 mrem/hr.

The total cycle time for a single basket loading process is (Reference Table 4.1-1):

shuttle index : 3 minutes mast extension : 5 minutes grapple activation : 1.5 minutes mast extension basket lift to -8'6" : 3 minutes gantry index : 3.5 minutes basket descent : 3.3 minutes grapple release : 2.5 minutes mast retraction : 3.3 minutes shuttle and bridge return : 3.5 minutes

Therefore, total cycle time to load one basket is approximately 28.6 minutes, excluding manual shuttle loading and shield plug placement.

Assuming six (6) baskets per MCO,

28.6 minutes/basket x 6 baskets = 171.6 minutes/MCO = 2.86 hours/MCO 0.5 mrem/hr x 2.86 hrs = 1.43 mrem total dose per operator/shift

Therefore, the average operator dose rate based on loading one MCO per 4 hour load cycle is

 $\frac{1.43 \text{ mrem}}{4 \text{ hrs}} = 0.36 \text{ mrem / hr}$, which satisfies the average dose rate limit

of 0.5 mrem/hr as stated in Section 4.2.4, Specification WHC-S-096, Rev. O-C.
444-R-01 Revision 0 Volume 1

5.0 STRESS ANALYSIS

5.1 Criteria

Structural load path design criteria for both the Shuttle and Mast/Ganty has been based on the following documents:

- 1. ANSI N14.6-1993, section 4.2.1, Stress Design Factors. Stress developed from three times the load must be less than the minimum tensile yield strength and stress developed from five times the load must be less than the ultimate tensile strength of load path materials.
- ASME B30.16-1993, Overhead Hoists (Underhung), the Mast and Gantry satisfy construction requirements of section 16.1.2.1 (c) which states "the static stress calculated for the rated load shall not exceed 20% of the average ultimate material strength."
- "Standard Arch-Civil Design Criteria Design Loads for Facilities" SDC 4.1, section 3.2 is applicable loading criteria for the shuttle structure.

5.2 Stress Analysis Results

A summary table of resultant stress in load path members is shown below.

Calculations are presented in Appendix E.

	· · · ·	. Summa	Table 5-1 ry of Stress A Shuttle	nalysis			
Drawing Number	ltem No.	Component	Load Condition	Design Check	Calculated Stress psi	Allowable Stress psi	M.S.
444-304	2, 20 AND 21	COMPOSITE RAIL BEAMS	NORMAL	AXIAL AND BENDING	16696	18000	0.07
444-304	2, 20 AND 21	COMPOSITE RAIL BEAMS	NORMAL	SHEAR	5533	12000	0.54
444-304	2, 20 AND 21	COMPOSITE RAIL BEAMS	SEISMIC	AXIAL AND BENDING	23775	30600	0.22
444-304	2, 20 AND 21	COMPOSITE RAIL BEAMS	SEISMIC	SHEAR	11348	16800	0.32

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

		Tal Summ	ole 5-1 (continu ary of Stress A Shuttle	ied) nalysis			
Drawing Number	Item No.	Component	Load Condition	Design Check	Calculated Stress psi	Allowable Stress psi	M.S.
444-309	4 THRU 8	VERTICAL SUPPORTS	NORMAL	AXIAL AND BENDING	4778	18000	0.73
444-309	4 THRU 8	VERTICAL SUPPORTS	SEISMIC	AXIAL AND BENDING	16126	30600	0.47
444-309	4 THRU 8	VERTICAL SUPPORTS	SEISMIC	AISC COMBINED	0.51 (EQUATIO	1.0 N 1.6.2)	0.49
444-310 444-309	1 4 THRU 8	SPLICE IN VERTICAL SUPPORT	SEISMIC	AXIAL AND BENDING	5108 (LOAD)	7886 (LOAD)	0.35
444-310	6	LONGITUDINAL SEISMIC RESTRAINT	SEISMIC	AXIAL	1741	16150	0.89
444-303	1 AND 7 TO 11	LATERAL SEISMIC RESTRAINT	SEISMIC	SHEAR	3090	16800	0.82
444-302	3	FLOOR PLATE	NORMAL	BENDING	12243	22500	0.46
444-302	4 AND 5	CART SUPPORT TUBES	NORMAL	BENDING	8355	18000	0.54
444-300	20	ROD	NORMAL	AXIAL	936 (LOAD)	7952 (LOAD)	0.88

36

Design Report Hanford K East & K West Basin MCO Loading System

	· · ·	. Summa . Shu	Table 5-2 ry of Stress Ar ttle Weld Sizir	alysis 1g			
Drawing Number	Item No.	Component	Load Condition	Design Check	Weld Size Required inch	Weld Size Provided inch	M.S.
444-310	7 TO 8	VERTICAL SUPPORT TO ANCHORAGE	SEISMIC	SHEAR	0.066	0.1875	0.65
444-309 444-304	4 THRU 7 TO 2, 20 AND 21	VERTICAL SUPPORT TO COMPOSITE RAIL	SEISMIC BEAM	SHEAR	0.11	0.1875	0.41
444-302	4 TO 5	CART SUPPORT TUBE JOINT	NORMAL	SHEAR	0.01	0.1875	0.95

		Summary	Table 5-3 of Stress Ana Mast	alysis			
Drawing Number	ltem No.	Component	Load Condition	Design Check	Calculated Stress psi	Allowable Stress psi	M.S.
444-215	1	MAST VERTICALS	LIFTING	AXIAL	4759	11600	0.59
444-215	2,3,30 AND 36	DIAGONAL BRACE	LIFTING	AXIAL	7019	11600	0.39
444-215	5	OUTRIGGER HORIZ.	NORMAL	AXIAL	406	11600	0.97
444-215	6	OUTRIGGER DIAG.	NORMAL	AXIAL	844	11600	0.93
444-215	39	SUPPORT ANGLE	NORMAL	BENDING	5559	11600	0.52
444-215	12,16 AND 32	MAST HORIZONTALS	NORMAL	AXIAL	2767	11600	0.76
444-215	17	TOP HORIZONTAL	LIFTING	BENDING	6524	11600	0.44
444-215	20	PLATE 1/4"	NORMAL	AXIAL	1458	11600	0.87
444-211	13	MOUNTING PLATE	NORMAL	BENDING	4283	11600	0.63

Design Report Hanford K East & K West Basin MCO Loading System

		Tab Summ	le 5-3 (Continue ary of Stress An Mast	zd) alysis			
Drawing Number	Item No.	Component	Load Condition	Design Check	Calculated Stress psi	Allowable Stress psi	M.S.
444-232	23	LUG	NORMAL	BENDING	3641	10000	0.64
444-220	2	GANTRY RAIL TUBES	NORMAL	BENDING	7739	11600	0.33
444-232	22 AND 23	LUG TO SHAFT	NORMAL	SHEAR	2421	10000	0.76

	•	· 1	able 5-4				
		Summary	of Stress Ana	lysis			
· · · ·		Mast	Weld Sizing				
Drawing	Thomas		–		1		
Drawing	Item	Component	Load	Design	Weld Size	Weld Size	M.S.
Number	INO.		Condition	Check	Required	Provided	
					inch	inch	· · · · · ·
444-215	16 TO 1	MAST HODIZ TO	NORMAL	CLIFAD	0.0167	0.1075	
444-215	10101	MAST VERTICAL	NORWAL	SHEAK	0.0157	0.18/5	0.92
		MADI VERTICAL					
444-215	6 TO 5 AND	OUTRIGGER DIAG.	NORMAL	SHEAR	0.0375	0.1875	0.80
		то				0.10/0	0.00
	6 TO 1	MAST VERT. AND TO	•				
		OUTRIGGER HORIZ.					
444-215	20 TO 1	PLATE TO MAST	NORMAL	SHEAR	0.016	0.1875	0.91
,		VERTICAL					
444-215	5 TO 1	OUTRIGGER HORIZ	NORMAL	SHEAD	0.0200	0 1975	0.80
		TO MAST VERTICAL	HORMAL	BIILAI	0.0209	0.1875	0.89
444-215	2 TO 1	DIAGONAL BRACE	LIFTING	SHEAR	0.159	0.1875	0.15
		TO MAST VERTICAL					
444-215	39 TO 1	SUPPORT ANGLE TO	NORMAL	SHEAR	0.0167	0.1875	0.91
		MAST VERTICAL					
444 215	17 TO 1	TODUODIZONITAL TO	LIFTERIO	OUT AN			
444-215	1/101	MAST VERTICAL	LIFTING	SHEAR	0.072	0.1875	0.62
L		INASI VERIICAL	·		L		

444-R-01 Revision 0 Volume 1

5.2.1 Anchorage Loads Summary

The following information is a summary of anchorage loads for the gantry/mast and shuttle.

5.2.1.1 Gantry/Mast

The reaction dead load (Rdl) is four hundred thirty pounds (430lbs.).

The reaction live load (Rll) is three thousand nine hundred two pounds (3902lbs.).

In addition to the above vertical loads, appropriate criteria must be applied for impact, lateral and longitudinal forces to produce maximum load requirements on the support steel. Finally, to prevent unacceptable support beam deflection, the minimum moment of inertia for each support beam is two hundred forty eight inches⁴ (248 in.⁴) to provide alignment at critical pick up locations.

5.2.1.2 Shuttle

4

Points 'A' and 'B' on Figure 5-1 represent anchorage load locations for the MCO Loading System Shuttle. A summary of loads and moments at these points for normal and seismic conditions is shown below:

	FY	MX	MZ	Load Case
Point 'A'	4280 down 377 up	3105	9838	Normal
	4029 down		+-15171	Seismic
Point 'B'	3935 up 377 down		+-9838	Normal
	4029 down 285 up	+-392	+-15171	Seismic

Loads are in pounds and moments are in in-lbs. Directions and locations of load and load points are defined on Figure 5-1.

Figure 5-1 Shuttle Anchorage Load Points

444-R-01 Revision 0 Volume 1

6.0 CERTIFIED MATERIALS AND TEST REPORT

The MCO Loading System is defined as general service equipment and will not require certified materials and test reports as traceable documentation. However, NAC experience with fabrication of systems similar to the MCO Loading System has provided material certification records for load path components.

41

A sample test certificate typically provided as part of the raw material procurement documentation is presented in Appendix D.

444-R-01 Revision 0 Volume 1

7.0 DESIGN BASIS CODES AND STANDARDS

Design documents defined in Specification WHC-S-0546, Revision 0-C, Sections 2.1 have been reviewed with respect to MCO Loading System application.

A summary of compliance to the MCO Loading System design is provided below.

10CFR835, Occupational Radiation Protection

10CFR835 provides rules that establish radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from conduct of DOE activities. Part 835 delineates requirements for establishing:

- Radiation Protection Programs Subpart B
- Standards for Internal and External Exposure Subpart C
- Monitoring (exposure) in the Workplace Subpart E
- Entry Control Programs Subpart F
- Posting and Labeling Subpart G
- Records Subpart H
- Reports to Individuals Subpart I
- Radiation Safety Training Subpart J
- Design and Control Subpart K
- · Releases of Materials and Equipment From Radiological Areas Subpart L
- Accidents and Emergencies Subpart N

Implementation of these requirements is the responsibility of the operator, except for Subpart K -Design and Control. This subpart does not provide detailed requirements for design but emphasizes that ALARA principles be considered in the design. In adhering to ALARA principles, the MCO Loading System has been designed to minimize operating times and maximize the distance between personnel and radioactive sources.

29CFR1910.179, Overhead and Gantry Cranes (Listed as 10CFR1910.179 in Design Specification)

29CFR1910.179 applies to overhead and gantry cranes including semigantry, cantilever gantry, wall cranes, storage bridge cranes, and others having the same fundamental characteristics. 29CFR1910.179(a) defines the terms applicable to this section. A crane is defined as a machine for lifting and lowering a load and moving it horizontally, with the hoisting mechanism an integral part of the machine. The bridge and mast of the MCO Loading System function as a

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

crane and therefore are required to meet the requirements of 29CFR1910.179. The following list identifies the requirements of 29CFR1910.179 that are applicable to the MCO Loading System:

- 29CFR1910.179(b), General Requirements
 - The bridge and mast meet the design specifications of ANSI B30.2.0-1967, <u>Overhead</u> and <u>Gantry Cranes</u>.
 - The crane shall have the rated load marked on each side of the crane.
 - Clearances of 3" overhead and 2" laterally from obstructions shall be maintained.
- 29CFR1910.179(e), <u>Stops, Bumpers, Rail Sweeps, and Guards</u>
 - Bridge bumpers, or other automatic equivalent means, shall be provided to decelerate the unloaded crane in less than 3ft/sec² when travelling at 20% rated load speed.
 - The bumpers shall have sufficient energy absorbing capacity to stop the crane when traveling at 40% of rated load speed.
 - Guards are provided for moving parts in accordance with (e)(6) when these parts present a hazard during normal operations.
- 29CFR1910.179(f), Brakes
 - The hoisting mechanism is provided with a holding brake.
 - A control brake is provided for the hoisting mechanism to prevent overspeeding.
- 29CFR1910.179(g), <u>Electrical Equipment</u>, Voltage, enclosures, controllers, resistors, switches are designed in accordance with the requirements of this paragraph.
- 29CFR1910.179(i), <u>Warning Device</u>, A warning signal shall be provided for the bridge and mast.
- The following paragraphs of 29CFR1910.179 are the responsibility of the operator:
 - 29CFR1910.179(j), Inspection
 - 29CFR1910.179(k), <u>Testing</u>
 - 29CFR1910.179(1), Maintenance
 - 29CFR1910.179(n), Handling the Load
 - 29CFR1910.179(o), <u>Other Requirements</u> (pertaining to ladders, cabs, and fire extinguishers

The following paragraphs are not applicable to the MCO Loading System because the system does not contain the following type of components:

- 29CFR1910.179(c), <u>Cabs</u>
- 29CFR1910.179(d), Footwalks and Ladders
- 29CFR1910.179(h), <u>Hoisting Equipment</u> (requirements pertain to sheaves, ropes, equalizers, and hooks which are not part of the MCO Loading System)
- 29CFR1910.179(m), Rope Inspection

43

444-R-01 Revision 0 Volume 1

DOE-RL, 1993, "Standard Arch-Civil Design Criteria - Design Loads for Facilities", SDC 4.1, Rev 12, U. S. Department of Energy

The MCO Loading System is classified as a General Service (non-safety) system. Section 3.2 of SDC 4.1 covering safety class 3 structures, component and systems has been applied to the gantry and mast. The shuttle is in the zone of influence to a safety class 1 component, and has been analyzed and designed to requirements of section 3.2.2.6, which includes analysis and design requirements for structural failure that may compromise the structural integrity of the safety class 1 (or 2) item. Constraints for this analysis include 'g' factors from figure 3, page 29.

ANSI/AWS D1.1 -1995, Structural Welding Code - Steel

ANSI/AWS D1.1 contains requirements for fabricating welded steel structures. Chapter 1 -General Requirements provides information regarding the code and its use. Chapter 2 - Design of Welded Connections provides criteria for designing various types of weld joints. The MCO Loading System welded joints comply with the criteria provided in this chapter as well as the applicable design specification. The Fabrication Specification shall impose or reference the requirements of Chapter 3 - Prequalification of WPS's, Chapter 4 - Qualification (of welding procedures and welders), Chapter 5 - Fabrication, and Chapter 6 - Inspection. Chapter 7 - Stud Welding, and Chapter 8, Strengthening and Repairing Existing Structures are not applicable to the scope of work.

ANSI/AWS D14.1-1985,

Specification for Welding of Industrial and Mill Cranes and Other Material Handling Equipment

ANSI/AWS D14.1 applies to the welding of principal structural weldments and primary welds of cranes and overhead material handling machinery and equipment. Chapter 3, Allowable Stresses, requires the stresses in the crane to meet the requirements of design specifications such as AISC, ASME, CMAA, or MMA. In accordance with this criteria, the MCO Loading System is being designed to conform to the AISC requirements. The configuration of the welded joints is consistent with the requirements and criteria listed in Chapter 4, Weld Joint Design.

The Fabrication Specification shall reference the requirements of Chapter 5 - Workmanship, Chapter 6 - Processes and Filler Metals, Chapter 7 - Qualification (of welding procedures and welders), Chapter 8 - Weld Quality and Inspection, Chapter 9 - Field Weld Repair and Modification, and Chapter 10 - Repair and Correction of Discontinuities.

444-R-01 Revision 0 Volume 1

AWS QC1-96, Standard for AWS Certification of Welding Inspectors

AWS QC1 establishes the requirements for AWS certification of welding inspectors. Welds for the MCO Loading System are qualified and inspected in accordance with AWS D1.1, Structural Welding Code - Steel, or AWS D14.1, Specification for Welding Industrial and Mill Cranes, which impose the requirements of AWS QC1. Personnel responsible for inspecting these welds shall be certified in accordance with this AWS QC1. This requirement for inspector qualification shall be delineated in the fabrication specification for the MCO Loading System.

ASME B30.11-1993, Monorails and Underhung Cranes

ASME B30.11 applies to underhung cranes whose end trucks operate on the bottom flange of a runway track section, and to carriers (trolleys) operating on single track monorail systems. The MCO loading System consists of a single axis bridge gantry and a single motion extending mast with a grapple. The bridge gantry slides on top of a two rails using linear bearing devices. The grapple is a stationary structure mounted to a telescoping mast to connect to the fuel baskets. Because neither the gantry nor mast are underhung configurations, ASME B30.11 is not applicable to these devices.

However, various sections of ASME B30.11 will be used as guidance for the design, testing, and fabrication of the bridge gantry. These items include:

- Welding procedures and welding operator qualifications shall conform to ANSI/AWS D14.1 or ANSI/AWS D1.1 (Section 11-1.3.4)
- Exposed and moving parts that may present a hazard shall be guarded (Section 11-1.7)
- Electrical equipment shall comply with Article 610 of ANSI/NFPA 70. (Section 11-1.9)
- Inspection criteria and procedures shall be developed using Section 11-2.1 as guidance.
- Testing procedures shall be developed using Section 11-2.2 as guidance.
- Maintenance procedures shall be developed using Section 11-2.3 as guidance.

ASME B30.16-1993, Overhead Hoists (Underhung)

v.

ASME B30.16 applies to hoists that are actuated by a hand chain, utilizing a chain as the lifting medium, and electric or air-powered hoists using either a chain or rope as the lifting medium. The MCO Loading System mast uses a ball screw driven linear guided device to lift the canisters. The lifting system does not use chains or wire ropes. Therefore, ASME B30.16 is not applicable to the devices.

However, various sections of ASME B30.16 will be used as guidance for the design, testing, and fabrication of the mast and grapple devices. These items include:

- Electrical equipment shall comply with Article 610 of ANSI/NFPA 70, (Section 16-1.2.2).
- The electrical power for controls shall not exceed 150 VAC (Section 16-1.2.3) and the controls enclosure shall be selected in accordance with ANSI/NEMA ICS6 (Section 16-1.3.3).
- Partial or complete interruption of the power supply during operation shall not result in uncontrollable motion of the load (Section 16-1.2.15)
- Inspection criteria and procedures shall be developed using Section 16-2.1 as guidance.
- Testing procedures shall be developed using Section 16-2.2 as guidance.
- Maintenance procedures shall be developed using Section 11-2.3 as guidance.

NFPA 70 - 1996, National Electric Code

NFPA 70 contains provisions considered necessary for safety from hazards arising from the use of electricity. The power and controls for the MCO Loading System are designed in accordance with the general rules of NFPA 70 with particular attention given to Article 610, Cranes and Hoists. Wiring shall comply with Part B of Article 610 with respect to wiring method, terminal fittings, types of conductors, and rating and size of conductor. The applicable parts of Part C, Contact Conductors, and Part D, Disconnecting Means, shall be implemented. The controls shall be designed in accordance with the applicable parts of Part F. Overcurrent protection shall be provided in accordance with Part E. Grounding shall be in accordance with Part G.

ASME Y14.5-1994, Dimensioning and Tolerancing

ASME Y14.5.1-1994, Mathematical Definition of Dimensioning and Tolerancing Principles

ASME Y14.5 establishes uniform practices for stating and interpreting dimensioning and tolerancing and related requirements for use on engineering drawings. ASME Y14.5.1 provides the mathematical explanation of the principles in ASME Y14.5. The design drawings are developed using decimal inch dimensioning in accordance with Paragraph 1.6.2, and the dimensions are shown in accordance with Paragraphs 1.7, Application of Dimensions, 1.8, Dimensioning Features, and 1.9, Location of Features. Tolerances for the dimensions identified are expressed by a general tolerance block referring to all dimensions on the drawing, unless otherwise noted. This approach is consistent with tolerancing criteria identified in Paragraph 2.2.1(e).

WHC, 1995, Field Verified Measurements of 30 Ton Bridge Crane Travel in 105 KE and 105 KW Transfer Bay Area, WHC-SD-SNF-002

444-R-01 Revision 0 Volume 1

WHC, 1995, Performance Specification of SNF Path Forward Cask and Transportation System, WHC-S-0396

WHC-S-0396 specifies requirements for the MCO cask transportation system. The MCO Loading System will operate previous, adjacent to and comply with the MCO cask transportation system. Specifications describing space limitations of the facility and MCO loading/unloading requirements have been included in the MCO Loading System design.

444-R-01 Revision 0 Volume 1

8.0 REFERENCES

- 8.1 Westinghouse Hanford Company Specification No. WHC-S-0546, Revision 0-D.
 "Specification For SNF K East and K West MCO Loading System"
- 8.2. Westinghouse Hanford Company Statement Of Work No. HNF-SD-SNF-SOW-009, Revision 0. "Statement of Work for MCO Loading System Final Design".
- 8.3 NAC International, Inc.
 Document 444-S-01, Revision 0
 "Design Specification for the MCO Loading System for Duke Engineering & Services, Hanford"
- 8.4 NAC International, Inc.
 Document E-15278
 "Conceptual Design Report for the Hanford K East and K West Basin MCO Loading System"
- 8.5 Duke Engineering and Services, Hanford Fax Transmittal 4/11/97, 07:51 AM, S. Brisbin
- Buke Engineering and Services, Hanford Document 97-SCB-044, 5/28/97, S. Boothe
- 8.7 ANSI 14.6-1993, American National Standard for Radioactive Materials Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

48

444-R-01 Revision 0 Volume 1

Appendix A

Specification-Report Requirement Matrix

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

SPECIFICATION	SPECIFICATION REQUIREMENT	DESIGN REPORT
SECTION		CROSS-REFERENCE
4.2.1,8.2.3	Recovery features which allow for fueled basket to be moved	2.7.9, 4.0
	into MCO or back to queue to facilitate repairs to failed	
	equipment. Also, allows for remote disengagement and	
	removal of all tools and equipment from fueled basket.	
4.2.2	Basket lift height not to exceed -8'-0"	2.5
4.2.3, 8.1.1	MCO load cycle time not to exceed 4 hours.	4.1
4.2.4, 8.2.1, 8.2.4	Operators shall not be exposed to dose field in excess of an	4.2
	average 0.5 mrem/hr for the 4 hour loading cycle.	
4.2.5	Load cycle shall be accomplished with staff not exceeding	2.6
	two (2) operators.	
4.2.6	Loading system design shall include features that preclude	2.7.2.1.5
	damage to MCO, cask, immersion pail during basket loading	
	and shield plug insertion.	
4.2.7	CCTV system which provides for operator to remotely	2.2, 2.7.3
	monitor critical operations.	-
4.2.8	Loading system shall provide a grapple that enables operators	2.7.9
	to remotely engage and release baskets.	
4.2.9.1	Fueled basket verification of dimensions.	2.1.1
4.2.9.2	Loaded basket verification of position.	2.1.2
4.2.9.3	MCO shield plug verification of placement.	2.1.4
5.1	If monorail hoists used, determine track capacity.	Not Applicable
5.2.1	Wiring and equipment shall comply with National Electric	2.2.1
	Code.	
5.2.2	Electrical supply shall be controlled by lockable switch.	Drawings
		444-400
		444-401
5.2.3	Remote viewing control station located outside contaminated	2.2.1
	environment.	
5.3	Drives shall have manual overrides	Drawing
		444-200
5.4	Existing handling equipment and shop services shall be used	As Applicable
	where possible.	
5.5	Manual tools shall have standard connection features, be light	As Applicable
	weight. Tools used in pool shall be solid, or have drain or	
	vent holes.	
6.0	Equipment requiring support from existing steel shall be	Drawing
	identified, along with the dead and live weight information.	444-101

•

Design Report Hanford K East & K West Basin MCO Loading System

Ÿ,

444-R-01 Revision 0 Volume 1

.

SPECIFICATION	SPECIFICUTION DECOMPOSITION DECOMPOSITION DE CONTRACTORION DE CONTRACTORICON DE CONTRACTOR	NTINUED)
SECTION	SPECIFICATION REQUIREMENT	DESIGN REPORT
60	Equipment 1 and 1	CROSS-REFERENCE
0.0	Equipment located underwater shall be secured by means of	Drawing
	mechanical stops in lieu of anchor bolts. Should be designed	444-101
601	for seismic loads.	
0.2.1	Define interfaces with existing monorail.	Not Applicable
6.2.2	Define interfaces with quisting having	
	Dernie interfaces with existing basin structures.	2.12 and Dwg. 444-101,
623	Define interferen it. I. I.	444-000
0.2.5	Define interfaces with loadout pit and transfer channel.	2.12 and Dwg. 444-101,
6221	Defendence in the second	444-000
0.4.5.1	Define interfaces with K-Basin water.	2.12 and Dwg. 444-101,
624		444-000
0.2.4	Define interfaces with transfer bay crane.	2.12 and Dwg, 444-101.
(0)		444-000
0.3.1	Define interfaces with fuel retrieval system.	2.12 and Dwg. 444-101
		444-000
6.3.2	Define interfaces with MCO baskets.	2.12 and Dwg 444-101 &
		444-000
6.3.3	Define interfaces with MCO	2 12 and Davg 444-101
		444-201 444-000
6.3.4	Define interfaces with SNF Transportation System	2 12 and Drug 444 000
		2.12 and Dwg.444-000
6.4	Installed equipment shall be equipped with rigging support	Analyzed Sling Points
	points.	g
7.1	Design and procurement schedule shall be provided.	Volume 4
7.2	X17.1.1.	
1.2	weiding and inspection Codes and Procedures identified to	7.0
010	be incorporated.	
8.1.2	Equipment shall be tested prior to delivery.	Fabrication Specification
8.1.3	Total fuel shipmont shall be seen 1.4	
	first shipment data	4.0
822	Shall be designed to with the date	
0.2.2	which concerning downstand earthquake. Components	5.0
	shall be designed with the	
875	Shall be designed with fieldown points.	
0.2.2	Design file of five (5) years.	2.9
8.2.6	CCTV and other equipment which is more cost offerting to	
	replace need not be radiation bardened	2.2
8.2.6	Components shall minimize mointerence and to it.	
	use standard replacement parts	2.9
8.2.6	Failure of any one component shall not	<u> </u>
0.2.0	reduce the compositivities of the MOO I will	3.0
	reduce the capabilities of the MCO loading system.	

SPECIFICATION - REPORT REQUIREMENT MATRIX (CONTINUED)

SP.	ECIFICATION - REPORT REQUIREMENT MATRIX (CON	(TINUED)
SPECIFICATION	SPECIFICATION REQUIREMENT	DESIGN REPORT
SECTION		CROSS-REFERENCE
8.2.6	All equipment must be designed for permanent lubrication.	2.11
8.2.7	All equipment must be able to withstand contamination.	Applied
8.2.8	Number of threaded fastener sizes should be minimized.	Applied
8.2.10	Equipment shall not see significant corrosion effects.	Applied
Statement of Work, 4.1	Transfer equipment general arrangement drawing	Dwg. 444-000
Statement of Work, 4.3	Control equipment general arrangement drawing.	Figure 2.5

444-R-01 Revision 0 Volume 1

Appendix B

Control and Logic Description and Maintenance Requirements

444-R-01 Revision 0 Volume 1

1.0 CONTROL SYSTEM HARDWARE

1.1 <u>Control Stations</u>

The MCO loading control system includes two control stations, one located at the basin viewing area and one located at a remote viewing area. All system operations and CCTV camera control and viewing will be performed at the basin viewing control station. CCTV camera viewing and recording will be performed at the remote viewing control station, located in corridor 7.

1.1.1 CCTV Camera Basin Viewing Control Station

The basin viewing control station consists of two skid mounted control cabinets on casters for limited mobility. One control cabinet will contain all the controls for performing basket loading and associated functions. It will contain the following components: PLC, CRT-based manmachine interface, motion controller, servo drive with power supply and transformer, and safety shutdown and supervisor override hardware. The second control cabinet will contain the CCTV cameral control and viewing hardware. It will consist of the following components: three (3) camera controllers with pan & tilt and zoom capability, one camera controller with fixed optics, two monitors, and two four signal video switchers.

1.1.2 CCTV Camera Remote Viewing Control Station

The CCTV camera remote viewing control station is located in a non contaminated area and contains CCTV camera viewing and recording hardware. This cabinet consists of one fixed control cabinet and one monitor, one VCR, one character generator, and one four signal video switcher. This system can view and record any one of the four camera signals independent of the basin viewing system.

1.2 Field Mounted Controls

The field mounted control hardware consists of the following system actuators and sensors:

		SENSOR
DEVICE	<u>Oty.</u>	ACTUATOR
Servo motor with 8:1 gearbox (for mast)	1	Actuator
AC gear motor (for bridge)	1	Actuator
Load cell with integral signal conditioning	3	Sensor
LVDT with field mounted signal conditioning	1	Sensor
Limit switch	9	Sensor

444-R-01 Revision 0 Volume 1

2.0 MCO LOADING OPERATIONAL MODES

The control system has two distinct modes of operation, a MAINTENANCE mode and a LOAD mode. The limited access MAINTENANCE mode permits engineering and maintenance personnel access to basic system operations with minimal interlocking. The maintenance mode is used for debugging, setup, and calibration. This mode will be password protected. All MCO loading operations are performed in the LOAD mode.

2.1 Load Mode

Within the LOAD mode there are three operating modes: MANUAL, SEMI-AUTOMATIC, and AUTOMATIC. The control commands are hierarchical in nature with the SEMI-AUTOMATIC mode commands constructed from the MANUAL mode command set and the AUTOMATIC mode commands constructed from the SEMI-AUTOMATIC mode command set.

The nomenclature for the positions of each mechanical subsystem are defined below. For the shuttle operation, the fuel basket is placed into the shuttle at the LOAD station and is picked up by the extended mast at the UNLOAD station. The bridge crane has three positions. The crane is stored at the STORE position. The fuel basket is received from the shuttle at the SHUTTLE position and is placed into the MCO at the MCO position. The mast is extended and retracted to vertically move the fuel basket from the shuttle to the MCO.

The control system is designed to support each movement of the basket from the load station through final placement in the MCO. Interlocks are provided which require operator activation before continuing operations. System design prevents damage to loadout pit operations equipment and a radiation or safety hazard for operational personnel. The status of every actuator and sensor is displayed on the control panel. Feedback sensors are provided for all actuators. System alarming is triggered if a commanded movement does not occur within a predetermined period of time.

2.1.1 Manual Mode

All MANUAL mode movements with appropriate interlocking will be supported. The operator will be allowed to make most movement commands. An exception is the grapple release with an attached basket and a load on the load cells. Releasing the grapple without the basket properly seated in the MCO or shuttle carriage basket could cause basket damage. Grapple Release with load will require two independent requests -- one by the operator and one by the operator's supervisor. The operator's request will consist of input of the operator's ID number. The supervisor's request will consist of a key operated switch along with input of the supervisor's ID number. After both of these conditions have been met, a GRAPPLE RELEASE request will be processed by the control system.

444-R-01 Revision 0 Volume 1

The following MANUAL operations are supported by the control system.

- 1. SHUTTLE TRAVEL JOG [from LOAD to UNLOAD position]
- 2. SHUTTLE RETURN JOG [from UNLOAD to LOAD position]
- 3. BRIDGE TRAVEL JOG [from STORE to SHUTTLE to MCO position]
- 4. BRIDGE RETURN JOG [from MCO to SHUTTLE to STORE position]
- 5. MAST EXTENSION JOG
- 6. MAST RETRACTION JOG
- 7. MAST GOTO COMMANDED POSITION
- 8. GRAPPLE ACTIVATION
- 9. GRAPPLE RELEASE

2.1.2 Semi-Automatic Mode

SEMI-AUTOMATIC operations consist of logical sets of motions for each actuator in the system. These operations are fully interlocked. System HOME position is defined as: shuttle at LOAD position, bridge at SHUTTLE position, mast at BASKET PICKUP RETRACTION position. The BASKET PICKUP RETRACTION position is the maximum (highest) mast assembly elevation the system can attain.

The following SEMI-AUTOMATIC operations will be supported by the control system. Operations 1-12 are sequential loading requirements. Operations 13-19 are additional controlled moves for maintenance, recovery or calibration.

- 1. SHUTTLE TRAVEL [from LOAD to UNLOAD position]
- 2. MAST SHUTTLE BASKET PICKUP EXTENSION
- 3. GRAPPLE ACTIVATION
- 4. GRAPPLE ACTIVATION VERIFICATION
- 5. MAST SHUTTLE BASKET PICKUP RETRACTION
- 6. SHUTTLE RETURN [from UNLOAD to LOAD position]
- BRIDGE TRAVEL [from SHUTTLE to MCO position]
- 8. MAST MCO BASKET PROGRAMMED RELEASE EXTENSION
- 9. GRAPPLE RELEASE
- 10. GRAPPLE RELEASE VERIFICATION
- 11. MAST MCO BASKET RELEASE RETRACTION
- 12. BRIDGE RETURN [from MCO to SHUTTLE position]
- 13. BRIDGE STORE [from SHUTTLE to STORE position]
- 14. BRIDGE STORE RETURN [from STORE to SHUTTLE position]
- 15. MAST MCO BASKET PICKUP EXTENSION
- 16. MAST POSITION CALIBRATION (retraction to maximum elevation)
- 17. MAST MCO BASKET LOW SPEED EXTENSION
- 18. HOME SYSTEM

Design Report Hanford K East & K West Basin MCO Loading System

19. MAST SHUTTLE BASKET PROGRAMMED RELEASE EXTENSION

The GRAPPLE RELEASE will free a basket in the MCO after the load cells have been unloaded and the compliance LVDT indicates "X" inches of backup travel (X is the predetermined MCO loading configuration set point monitored by the Grapple Extension Compliance Mechanism [GECM] release set point).

The BRIDGE STORE operation moves the bridge to the location mast removed from the loadout pit operating equipment. The bridge is moved to the store location when a cask is being loaded and unloaded from the immersion pail. Before AUTOMATIC mode operation either a HOME SYSTEM or a BRIDGE STORE RETURN command would be issued to return the bridge to its HOME position.

The MAST MCO BASKET PICKUP EXTENSION and the MAST SHUTTLE BASKET PROGRAMMED RELEASE EXTENSION commands, in addition to other SEMI-AUTOMATIC mode commands, will allow for the unloading of a fuel basket from the MCO to the shuttle.

2.1.3 Automatic Mode

The AUTOMATIC mode will consist of the full loading of one MCO. It utilizes many of the SEMI-AUTOMATIC operations in a programmed sequence. The conditions for initiating this mode are mast positioning system in calibration and system at HOME. As the MCO is loaded the control system keeps track of the number of baskets loaded and the position of the top basket in the MCO. At specified steps in the AUTOMATIC loading process the operator will be required to confirm the successful completion of an operation. Normally, the operator would visually verify with the appropriate TV camera that an operation had been completed successfully and that there were no alarms.

B-5

444-R-01 Revision 0 Volume 1

If the load cells indicate an off normal load when loading a basket into the MCO at the programmed basket release height, the control system will issue an alarm. The operator will **NOT** be allowed to jog the mast down to release the basket. Jogging the mast down and completing the MAST BASKET PROGRAMMED RELEASE EXTENSION operation to unload the load cells, prior to releasing the grapple, will require two independent requests -- one by the operator's supervisor. The operator's request will consist of input of the operator's ID number. The supervisor's request will consist of a key operated switch along with input of the supervisor's ID number. Isolating system operation when off normal loads are detected permits administrative procedures to be implemented which define root cause and prevent system damage.

The following AUTOMATIC operations are supported by the control system.

- 1. LOAD MCO
- 2. LOAD BASKET
- 3. SUSPEND LOAD BASKET
- 4. CONTINUE LOAD BASKET
- 5. ABORT LOAD BASKET

With an empty MCO in place, the operator would issue a LOAD MCO command. Then each time a basket is to be loaded into the MCO the LOAD BASKET command would be issued. The SUSPEND LOAD BASKET and CONTINUE LOAD BASKET commands allow the operator to suspend and continue the AUTOMATIC sequence as needed. The ABORT LOAD BASKET command allows the operator to abort an AUTOMATIC sequence if serious problems arise.

2.1.3.1 MCO Loading

The operator confirms the system is at HOME position and enters the basket type and number of baskets to be loaded. The control system prevents the operator from loading more baskets than can be placed in the MCO. The operator then issues the LOAD BASKET command to initiate loading a basket into the MCO. The following SEMI-AUTOMATIC operations would then be performed in order with full interlocking:

- 1. SHUTTLE TRAVEL [from basket LOAD to UNLOAD position]
- 3. MAST BASKET PICKUP EXTENSION
- 4. GRAPPLE ACTIVATION
- 5. GRAPPLE ACTIVATION VERIFICATION
- MAST BASKET PICKUP RETRACTION
- 7. BRIDGE TRAVEL [from SHUTTLE to MCO position]
- 8. SHUTTLE RETURN [from UNLOAD to LOAD position]
- 9. MAST BASKET PROGRAMMED RELEASE EXTENSION
- 10. GRAPPLE RELEASE

444-R-01 Revision 0 Volume 1

- 11. GRAPPLE RELEASE VERIFICATION
- 12. MAST BASKET RELEASE RETRACTION
- 13. BRIDGE RETURN [from MCO to SHUTTLE position]

Following operations, the system is back at the HOME position and ready to load the next basket. The control system maintains the number of baskets loaded and the position of the top basket. This information is displayed on the operator's console in both text form and graphically. When the next basket is ready at the shuttle loading station, the operator issues the LOAD BASKET command and the AUTOMATIC sequence to load a basket into the MCO is repeated.

2.2 Maintenance Mode

The maintenance mode can only be entered by receipt of a valid password from authorized personnel. Minimal system interlocking is activated for this mode of operation. The following basic operations can be performed in this mode.

- 1. SHUTTLE TRAVEL [from LOAD to UNLOAD position]
- 2. SHUTTLE RETURN [from UNLOAD to LOAD position]
- 3. BRIDGE TRAVEL [from SHUTTLE to MCO position]
- 4. BRIDGE RETURN [from MCO to SHUTTLE position]
- 3. BRIDGE TRAVEL JOG [from SHUTTLE to MCO position]
- 4. BRIDGE RETURN JOG [from MCO to SHUTTLE position]
- 5. MAST EXTENSION JOG
- 6. MAST RETRACTION JOG
- 7. GRAPPLE ACTIVATION
- 8. GRAPPLE ACTIVATION VERIFICATION
- 9. GRAPPLE RELEASE
- 10. GRAPPLE RELEASE VERIFICATION
- 11. SYSTEM PARAMETER ENTRY/MODIFICATION
 - a. Load cell underload setpoint (initially dead load + 80% of basket load).
 - b. Load cell overload setpoint (initially 6000 lb.).
 - c. GECM backup grapple engagement travel set point (initially 1.0")
 - d. Dwell time at each AUTOMATIC operational step.
 - e. The AUTOMATIC steps requiring visual verification and confirmation by the operator.

A number of system parameters are fixed by design and are not anticipated to change throughout the service life of the system. The following parameters will be hard coded into the software:

- a. Mast drive linear calibration [counts/inch of linear travel] (524,280 counts/in)
- b. GECM backup grapple disengagement travel set point (initially 1.5")

444-R-01 Revision 0 Volume 1

- Height dimension for each basket type.
- d. Allowable basket configurations for loading.
- e. Mast calibration elevations [basket loading elevation, bridge traverse elevation, maximum raised elevation (which can not be exceeded mechanically), and MCO internal bottom elevation].
- f. Nominal basket load for each basket type.

2.3 Control Functions

All LOAD and MAINTENANCE operations are performed from the control console located at the basin viewing area. A CRT-based man-machine interface (MMI) is used to send commands to and receive the status from the MCO Loading System. The MMI provides continuous display of the system status. A graphic display of the loaded baskets are shown. Safety shutdown and supervisor override functions are hardwired.

A CCTV camera viewing system provides process step verification by the operator for system maintenance and system testing. Four cameras are positioned to provide visual monitoring of the shuttle loading area, the shuttle unloading area, the top of the MCO, and grapple end of the mast.

444-R-01 Revision 0 Volume 1

3.0 OPERATIONAL MODE ALARM CONDITIONS

During setup, maintenance, and normal operating conditions, abnormal events resulting in alarms will occur. Control system hardware and software are designed to properly react to these events. No movements or actions are allowed which cause damage to equipment or create a radiation or safety hazard for operational personnel. The operator is notified when any alarm condition occurs or if a command results in an alarm condition. There are two types of alarms, motion and procedure alarms. Motion alarms are those which occur while the system is in transit from one position to another. This type of alarm condition will usually result from malfunctioning actuators or sensors or improperly calibrated or set sensors. A procedure alarm will occur if the system is requested to perform an illegal or unauthorized action. Examples of such actions are: attempting to place more baskets in an MCO than it can contain and automatically trying to jog the mast down to a lower position when the "resting place" for a basket is below its anticipated ("programmed") position.

An initial list of possible alarm conditions is given below. Additional alarm conditions may be added to the list during the system fabrication and software design phase of the project.

Ħ

1

SHUTTLE

2 MAST 3 BRIDGE MOTION 4 **GRAPPLE ACTIVATION** 5 **GRAPPLE RELEASE** 6 BASKET PROGRAMMED RELEASE 7 LOAD CELL(S) UNLOADED (WHEN SHOULD BE LOADED) 8 **IMPROPER BASKET TYPE/NUMBER** COMBINATION

ALARM CONDITION

9	BRIDGE MOVEMENT NOT ALLOWED
	WHILE MAST IS EXTENDED

10 SYSTEM NOT AT HOME

ALARM TYPE

MOTION MOTION MOTION MOTION MOTION MOTION/PROCEDURE

PROCEDURE

MOTION/PROCEDURE PROCEDURE

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

Z,

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

v,

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

HNF-SD	-SNF-I	DR-004,	Kev.	U
--------	--------	---------	------	---

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

B - 26

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

v.

INF-SD-SNF-DR-004. Rev.	0	Ł
-------------------------	---	---

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

۲

Design Report Hanford K East & K West Basin MCO Loading System

INF-SD-SNF-DR-004, I	lev. ()
----------------------	--------	---

1

Design Report Hanford K East & K West Basin MCO Loading System

v,

444-R-01 Revision 0 Volume 1

Appendix C

Design Review Checklist

444-R-01 Revision 0 Volume 1

,

MCO Loading System Design Review Checklist

ITEM	REVIEW CONSIDERATION	YES/NO	REMARKS
1	Does the MLS provide recovery features that allow the fueled basket to be moved into the MCO, removed from the MCO, or moved back to the fueled basket queue, as required to facilitate repairs to the failed equipment?	Yes	Section 2.7.9
2	Do recovery features provide for remote disengagement and removal of all tools and equipment from the fueled basket?	Yes	Section 2.7.9
3	Does the device used to lift the baskets up, over, and into the MCO provide a physical means to preclude the ability to raise the fuel to a height such that the top of the basket is lifted to an elevation above the -8'-0" level, relative to a floor level of 0'-0"?	Yes	Section 2.5
4	Does the MLS allow an MCO to be loaded and the shield plug to be installed within 4 hours (consider only activities performed by this system)?	Yes	Section 4.1
5	Is the MLS designed such that loading can be accomplished with operators exposed to a dose field not exceeding and average of 0.5 mrem/hr for the loading cycle?	Yes	Section 4.2
6	Is the MLS designed such that the load cycle can be accomplished with an operator staff not greater than two operators?	Yes	Section 4.2
7	Does the MLS include engineered features that preclude damage to the MCO, cask, and immersion pail container during the basket loading and shield plug insertion operations?	Yes	Section 2.7, 2.1.5
8	Is a CCTV system provided to allow operators to remotely monitor and verify MLS operations?	Yes	Section 2.2.1

444-R-01 Revision 0

Volume 1

ITEM	REVIEW CONSIDERATION	YES/NO	REMARKS
9	Does the CCTV system include at least two 14-in. color video monitors (on inside the	Yes	Appendix B, Page B-2,
	basin and one in a non contaminated area), a video recorder, and an overlay		Dwg 444-405
	generator?		
10	Does the design include support stands for the viewing system equipment?	Yes	Dwg 444-401
11	Is a NEMA 12 video console equipped with a rack mounted camera (motor) and light	Yes	Volume 3
	controller, light power supplies, and a video select switch provided for the basin viewing station?		
12	Does the grapple system include an emergency release system to disengage the	Yes	Dwg 444-201
	grapple from the basket in the event that the remote system fails?		, and the second s
13	Does the grapple system allow visual confirmation of grapple engagement status?	Yes	Dwg 444-200, 444-000
14	Does the grapple system design preclude unintentionally releasing a fueled basket?	Yes	Section 2.1.2, Dwg. 444-201
15	Does the grapple system design accommodate a fueled basket having an unbalance	Yes	2700 lb @ 1.5 inch off center
	equivalent to the removal of nine fuel assemblies?		
16	Does the MIS provide a means to verify the diameter of the fueled basket	Ves	Section 2.1 Section 2.7.3
	accommodates loading in the MCO and to visually verifying that the basket	100	Dwg 444-000
	configuration is correct and fuel is positioned within the basket to allow proper		
	nesting and stacking within the MCO, to verify that loaded baskets are positioned		
1	properly to allow successive loading operation to be successfully completed, and to		
	verify that the shield plug is properly inserted into the MCO.		
·			
17	Does the design include a means to ensure the shield plug orientation is acceptable	Yes	Section 2.7.3,
	for future processing?		Dwg 444-000
18	Does the equipment used to lift a fueled basket and place it into the MCO preclude	Yes	Section 2.7.2, 2.7.3, 2.7.1
	spilling the contents of the basket into the MCO during normal operations and in the		
	event of equipment failure?		

444-R-01 Revision 0 Volume 1

ITEM	REVIEW CONSIDERATION	YES/NO	REMARKS
19	Does the MLS accommodate an electrical supply of 480 VAC or 460 VAC, three phase?	Yes	Section 2.3
20	Are drive units equipped with manual overrides?	Yes	Section 2.7.9
21	Are components that have potential to damage safety class components include features to preclude damage to safety class components?	Yes	Section 2.1.1
22	Is the MLS designed to minimize maintenance and testing?	Yes	Maintenance Chart, Section 2.9
23	Does the MLS design incorporate standard replacement parts to the extent practical?	Yes	Maintenance Chart, Section 2.9
24	Does the MLS design include the capability to perform periodic maintenance to prolong the effective lifetime at a minimum cost and downtime?	Yes	Maintenance Chart, Section 2.9
25	Are components designed to be permanently lubricated to the extent possible?	Yes	Section 2.11
26	Are there any interface problems?	No	Section 2.12
27	Can the equipment be readily assembled/disassembled as designed?	Yes	Installation Drawing
28	Are the specified materials compatible with each other and the environmental conditions to which the materials will be exposed?	Yes	Stainless Steel & Coated Carbon Steel
29	Is the design reproducible by a conventional means?	Yes	All Drawings on ACAD 13
30	Are stresses within design limits?	Yes	Reference Section 5
- 31	Are mechanical tolerances within the limits of normal shop practice?	Yes	Reference Section 7
32	Are assembly clearances adequate?	Yes	Design Drawings
33	Can the system be stored for extended periods of time without degrading effects?	Yes	Storage for extended periods

C-4

ITEM	REVIEW CONSIDERATION	YES/NO	REMARKS
34	Does the design meet all established safety requirements?	Yes	Section 2.8
35	Have necessary features been provided to maintain personnel radiation exposure as low as reasonably achievable?	Yes	Section 4.2
36	Have welding, bolting, and joining methods been adequately specified?	Yes	Section 7 Design Drawings
37	Is the system operable?	Yes	Testing and system operation are part of fabrication procedures
38	Are all indication lights and electrical controls considered fail-safe?	Yes	Reference Appendix B

v.

444-R-01 Revision 0 Volume 1

Appendix D

Sample Material Test Certificate

444-R-01 Revision 0 Volume 1

Appendix D

A sample Test Certificate is shown below and on the following page, identifying yield strength, tensile strength and elongation for UNS321 hot rolled steel.

	G.D.BANBISON Protection of Standard Police (Barris and Thomas THORNDALE, PA. 1987	C RT AUDITED B	-gen-
BATE: 24-Hau-91		G8C: 1	2467
	TEST CERTIF	IGATE	
**** SDLD TO: ****		**** SHIP TC: *#**	
The second s			
CUSTONER ORDER 4 4121JP		CUSTUMER MARK # 4121JP	•
321 BB HOT RQ LUNG 5321001 (.750° DA LASIN A240-8961 ABHE B 1989 ADDENUA; FEDERAL ASTM A167-894.	ATTAILLED, DESCAL LLED; ANNEALED, DESCAL 1 DVER) PLATE A240, ASME BIPU LODE B SPEC DO-S-766D (2/5/8)	11111111111111111111111111111111111111	********
TEN DESCRIPTIO	DN		******
Qty Heat 100 1 18112-CSD	'est Yield Ter hir PSI PS T 42500 B10	nsile Eigns-In NI Z 00 60	
16112-C3D	eck B 82		
************************************	LABLE ANALY N P 8 .304 0.019 0.018 D TI 0.019 .091 0.402	8 1 5 *********************** SI CR NI 0.612 17.120 7.663	N 0.008
SKORR STEEL C	0., INC.		
invoice #		Jonie Lavren	
Your P.O. #_!!	-811917	COORDINATOR	anta Na anta
I HEREBY CERTIFY THE ABOV This corporation.	E FIGURES ARE CORRECT	AS CONTAINED IN RECORDS	DF
SUDRN TO AND SUBSCRIBED B	EFORE ME THIS D	AY DF	
	• •	THE NOSHEN INCZIZE 25, ST	E # 10

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

	8/14/97 WED 12:02	FAI 718 346 9581	STORR STEEL		· 100
5*		C.D.C.	VELSON Le	RT AUDITED BY	quan
5		THORN	and Xilonian 🔛 DALL. PA. 19372	DATE 5-14-97	
DAT.	E: 24-Hay-91			60C:	12467
		TEST C	ERTIFIC	ATE	
***	\$ SOLD TO: \$2\$\$.	*	*** SHIP TO: ****	
		í í			
	· · · · · · · · · · · · · · · · · · ·				
cust	TOMER BRDER \$		CU	STONER MARK &	
412:		*******	41:	21 JP	
UI AS 19	NS S32100; (UP STM A240-896; A PB9 ADDENDA; FE STM A240-896; FE	TO 0,749' GA IN SME SA240, ASHE I DERAL SPEC. QD-S-	CL.) PLATE SEPV CODE SECTION -766D (2/5/88),	DN II, 1989 EDITON, Class 321, Ans 551	.0H ,
*****	*************	*****	**************	******	****
ITEM	DESC	RIPTION			
ITEM 4	DESC 1075 x 1	RIPTION 96 × 236			
ITEM 4	DESC <u>1075 x 9</u> Qty Heat	RIPTION <u>96 × 236</u> Test 71	ald Tensils	£1004-10	
ITEM 4	DESCI .1075 x 1 Qtu Heat	RIPTION <u>96 × 236</u> Teil Yi Dir F	eld Tensila SI PSI	e Elon≢-In Z	
ITEM 4 300	DESCI .1075 x 9 Qtu Heat 1 16112 CARB	RIPTION 9 <u>6 x 236</u> Test Yi Dir F Tests market TT - 40	eld Tensile SI PSI by '#' rerres 2004 ¥ 84600#	Elons-In 2 Inted by Neat 18112 192	E40A
17EM 4 300	DESC <u>1075 x</u> Qty Heat 1 (16112)C 628	RIPTION 9 <u>6 × 236</u> Tesi Yi Dir F Tesis barket TT × 40 Rock B	eld Tensila SI PSI by '#' rerress 2004 ¥ 84600#	Elong-In 2 Inted by Heat 18112 19%	E40A
17EM 4 300	DESC .1075 x Qty Host 1 (16112)C428 1G112-C488	RIPTION 9 <u>6 × 236</u> Teil Yi Dir F Tests Barked TT 446 Rock B Lests marked 764	eld Tensils SI PSI 59 ** rerres 200* * 84600*	Elons-In 2 Inted by Heat 18112 192 nted by Heat 16112	C468
11EM 4	DESC .1075 x Qtu Host 1 (16112)C438 16112-C488	RIPTION 96 <u>× 236</u> Tesi Yi Dir F Tests marked TT × 46 Rock B Lests marked 764 Test Be Dir	eld Tensils SI PSI 59 ** rerres 200* * 84600* i by '*' rerrese rd	Elons-In 2 Inted by Heat 18112 19% Inted by Heat 16112	C40A C40A
ITEM 4	DESCI .1075 x Qty Heat 1 16112-C4BB 16112-C4BB	RIPTION <u>96 x 236</u> Tesi Yi Dir F Tesis sarket TT x 46 Rock B Lesis market 76 Tesis market Tr Tesis market T	eld Tensils SI PSI by 't' rerress 2004 V 84600# i by 't' rerress nd by 't' repress Ft	Elons-In 2 Inted by Heat 18112 19% Inted by Heat 16112 Inted by Heat 16112	C40A
ITEM 4	DESCI 1075 x 1075 x	RIPTION <u>76 x 236</u> Tesi Yi Dir F Tests market TT x 46 Rock B Lests market 76% Test Be Dir Test Be Dir Test marked TT	eld Tensile SI PSI bw '*' rerress 200* / B4600* bw '*' rerress ond bw '*' rerress P* (Cortic	Elons-In 2 Inted by Heat 18112 192 Inted by Heat 16112 Inted by Heat 16112 Inted by Heat 16112	C1BA C1BA C1BA C4BA E 10)
ITEM 4 500	DESC <u>1075 x</u> Qtu Hest 1 16112 C438 16112-C438 16112-C438 16112-C488 16112-C488 16212-C488 16212-C488 16212-C488 16212-C488	RIPTION 96-x 236 Test Yi Dir F Tests marked TT 446 Rock B Lests marked T64 Test Be Dir F Tests marked TT RIPTIDN 76 × 268	eld Tensile SI PSI ibw '*' rerrese 200* / 84600* iby '*' rerrese nd by '*' rerrese P* (Corte	Elons-In 2 Inted by Heat 16112 192 Inted by Heat 16112 Inted by Heat 16112 Inted by Heat 16112	C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA
175M 4 500	DESC .1075 x Gtu Hest 1 16112 C438 16112-C488 16112-C488 1612-C488	RIPTION 96 x 236 Test Yi Dir F Tests marked TT 446 Rock B Lests marked Test Be Dir Tests marked TT RIPTION 76 x 268	eld Tensils SI PSI bw '*' rerress 200* B4600* by '*' rerress nd by '*' rerress Conti	Elons-In 2 inted by Heat 16112 192 Inted by Heat 16112 Inted by Heat 16112 Inted by Heat 16112 Inted by Heat 16112	C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA
17EM 4	DESCI 1075 × 1 Gtu Heat 1 16112-C4BB 16112-C4BB 16112-C4BB 16112-C4BB 16112-C4BB 16112-C4BB 16112-C4BB 16112-C4BB	RIPTION <u>76 x 236</u> Test Yi Dir F Tests Barket TT 46 Rock B Lests Barket 764 Test Be Dir Tests marked TT RIPTION 76 x 268 Test Barket Tests Barket Tests Barket	eld Tensils SI PSI by '#' rerrece 200# V B4600# by '#' Perrese and bs '#' Perrese P# Contine SI PSI by '#' perrese	Elong-In 2 violed by Heat 16112 violed by Heat 16112 nted by Heat 16112 nted by Heat 16112 Elong-In 2 to by Heat 16112	CABA CABA CABA E 10)
17EM 4 5000	DESCI 1075 x 0tu Hest 1 16112 Coke 16112-Coke 1612-Co	RIPTION <u>76 × 236</u> Test Yi Dir F Tests marked TT 46 Rock B Lests marked 76 Test Be Dir Tests marked TT RIPTION 26 × 268 Test Yi Dir F Tests barked TT 46 Rock	eld Tensils SI PSI ibw '*' rerrese by '*' rerrese a by '*' rerrese by '*' rerrese SI PSI by '*' represe 200* B460D*	Elons-In 2 Inted by Heat 16112 19% Inted by Heat 16112 nued on Jaco Elons-In 2 Heat 16112- 47%	C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA
17EH 4 500 (TEN 5	DESCI 1075 x 0tu Hest 1 16112 Coke 16112-Coke 1612-Co	RIPTION <u>76 × 236</u> Test Yi Dir F Tests marked TT 46 Rock B Lests marked 76 Test Be Dir Tests marked TT RIPTION 26 × 268 Test Yi Dir F Tests barked T Tests barked T Sir F Tests barked T Sir F Tests barked T Test Sarked T Test Sarked T Sir F Test Sarked T Sir F Sarked T Sir F Sarked T Sir F Sarked T Sarked Sa	eld Tensils SI PSI ibw '*' rerrese by '*' rerrese and by '*' rerrese by '*' rerrese SI PSI by '*' represe 200* 84600*	Elons-In 2 Inted by Heat 16112 19% Inted by Heat 16112 nued on Jaco Elons-In 2 Neat 16112- 47%	C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA C1BA

D-3

444-R-01 Revision 0 Volume 1

Appendix E

Stress Analyses

444-R-01 Revision 0 Volume 1

Appendix E

The following pages detail stress analysis calculations for the MCO Loading System.

The analysis has been divided into two sets:

- 1. Structural Evaluation of Gantry/Mast for MCO Loading System.
- 2. Structural Evaluation of the Shuttle Supporting Structure for the MCO Loading System.

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

		CALCULATION F COVER SH	PACKAGE	Work Req	4-20-01
PROJE	CT NAME:	G SYSTEM PROTECT	CLIENT:	E HANES	20 (
CALCU STR FOR	LATION TIT UCTURAL MCO LO	LE: EVALUATION OF SHU1 4DING SYSTEM.	TLE SUPPORT	TING STR	UCTURE
PROBLI THIS I HANFI STRUC NAC 1	EM STATEM CALCULATI DRD K-E+ TUEAL AL DOCUMENT	ENT OR OBJECTIVE OF THI ON EVALUATES SHUTTLO AST AND K-WEST BASIN FEBUACY PEE SPECIFIC T NO. 444-5-01 REV.O	E CALCULATION E SUPPORTING N MCO LOADI ATION WHC- 9 0.	: - STRUCT: NG SYST S-OS46	URE FOR FM FOR ITS 2EV.O AND
ocument levision	Affected Pages	Revision Description	Name : Of Pri	and Initials	Project Manager Approval/Date
0	1 7746 10 44	OR: GINAL ISSUE	RAMESH LCRoy Bis 619 J9	PATEL RP. 1-1-97 hop NL 7	Hand Shan Themes A Denty G/4/97
		• •			

HNN Design Report Hanford K East & K West Basin MCO Loading System

z,

Wo	rk Request/Calculation	on No: <u>EF444-20-01</u> Revision	0		
Sco	ope Of Analysis File:	THIS CALCULATION EVALUA	TES SHUT	TLE SUPP	ORTING STRUCTUR
	inu Mathadalamu	FOR 175 STRUCTURAL ADER	Acy USIN	G REQUI	LEMENT OF
Heview Methodology;		Alternate Analyses			HC-2-0540 40
		Other (Explain)			
.					
501	mm That The Work I	Request / Calculation Packag	e Reviewe	d Includes	5.
١.	Statement of Purp	ose			N
2.	Defined Method of	f Analysis			
5.	Listing of Assumption	lions		· .	M
•	Statement of Con	Hecord			<u>m</u>
•		ausions / necommendations (it applicab	le)	
tep		Activities	Va	Hication	
1	For the scope of the de	fined analysis:		NO NV	A Comments
	A. Are the required	Catalogue complete?			
	1. Material pro	perties	11		
	2. Geometry (drawing reference)			1
	If a support	Ince term	V		
	define the lo	ad state, has it been			
	defined?	.413			
	D. Are coundary co	inditions acceptable?	10		.]
2	is the method of analysi	s adequate for the defined scope?	17		+
,	is the worst case loading	configuration documented?	1	+	
	Are the acceptance crite	na defined and complete?		+	
	Has all concurrent loadin	g been considered?		+	
	Are analyses concurrent				
	approach?	which previous work for method and			NEW CALC
-+	Are the recents (as in a			1 1	PKG.
	And the records for import	and output complete?	IV		
	is traceability to verified s	oftware complete?			NO SOFTWALE
1	is the statement of concit	isions and recommendations come	ate		USED
	and acceptable for the pri purpose?	oject and objectives of the defined	V		
	0	4. 1		L	L
L C	May BISHOP he	Kodan 64197			4

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

	TABLE OF CONTENTS	•
SECTION	DESCRIPTION	Ph/#
	CALCULATION COVER SHEET	1
	INDEPENDENT DESIGN VERIFICATION	2.
	TABLE OF CONTENTS	
	INTRODUCTION / DUODAGE	3
2.0	METHOD OD ANNO	4
3.0	A COMPANY ANALYSIS	4
4.0	ASSUMPTIONS / DESIGNS INPUTS	4
50	ANALYSIS DETAIL	5
50	SUMMARY OF RESULTS/ CONCLUSIONS	42
6.0	REFERENCES	44
•		
	•	
••		1
		·
		:
NAC International Inc.	Prepared By: RP	
- MIDIAL	WER NO.	GEAAN

Design Report Hanford K East & K West Basin MCO Loading System

÷

	O_INTRODUCT	on / pur	POSE						
1	THE PULPOSE OF THIS CALCULATION IS TO EVALUATE THE SHUTTLE								
E									
	SUSTEM FOR ITS STRUCTURAL ADEQUARY OF CONTINUES FORSIN MCO LOADING								
	REN-D AND NAC DOCUMENT NO. 444-5-01 REV.D.								
E	. DWG # 444-3	300 Rev-0	, SHUTTLE AS WHL DWG I	sвивц, Мсо vo : H-1- 3 291	loading sysr	M			
	• DWG # 444-3	01 REV-0,	WHC DWG	BLY, MCO LOI NO: H-1-8231	DING SYSTE	4			
	. DWG + 444-3	02 REV-D	CHRTWELDN WHL DWG NX	селт, МСО LOA 0: H-1- 82919	DING SYSTEM				
	• DW& • 444 - 3	os rev.o	WEDGE ASS WHC DWG N	вчыу, мсо 0: H-1-82914	LOADWG SYST	-1			
· .	• DWXr # 444-30	4 REV.O	RAILS AND WHE DWG A	SUPPORT, MC 10 = H-1- 8291	o loading s	YSTEM			
· ·	. DWG + 444-30	6 REV.0	Seismic Res WHC DWG N	TRAINT, MCO 10: H-1- 82017	LOADING SYS	TEN			
	• DW& # 444-30	9 REVO	WPPER MOU WHC DWG A	NTS, MC0 LON Do: H-1-829	toing system	۰			
} .	DWG + 444-31	O REVO	upper mou	NTS, MCOLO		}			
	· • • •		WHL DWG NO	2: H-1-82920	> = 82921	~			
2.0	METHOD OF	ANALYSI	s '						
	HAND CALCUL	ATIONS L	SING CLASSI	C TEXT BOOK	SOLUTIONS AN	UF USED			
	APE THEN I CO	HUY EVA	CHATE ALL A	PPLICABLE ITE	MS. ACTUAL	STRESSE			
	INCO FACED AN	(RIJAD	FORNOST AT	SC-ASD CODE	ALLOWABLES	AND -			
	IN REFERENC	E NO, 6	F.	SED PER DIR	ection spec	IFIED			
.3.0	ASSUM PTION	s/ Desig	al INDUMP						
	THERE ARE N	O UNVER	FIED Account	Oriella de					
	MATERIAL PROPERTIES								
÷.,	TP 304 5.5. 5	TEEL	FU = 75000						
Fy = 30000 psc. E = 27.6×106 psr. Ss = 0.288 #1.3									
	LAC International Inc.	Prepared By:	RP	Dete: 6-4-97	WILLIA GO dad				
	TOJACE MLCO LOADING	Checked By:	m	Data: ALLIAD	han 4	- 10-01			

HNF-SD-	-SNF-DR-004,	Rev. (
---------	--------------	--------

	4.0 ANALYSIS DE Using SDC 4.1, the Class 1 item, therefi 4.1 the maximum g no importance factor	TAIL Shuttle is classified the the applicable cri value is 0.42 with 59 or other factor havi	as Class 3: howe teria is Class 3 or 6 damping. This ag to be applied.	ver, it is in c er 1. Using is the design The vertical	lose proxin Figure 3 in 1 acceleration	hity to a SDC on with n shall		
	The allowable stress for the seismic design loads shall be as follows: Shear allowable = 1.4 times normal AISC allowable Allowable for all other stresses = 1.7 times normal AISC allowable							
				· · ·				
A	NAC International Inc. Project MCD LOADING	Propered By: 2P Checked By: 1/1.	Dete: 6	-4-97	RR IN. EF44	4-20-01		
		/15	6	4/97	• 5	• 44		

Design Report	HNF-SD-SNF-DR-004,	Rev. (0	444-R-01
Hanford K East & K West Basin	ц. — С. – С	•7	· · · · ·	Revision 0
MCO Loading System			1	Volume 1

DETERMINATION OF WEIGHT FOR SHUTTLE CART. REF DWG# 444-302 REV-0. ITEM. DESCRIPTION \odot RIGHT HAND BRACKET : RTY 2 PLATE 3.5x6x0.75 WT = 2 x 3.5x6x.75x.288 = 9 LBS LEFT HAND BRACKET QTY 2 RATE 3.5x6 x 0.75. WT = 2x3.5x6x.75x.288 = 9 LAS. 3) FLOOR PEACE 1/4×24×24" RTY.1 WT = 0.15× 24×24 ×.288 = 41.47 L65. TS 2×2×1/4 24" LG GTY 2 **(4)** WT = 5.41 #11 × 24 12 × 2 = 21.6 LBS (Ξ) TS 2×2×1/4 × 20"LG QTY 1 WT = 5.41 × 20 = 9 LBS SLEEVE PLATE VERTICAL 1/4" THICK , 4" LONG , 24" B DTY 1. \bigcirc WT = TT x 24 x 4 x. 25 x. 288 = 21.7 LBS. FLAIR PLATE 1/4" THICK, 2" LONG USE 26" CONS. QTY . 1 3 WT = TT × 26× 2×.25 ×.288 = 11.76 LBS. 8 CABLE RETAINER 3/4 ×5×2 BTY 2 WT = 2x.75x5x2x.288 = 4.32 LBS TOTAL WT (ITEM ITHEN 8) = 127-85 LBS. NAC Internati Prepared By: Dete: 6-4-97 RP WRR HA EF 444-20-01 - MCU LOADING Checked By Dett: 6/4/97 Mage 6 - 44

Design Report Hanford K East & K West Basin MCO Loading System

SHUTTLE CART WT. CONTD ITEM ____ DESCRIPTION 9 - GUSSET PLATE 1/4×4.5×7 QTY.2 AREA (4.5x7-2x2-2x1)x2=51 112 WT = 0.15 × 51 ×.288 = 3.7 LBS (0)TS 2×2×1/4 ×24" LG QTY-2 WT= 5.41 × 24×2 +2= 21-64 LBS. \bigcirc SAME AS ITEM. 1 (2) RULLER MOUNT PLATE RTY 4 2+2×1/2 WT= 4 × 2 × 2 × 1/2 × 288 = 2.34 LB3. REF DWG + 444-301 SHT. I REV.O (DE(2) WELDMENT 3 ROLLER RTY 12 1/ OD X 1-25" LG WT = (TTX 1.25 X.25 X 1.25 X 12 X.288 = 424 * FLANGE BUSHING QTY 24, 3/4" NOMINAL ED GRAPHITE (4) EST. 2 LAS SHOULDER SCREW QTY 8 1/4"\$ 6 MCMC - 902984847 WT= 12 LBS FLAT WASKER WT- 1" EST 08 Qry.24 (7)SHOULDER SCREW QTY 4 14 P WT. 6 LBS LASTLE NUT ? WT. 2 # EST TOTAL WT = SAS THIS PAGE QTY 24 COTTER PIN . TOTAL SHUTTLE WT = (B275 nat inc. Prepared By: RP Dete: 6-4-97 WRR NO. EF444-20-01 MCO LOADING Checked By: 14 Date: 6/6/97 fage 7 - 44

Design Report HNN Hanford K East & K West Basin MCO Loading System

v,

444-R-01 Revision 0 Volume 1

$\frac{\text{DETERMINATION OF WEIGHTS FOR WEDGE.}{REF. DWG+ 4444-303 REV-0}$ ITEM DESCRIPTION () WELDMENT () WELDMENT () WELDMENT () BACK PLATES $\frac{1}{2} \times 6 \times 9.5 \text{ QTY-4}$ $WT = 0.5 \times 6 \times 9.5 \times 0.288 \times 4 = 32.83 \text{ LBS } = -$ () TOP PLATES $\frac{1}{2} \times 5.63 \times 7 \times 0.288 \times 4 = 22.7 \text{ LBS } = -$ () SIDE PLATES $\frac{1}{2} \times 5.63 \times 7 \times 0.288 \times 4 = 22.7 \text{ LBS } = -$ () SIDE PLATES $\frac{1}{2} \times 5.13 \times 9.5 \text{ QTY-4}$ $WT = 0.5 \times 5.13 \times 9.5 \text{ QTY-8}$ $WT = 0.5 \times 5.13 \times 9.5 \text{ QTY-8}$ () SIDE PLATE $\frac{1}{2} \times 6 \times 0.288 \times 8 = 56.14 \text{ LBS.} = -$ () PUSH BAR 2"\$\Phi ROD 6" LG $WT = \frac{17}{4} \times 2^{2} \times 6 \times 0.288 \times 8 = 5.42 \text{ LBS} = -$ () DRIVE BOSS (THREADED) 2"\$\phi \times 1.5" LE QTY-4. $WT = \frac{17}{2} \times (2^{2}75^{2}) \times 1.5 \times .288 \times 4 = 4.67 \text{ LBS} = -$ () WEDGE BODY TOP SECTION 1.19 X 4.03 \times 5.5 QTY-4 $WT = 1.19 \times 4.05 \times 5.5 \times .288 \times 4 = 30.39 \text{ LBS}$ SIDE SECTION 1/2 × 1.85 × 6.58 QTY-8 $WT = 0.5 \times 1.65 \times 6.58 \times .288 \times 8 = 14 \text{ LBS}$ 2.19 BACK SECTION 2.18" × 6.58" × 4.5" CUT AS SHOWN QTY.4 $WT = (2.271 + 6.57") \times 2.18 \times 4.5 \times .288 \times 4 = 50.0 \text{ LDS}$.WEDGE BODY TOP SECTION 2.18" × 6.58" × 4.58 × 4.288 \times 4 = 50.0 \text{ LDS} .WEDGE BODY TOTAL WEIGHT = 94.39 =		
$\begin{array}{c c} Ref. DWG + 444-303 \ REV.0 \\ \hline \\ $	MION OF WEIGHTS FOR WEDGE.	DETERMI
ITEM DESCRIPTION Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Descriptic Image: Description Im	+ 444-303 REV.0	
Image: Constrained by the set of t	DESCRIPTION	ITEM
$ \begin{array}{c} \textcircled{\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	VELDMONT	()
$ \begin{array}{c} \hline & \Box D S X B X G S X D Z B S X A = 32.83 \ L65 = - \\ \hline & \Box D P P [ATES \frac{1}{2} X 5.63 X 7 X 0.288 X A = 22.7 \ LB5 = - \\ \hline & \Box D E P LATS \frac{1}{2} X 5.13 X 9.5 \ QTY 8 \\ & \Box T = 0.5 X 5.13 X 9.5 X 0.288 X B = 56.14 \ LBS = - \\ \hline & \Box T = 0.5 X 5.13 X 9.5 X 0.288 X B = 56.14 \ LBS = - \\ \hline & D RIVE BAR 2" & ROD G" L G \\ & \Box T = 17/4 X 2^2 X 6 X 0.288 = 5.42 \ LBS = - \\ \hline & D RIVE BOSS (THREADED) 2" & X 1.5" \ LG \ QTY 4. \\ & \Box T T \frac{3}{4} & HOLE \\ & \Box T = T7/4 (2^275^2) \times 1.5 X .288 \times 4 = 4.67 \ LBS = - \\ \hline & WEDGE BODY \\ TOP SECTION 1.(9 X 4.03 X 5.5 \ QTY 4 \\ & \Box T = 1.19 \times 4.05 \times 5.5 \times .288 \times 4 = 30.35 \ LBS \\ & SIDE SECTION \frac{1}{2} \times 1.85 \times 6.58 \ QTY.8 \\ & \Box T = 0.5 \times 1.65 \times 6.58 \times .288 \times 8 = 14 \ LBS \\ & \Box T = 0.5 \times 1.65 \times 6.58 \times .288 \times 8 = 14 \ LBS \\ & 2.18 \\ & DACK SECTION 2.18 \times 6.58 \times 4.5 \times .288 \times 4 = 50.0 \ LBS \\ & WEDGE BODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE BODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE BODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WEDGE MODY \ TOTAL WEIGHT = 94.39 \\ \hline & WE \ D = 0.5 \ X 1.5 \ X 1.5 \ P \ P \ D = 0.5 \ X 1.5 \ Y \ P \ D = 0.5 \ Y \ D = 0.5 \ Y \ D = 0.5 \ Y \ P \ P \ D = 0.5 \ Y \ D = 0.5 \ Y \ P \ Y \ Y \ Y \ Y \ Y \ Y \ Y \ Y$	ACK PLATES 1/2 × 6× 9.5 QTY-4	2
$ \begin{split} & \omega T = 0.5 \times 5.63 \times 7 \times 0.288 \times 4 = 22.7 \ LBS = - \\ \hline \\ & SIDE \ PLATS \ \frac{1}{2} \times 5.13 \times 9.5 \ QTY 8 \\ & \omega T = 0.5 \times 5.13 \times 9.5 \times 0.288 \times 8 = 56.14 \ LBS = - \\ \hline \\ & & \omega T = 0.5 \times 5.13 \times 9.5 \times 0.288 \times 8 = 56.14 \ LBS = - \\ \hline \\ & & \omega T = 0.5 \times 5.13 \times 9.5 \times 0.288 \times 8 = 56.14 \ LBS = - \\ \hline \\ & & \omega T = 0.5 \times 5.13 \times 9.5 \times 0.288 \times 8 = 5.42 \ LBS = - \\ \hline \\ & & & \omega T = 0.5 \times 5.5 \times 0.288 \times 5.5 \ QTY 4 \\ & & & \omega T = 0.5 \times 0.288 \times 4 = 4.67 \ LBS = - \\ \hline \\ & & & & \omega T = 0.5 \times 0.5 \times 5.5 \times 0.288 \times 4 = 30.39 \ LBS \\ & & & & & & & & & & & & & & & & & & $	DP PLATES 1/2x 5.63 K7 QTY 4	3 7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	T= 0.5x 5.63 x7 × 0.288 ×4 = 22.7 LBS	2
$ \begin{split} & \omega T = 0.5 \times 5.13 \times 9.5 \times 0.288 \times 8 = 56.14 \ LBS \\ & S \\ & PUSH BAR 2"$$$$$$$$$ ROD 6"LG \\ & \omega T = 77_4 \times 2^2 \times 6 \times 0.288 = 5.42 \ LBS \\ & - \\ & \omega T = 77_4 \times 2^2 \times 6 \times 0.288 = 5.42 \ LBS \\ & - \\ & \omega T = 77_4 (2^2 - 75^2) \times 1.5 \times .288 \times 4 = 4.67 \ LBS \\ & - \\ & \omega T = 77_4 (2^275^2) \times 1.5 \times .288 \times 4 = 4.67 \ LBS \\ & - \\ & $	DE PLATS 1/2×5.13×9.5 QTY 8	∉ ≤
(a) PUSH BAR 2" ϕ ROD 6"LG WT = $77_4 \times 2^2 \times 6 \times 0.288 = 5.42 \ LBS$ (c) DRIVE BOSS (THREADED) 2" $\phi \times 1.5$ "LG QTY 4. WITH $3/4$ " ϕ HOLE WT = $77_4 (2^275^2) \times 1.5 \times .288 \times 4 = 4.67 \ LBS$ (c) WEDGE BODY TOP SECTION 1.19 × 4.03 × 5.5 QTY 4 WT = 1.19 × 4.05 × 5.5 × .288 × 4 = 30.39 \ LBS SIDE SECTION $\frac{1}{2} \times 1.85 \times 6.58 \ QTY.8$ WT = 0.5 × 1.85 × 6.58 × 1.288 × 8 = 14 \ LBS 2.18 BACK SECTION 2.18 × 6.58 × 4.5° CUT AS SHOWN QTY.4 WT = (2.27 + 6.58) × 2.18 × 4 = 50.0 \ LDS WEDGE BODY TOTAL WEIGHT = 94.39 MAC INTERNATIONE WT = 2.400 MAC INTERNATIONE WT PROVINE OF PARTY OF THE WEIGHT = 94.39 MAC INTERNATIONED	= 0.5x5.13x9.5x0.288×8 = 56.14 LBS	
WT = $17_4 \times 2^2 \times 6 \times 0.288 = 5.42 \ LBS$ DRIVE BOSS (THREADED) 2"4 × 1.5"LG QTY 4. WITH $3/4"\phi$ HOLE WT = $77_4 (2^275^2) \times 1.5 \times .288 \times 4 = 4.67 \ LBS$ () WEDGE BODY TOP SECTION 1.(9× 4.03×5.5 QTY 4 WT = 1.19×4.05×5.5×.288×4 = 30.39 LBS SIDE SECTION 1/2 × 1.85×6.58 QTY.8 WT = 0.5×1.85×6.58 ×.288×8 = 14 LBS 2.18 BACK SECTION 2.18"×6.58"×4.5" CUT AS SHOWN QTY.4 WT = (2.27+6.58) × 2.18×4.5×.288×4 = 50.0 LDS : WEDGE BODY TOTAL WEIGHT = 94.39 MAC INTERNATIONS INC. PR	SH BAR 2"\$ ROD 6"LG	5 P
$ \begin{array}{c} \textcircledleft DRIVE BOSS (THREADED) 2" & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	= 17/4 × 22 × 6 × 0.288 = 5.42 LBS	Ŵ
$ \begin{split} & \omega T = T_{24}^{2} (2^{2} - 75^{2}) \times 1.5 \times .288 \times 4 = 4.67 \ \text{Les} = \\ & (2^{2} - 75^{2}) \times 1.5 \times .288 \times 4 = 4.67 \ \text{Les} = \\ & (3^{2} - 75^{2}) \times 1.9 \times 4.03 \times 5.5 \ \text{QTy 4} \\ & (3^{2} - 75^{2}) \times 1.9 \times 4.05 \times 5.5 \times .288 \times 4 = 30.35 \ \text{LBS} \\ & (3^{2} - 75^{2}) \times 1.9 \times 4.05 \times 5.5 \times .288 \times 4 = 30.35 \ \text{LBS} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 8} \\ & (3^{2} - 75^{2}) \times 1.85 \times 6.58 \ \text{QTy 9} \\ & (3^{2} - 75^{2}) \times 1.$	WE BOSS (THREADED) 2" & XI.S"LG QTY 4.	6 DI
$\begin{array}{c} \textcircledlength{\textcircled[]{\label{eq:constrained}}} \hline \\ $	$\mathcal{T}_{4}(2^{2}75^{2})\times 1.5\times .288\times 4 = 4.67 \text{ Los} -$	wr
TOP SECTION 1.19× 4.03×5.5 QTY 4 $WT = 1.19 \times 4.05 \times 5.5 \times .288 \times 4 = 30.39$ LBS SIDE SECTION $\frac{1}{2} \times 1.85 \times 6.58$ QTY.8 $WT = 0.5 \times 1.65 \times 6.58 \times .288 \times 8 = 14$ LBS 2.18 BACK SECTION 2.18×6.58 × 4.5° CUT AS SHOWN QTY.4 $\frac{1}{227}$ WT = $(2.27+6.58) \times 2.18 \times 4.5 \times .288 \times 4 = 50.0$ LBS WEDGE BODY TOTAL WEIGHT = 9439 - 100000000000000000000000000000000000	We BODY	🗇 we
$WT = 1 \cdot 19 \times 4.05 \times 5.5 \times .288 \times 4 = 30.35 \text{ LBS}$ SIDE SECTION $\frac{1}{2} \times 1.85 \times 6.58 \text{ Qty.8}$ $WT = 0.5 \times 1.65 \times 6.58 \times .288 \times 8 = 14 \text{ LBS}$ 2.18 BACK SECTION 2.18 × 6.58 × 4.5° CUT AS SHOWN QTY.4 227 WT = $(2.27 + 6.58) \times 2.18 \times 4.5 \times .288 \times 4 = 50.0 \text{ LBS}$ WEDGE BODY TOTAL WEIGHT = 9439 MAC international Inc. Propulsed by: RP Point: 6-4-57 WER W = 50.01	SECTION 1.19×4.03×5.5 DTHA	TOP
SIDE SECTION $\frac{1}{2} \times 1.85 \times 6.58$ QTY. 8 WT = 0.5×1.85×6.58 ×.2288×8 = 14 LBS 2.18 BACK SECTION 2.18×6.58 ×.4.5° CUT AS SHOWN QTY. 4 $\frac{2.27}{4.5}$ WT = $\frac{(2.27+6.58)}{2} \times 2.18 \times 4.5 \times 288 \times 4 = 50.0 LDS$ WEDGE BODY TOTAL WEIGHT = 94.39 MAC INTERNATIONAL ME. Propused by: PP 0000: 6-4-37 1000 m = 5.440	1.19×4.05×5.5×.288×4=30.35 LAS	WT
$WT = 0.5 \times 1.65 \times 6.58 \times .288 \times 8 = 14 \text{ LBS}$ 2.18' BACK SECTION 2.18' $K6.58' \times 4.5''$ CUT AS SHOWN QTY. 4 2.21'' $WT = (2.27 + 6.58'') \times 2.18 \times 4.5 \times .288 \times 4 = 50.0 \text{ LBS}$ WEDGE BODY TOTAL WEIGHT = 9439 MAC international inc. Propulsed by: RP Point: 6-4-37 WITH WEIGHT	SECTION 1/2 × 1.85×6.58 QTU. P	SID
2.18 BACK SECTION 2.18 K6.58 × 4.5 CUT AS SHOWN QTY. 4 $T = (2.27 + 6.5P) \times 2.18 \times 4.5 \times 2.288 \times 4 = 50.0 LDS$ WEDGE BODY TOTAL WEIGHT = 9439 MAC International Inc. Propused by: RP Post: 6-4-57 WER W	0.5×1.85×6.58×.288×8 = 11 100	WT :
MAC International Inc. Prepared By: RP Dets: 6-4-97 WER IN	$\mathcal{L}_{2.18} = (2.27 + 6.58) \times 2.18 \times 4.5 \times 2.288 \times 4 = 50.0 \text{ Let}$	2-18 BA-C 2-27" 4-5"DEEP
Prepared By: P.P Dete: 6-4-97 WE MA TO AND	WEDGE BODY TOTHL WERCHT = 9439	NAC International Inc.
Project MLD LOADING Detector Of	Trepared By: RP Dett: 6-4-97 WRR No. EF 444-2001	Project MLD LOA

Design Report Hanford K East & K West Basin MCO Loading System

¥;

- 1						
	WEDGE W	ELGHTS CON	MD.			•
-	ITEM. D	ESCRIPTION				
-	3 R.	suers 2"b	4"LG QT	y 8		
ŀ	ωτ	⁻ = 7⁄4 x 2 ² x 4	x 0.288 x	8 = 2895 LE	IS .	
	(9) Ro	ller shaft	QTY 8 1	NEIGHT INCL	IDED IN IT	EM 8
	(b) s <i>e</i>	T SCREWS C	RTY 16	WT I LAS E	sr.	
	() we	AR PLATE !	2×4-5×5	QГУ 4		
	WT	= 0.5 × 4.5	< 5 x 0.288	×4 = 12.96	LBS	
	DRI	VE SCREW 1	" & BAR	RTY 4		
	ω <i>τ</i> =	174×1-52×8.	1 × 0.288 ×	4 = 16.49	LBS	
		ANUE 244 0				
		NUI 514 Q	$\pi y + \omega$	TILB EST.		
	(14) FLAT	HEAD SCREW	VS QTY 8	WT O.5 LB	is est. Convis	
	TOTAL WE	IGHTS (ITEM (D THIRU (À))=277 L	BS	
-	Naf International					
	Project MCD LOAD	ING The state	RP	Date: 6-4-97	WAR No. EF44	4-20-01
	SUSTEM	Checked By:	No	Date: 6/4/97	Page 9	# 44
Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

1								
	DETE	RMINATI	ON OF	SPRING WE	GHT		·	
	REF.	DWG # 4	144-305	REV.O				
	I.TEM	De	SCRIPTIC	N	·	· · ,		
	\odot	Bo	пом ри	TE 1/2 × 4.5	X4.5 QTY	4.		
		ω_{T}	0.5×4.	5×4.5×.28	8 ×4 = 11.6	TLBS		
	2	MID	PLATE I	/4 × 3.75¢	QTY-2			
		WT=	17/4 × 3.7	5 ² x - 288 x	2 = 6.36	LAS		
	3	Црра	ег тиве	3½" \$ x c	25"WAL Q	TY_2		
		WT = 1	17⁄4 ×(3·5²	-3 ²)×5×;	288x 2 - 7.3	S LBS		
	(4)	PUIIA	· · / * *					
	U	$\omega T =$	$\overline{\mathcal{D}}_{\mu} \times d^2$	×1.25 Q	ту.2 Гиолог			
	S	PIN	1" ~	2011 A	sx2f9les	Cents.		
	U		(4) × 3-,	os co QT	1-2			
		$\omega \tau = \tau$	74 ×12×	3.88 × 0.281	8×2 = 1.76	LAS		
	6	CAP .	4 [′] 4 [″] Φ Β	AR QTY-	<u>></u>			
		$\omega \tau = \xi \tau$	74 (4.252-	-3.25 ²)×1.6	8 + Thu x 4-25	2 ×·5}×.98	~~~~	
		= 9.4	. / R .	ŗ	/	- [~ 20	6 × 2	
	6		·					
	0	PLUNG	F PLATE	14 R 6	2TY-2 WT	ILB EST	-	1
(8	COTTER	PIN 1	16°Ф x 1' <u>4</u> "L	G QTY 4.	WT - NE	GLIGAME	
(9	SPRING	CENTU	RY 73156	RTY 2 INT		4	
(0,(1)	10 ser	SCREW	U FLANGED	BUSHING		ao las	
(BODY I	FIDME		and the second	SLBS		
0	NAC Internatio	nal Inc.	Prepared B-	20				
4	Project: MLQ	LOADING	Checked By:	<u>F</u>	Date: 6-4-97	WAR No. EF44	14-20-01	
_	·			112	Dete: 6/4/97	Page []	+ 44	

Design Report	HNF-SD-SNF-DR-004, R	ev. 0
Hanford K East & K V	Vest Basin	
MCO Loading System	1	

SPRING WEIGHT CONTD IT.EM DESCRIPTION ً PLUNGER WELDMENT PLUNGER ROD 14/2" & BAR 8"LG QTY 2 ᢙ WT= 174×1.52×8×0.288×2 = 8.14 LBS. TOTAL WT OF SPRING COMPONENTS ITEM # 1 THRU 14 = 97.88 LBS. Υ. MAC International Inc. Prepared By: RP Date: 6-4-97 WAR No. EF444-20-0 Her MCOLOADING Checked By: Page 12 lo n . 44

HNF_SD_SNF_DR-004. Rev.	0
-------------------------	---

Design Report Hanford K East & K West Basin MCO Loading System

1 FIRST	SUSTEM	Checked By:	m	Date: 11+10	a 12	
A MAC M	MCO LOADING	Prepared By:	RP	Date: 6-4-	97 WRENS. EF	444-20-01
		۰.				
U	, or the second	50499081	5	(095 LAS		1300 LB
@	VEDTICAL	SU D D D C		277 LAS	1	
ଜ	WEDGES					
@	REEVING	SUSTEM		20 - ES	-1679LBS	2400 L
3	SPRINGS			00 141		
2	FRAME &	RAIL COM	PONENTS	704 LBS	٦	
(<u>)</u>	SHUTTLE	CART		كھـا 183		250 1
						CARCULA

Design Report Hanford K East & K West Basin MCO Loading System

v.

 ·				i i		
!	ST OF SHU	TTLE WEIGHTS.				
	-					
り	SHUTTLE C	tr t	250 LAS	MOVEABLE		
- 2)	FRAME, RA SPRINGS, R AND WEDD	IL COMPONENTS REEVING SYSTEM HES	2400 LBS	UNIFORM. DIST		
3)	VERTICAL	Supports	1300 LBS	CONCERNTRATE		
L	OADS ARE 1	Defined in 3	CO.ORDINATE	Directions		
	ERTICAL - ATERAL - ONGITUDIN	- DL+LL+ Seismic IML- Seismic	Seismic }	2EF 6-F		
LATERAL & LONGITUDINAL SEISMIC ACCELERATIONS ARE 0429. VERTICAL SEISMIC ACCELERATION IS 73 XHORI ACCE D.022						
S	EISMLC CON	DITION IN ALL.	THREE DIRECTION	s accel		
TH	E SYSTEM I	s ALSO SUBJEC	TED TO A NORM	AL LOAD CASE O		
VERTICAL (DL+LL+IMPAG) IMPACT 25% LATERAL 20% OF MOVEABLE LOAD LONGITUDINAL 10% OF MOVEABLE LOAD						
LIV	re LOAD = 3 S Lomp is c	200 LBS (FU MERIED BY SHI	EL WT) UTTLE.	:		
ALL MAC	mational Inc.	Presared by: O.P.	Date (11 fr	1		
	MCOLOUP	147	6-4-97	WIR HAEF 444 an		

me	cn.	CNE.	DD_	004	Rev	0
1NF	SU-		-נוג-	-004.	NCV.	

Design Report Hanford K East & K West Basin MCO Loading System

1

444-R-01 Revision 0 Volume 1

VERTICAL SEISMIC CONDITION. VERT LOAD ON A SINGLE RAIL IS A) HALF WT OF FRAME, RAIL COMPONENTS, SPRINGS REEVING SYSTEM AND WEDGES DL = 2400/2 = 1200 LBS UNIF. DIST LOAD. + VERTICAL SEISMIC ALCA OF 0.28 %. SEISMIC = 0.28 (1200) = 336 " UNIF. DIST. LOAD. B) HALF WT OF SHUTTLE CART (250 LBS) AND SHUTTLE LOAD $LL. = \frac{250+3200}{2} = 1725 LBS.$ MOVEABLE + SEISMIC = 0.28 (1725) = 483 LB MOVEANE LATERAL LOAD ON A SINGLE RAIL IS 'X' DIRECTION · WT OF FRAME, RAIL COMPONENTS, SPRINGS, REEVING SYSTEM AND WEDGES, PLUS HALF THE SUPPORT WEIGHT MULTIPLED BY LATERAL SEISMIC ACCELERATION, 0.42 (2400 +650) = 1281 LBS (UNIFORM DIST) NOTE : SUPPORT COELGHT IS TREATED AS UNIFORM LOAD SINCE THIS WILL PRODUCE MAXIMUM MOMENT IN RAIL SYSTEM · WEIGHT OF SHUTTLE CART (250 LBS) AND SHUTTLE LOAD (3200 LRS) MULTIPLIED BY LATERAL SEISMLL ACCELERATION 0.42 (250 + 3200) = 1449 L& MOVEABLE. NAC Internet Prepared By: RP WRR NA EF444-20-0) DAR: 6-4-97 Project MCD LOADING Checked By: M Dete: 6/4 15 - 44

Design Report Hanford K East & K West Basin MCO Loading System

¥.

444-R-01 Revision 0 Volume 1

0.42 (2	7 2 7	ю <i>ву сол</i> 2400) ₌	1229 #.	SEISMIC A	Lielee Ation,
				: : .	

E-18

•.

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

NORMAL LOAD CONDITION VERT. LOAD ON A SINGLE RAIL IS ---- HALF THE WEIGHT OF FRAME, RALL COMPONENTS, SPRINGS, - REEVING SYSTEM AND WEDGES DL = 2400/2 = 1200 LB (UNIFORM DIST) HALF THE WEIGHT OF SHUTTLE CART (250 LBS) AND SHUTTLE LOAD (3200 LBS) LL = 250 +3200 = 1725 LBS MOVABLE PLUS IMPACT OF 25 % (MPACT = 0.25 (1725) = 431 LBS MOVEMBLE ATERAL LOAD ON A SINGLE RAIL IS WT. OF MOVEABLE LOAD, SHUTTLE CART (250 LBS) AND SHUTTLE LOAD (3200 LBS) MULTIPLIED BY 20 40 : LATERAL = 0.20 (250+3200) = 690 LBS MOVABLE LONGITUDINAL LOAD ON A SINGLE RAIL IS . HALF THE WEIGHT OF THE SHUTTLE (250 LBS) AND SHUTTLE LOAD (3200 LBS); MOVEABLE LOADS MULTIPLIED BY 10 40 LONGITUDINAL = 10 % (250 + 3200) = 345 LBS. 4 **NAC International Inc.** Prepared By: RP Dote: 6-4-97 WER No. EF-444-20-01 MCO LOADING Checked By: M Dete: 6/4/97 Page 17 of 44

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

UNIFORM DISTRIBUTED LOADS WILL BE TAKEN OVER 164-5" MOVEABLE LOADS MAY BE LOCATED ANYWHERE IN THE SHUTTLE TRAVEL.

<u> </u>					
A-	C International Inc.	Prepared By:	RP	Data: 6-4-97	WRANG EE AAA AD
	Het System	Checked By:	the	Den: 6/4/97	Page 18 4 44

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

E-21

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

2) FOINT LOAD 1725 * MOVEABLE. .1725 * RLMAX = 1725 (35.35+99.16)/99.16 = 2340 # RRMIN = 2340-1725 NOTE: CANTILEVER LEFT SECTION = 615 UPLIFT 15 CRITICAL FOR MOMENT $M_{MAX} = 1725 \times 35.35$ SINCE IT'S LENGTH EXCEEDS 0.25 TIMES SIMPLY SUPTO = 60979 11.4 SECTION. MULTIPLY BOTH 1) & 2) RESULTS BY VERTICAL SEISMIC ACC. AND ADD THEM TO OBTAIN VERTICAL SEISMIC LOAD ALTING ON TS GX2×1/4 DL+LL+ SEISMIL VERT MMAX = 9058 × 1.28 + 60979× 1.28 = 89647 ## R_{MAX} = 808×1.28 + 2340×1.28 = 4029 * $R_{MIN} = 615 \times 1.28 - 392 \times 1.28 = 285 #$ UPLIFT. V MAX = 444 X1.28 + 1725 X1.28 = 2776 # MAC International Inc. Prepared By: RP Data: 6-4-97 WRE No. EF444-20-01 Project MCO LOADING Checked By: m 61019 Page 20 44

Design Report Hanford K East & K West Basin MCO Loading System

Project MLO LOADING	Checked By	14	une: 6-4-97 w	ta No. EF 444-	20-01
NAC international inc.	Prepared By:	RP			
					:
					•
				: .	
۶.					·
···· ·					
MAY =	(444 + 172	5) × 1.25	= 2711 *	CONS.	
RMIN =	615×1·25 -	- 392	= 377 #	UPLIFT.	
R MAY =	(808+230	10) X 1.25	= 3025 #	C	
		J J I J X 1.2	s = 85282	. II 4	
M =	9058+4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	+ IMPACT				
DI 111					
				TOIC LIVE	LOHD.
	$M_{MAX} = \frac{1}{R_{MIX}}$ $R_{MIX} = \frac{1}{N_{MAX}}$ $V_{MAX} = \frac{1}{N_{MX}}$ $MAC International Inc.$ Project: MICO LORDING	$M_{MAX} = 9058 + 60$ $R_{MAX} = (808 + 230)$ $R_{MIN} = 615 \times 1.25 - 0$ $V_{MAX} = (444 + 172)$ $M_{MAX} = (444 + 172)$ $M_{MAX} = (444 + 172)$	$M_{MAX} = 9058 + 60979 \times 1.22$ $R_{MAX} = (808 + 2340) \times 1.25$ $R_{MIN} = 615 \times 1.25 - 392$ $V_{MAX} = (444 + 1725) \times 1.25$ $M_{MAX} = (444 + 1725) \times 1.25$	$\frac{M_{MAX}}{M_{MAX}} = 9058 \pm 60979 \times 1.25 = 85282$ $R_{MAX} = (808 \pm 2340) \times 1.25 = 3935 \pm 8$ $R_{MIN} = 615 \times 1.25 - 392 = 377 \pm 1.25 = 2711 \pm 1.25 = 271$	$\frac{M_{MAX}}{R} = 9058 \pm 60979 \times 125 = 85282 \text{ H}^{2}$ $\frac{M_{MAX}}{R} = (808 \pm 2340) \times 125 = 3935 \pm \text{ Cons}$ $\frac{R_{MIN}}{R} = 615 \times 125 - 392 = 377 \pm \text{ uplift.}$ $V_{MAX} = (444 \pm 1725) \times 125 = 2711 \pm \text{ Conss.}$ $\frac{M_{MAX}}{R} = (444 \pm 1725) \times 125 = 2711 \pm \text{ Conss.}$

Design Report Hanford K East & K West Basin MCO Loading System

. ×

444-R-01 Revision 0 Volume 1

E-24

Design Report Hanford K East & K West Basin MCO Loading System

2). POINT LOAD HORIZONTAL H= 1449 LBS. 1449 LBS 48.65 45.5 . R H MAX = 1449 (45.5+48.65) / 48.65 = 2804 LBS RH MIN = 2804-1449 = 1355 LBS -MH MAX = 1449 x 45.5 = 65930 "+ NOTE: CANTILEVER RIGHT SECTION IS CRITICAL FOR MOMENT SINCE IT'S LENGTH EXCEEDS 025 TIMES THE SIMPLY SUPPORTED SECTION ADD RESULTS FROM 1) & 2) TO OBTHIN TOTAL HOAL LOAD ACTING ON TS 6x2x1/4 DL + LL + SELS. HORI. MH MAX = 13261+65930 = 79191 "# CONS. F.H MAX = 652+2804 = 3456 LBS VH MAX = 455+1449 = 1904 LAS CONS. LATERAL NORMAL IS 2010 OF MOVEABLE LOAD (SINGLE RAIL) MH MAX = 0.2 (250+3200) × 45.5 = 31395 "+ R H MAX = 0.2 (250+3200) x (45.5+48.65)/48.65 = 1335 LBS. VH MAX = 0.2 (250+3200) = 690 LBS. LONGITUDINAL LOAD CASE (SINGLE RAIL LOAD) PH SEISMIC = 0.42 (250+3200+2400)/2 = 1229 LBS PH NORMAL = 10 1. MOVABLE (DAD = 0.1 (250+3200)/2 = 173 LAS NAC Internatio Prepared By: RP Dete: 6-4-97 WRR No. EF444-20-01 MOLO Checked By: m Date: 6/4/97 Tage 23 . 44

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

E-26

×,

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

CHECK TS GK 2 COMPOSITE SECTION FOR NORMAL LOND CASE. DL+LL+IMPACT MX = 85282 11-COMPOSITE SECTION PROPERTIES VX = 2711 LBS 5x=6.8 1N3 ; 5y=7.6 1N3 -My-= 31395 11# A = 7.18 IN2 ; Vx= 1.82 IN Vy = 690 LAS Ty = 1.93 IN. REF 6-B P = 173 LOS. AXIAL. CHECK BENDING STRESS $f_{D_X} = \frac{M_X}{s_X} = \frac{85282}{6.8} = 12541$ psi. fby = My/sy = 31395/7.6 = 4131 PSi. fa = P/A = 173/7.18 = 24 PSI. INSIGNIFICANT. TOTAL STRESSES = 12541 + 4131 + 24 = 16696 < 0.6 x 30,000 18000 PH LEY SS STEER CHECK SHEAR STRESS $f_{U_X} = \frac{v_X}{A} = \frac{2711}{2x \cdot 25x6} = 905 \text{ psi}$ Use only web area of TS 6x2 x/4 conservatively $fvy = \frac{vy}{A} = \frac{690}{2x\cdot 25} = 1380$ psr Use only top FLANGE AREA. OF TS 6x2×14 CONSERVATIVE TORSIONAL SHEAR STRESS CHECK ON NEXT PAGE NAC International Inc. Prepared By: 1 Rf Dutt: 6-4-97 WRR No. EF 444-20-01 HO LOADING Checked By: N Date: 6/4/97 m 25 # 44

Design ReportHNF-SD-SNF-DR-004, Rev. 0444-R-01Hanford K East & K West BasinRevision 0MCO Loading SystemVolume 1

SHEAR STRESS DULE TO TORSION. (NORMAL CASE) TORSION = 1.5 x VERT. LOAD + 3.5 x HORI. LOAD VERT. LOAD = 1200 # + 1725 ×1.25 = 3356 LBS TOTAL VERT. LOAD AND IMPACT FACTOR APPLIED TO MOVEABLE LOND. HORI. LOAD = 690 LAS T = 1.5 × 3356 + 3.5 × 690 = 7449 1.# $\gamma = \frac{T \times C}{T}$ T=7449 " * ; C=3 IN ; J=688 IN4 TS 6x2 ONLY $=\frac{7449\times3}{6.88}$ = 3248 PSI. THEREFORE TOTAL SHEAR STRESSES ARE MY SS STER 905 + 1380 + 324 8 = 5533 PSI. < 0.4 × 30000 PSI THEREFORE COMPOSITE SECTION (TSGX2 \$ TS 4×4) IS ADEQUATE FOR NORMAL LOAD CASE. MAC International Inc. Prepared By: RP Dete: 6-4-97 WER NO. EF 444-20-0 MLO LOADING Checked By: Dete: 6/4/97 44

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

CHECK TS 6x2 COMPOSITE SECTION FOR SEISMIC LOAD CASE DEFEL+ SEISMIL MX = 89647 "+ COMPOSITE SECTION PROPERTIES VX = 2776 LBS SX= 6.8 1N3 ; Sy = 7.6 1N3 -My = 79191 11# A= 7.18 102 3 1x= 1.82 10 Vy = 1904 LBS ry = 1.93 IN. PAXIAL = 1229 LBS. CHECK BENDING STRESS fbx = Mx/sx = 89647/6.8 = 13183 PSI fby = My/sy = 79191/7.6 = 10420 psi. fa = P/A = 1229/7.18 = 171 PSI INSIGNIFICANT. TOTAL STRESSES = 13183 + 10421 +171 = 23775 PSi. <1.7 x.6x FY = 30600 PS Fy = 30000 PFi. FOR SS STEEL CHECK SHEAR STRESS $5v_X = \frac{v_X}{A} = \frac{2776}{2 \times 25 \times 6} = 925 \text{ psi.}$ USE Drug WED TREA LA T3 6X 2X 1/4 CONSERVATIVELY $fvy = \frac{vy}{A} = \frac{1904}{2x\cdot 25} = 3808 \text{ Psi.}$ Use only TOP FLANGE AREA OF TS 6K2×1/4 CONSERVATIVELY **NAC International Inc.** Prepared By: RP et MLO LORDING Checked By Deta: 6-4-97 WAR No. EF444-20-01 m Date: 6/4/97 tage 27 # 44

Design Report Hanford K East & K West Basin MCO Loading System

×,

444-R-01 Revision 0 Volume 1

SHEAR STRESS DUE TO TORSION (SEISMIL CASE) TORSION = 1.5 X VERT. LOAD +3.5 × HORI. LOAD. VERT. SELS. = 1200×1.28 + 1725×1.28 = 3744 LBS HORI SEIS = 1281+1449 = 2730 LBS TORSION = 1.5x3744 + 3.5x 2730 = 15171 ## $\gamma = \frac{T \times c}{T \times c}$ T= 15171 ""; C=3 IN; J=6.88 IN4 TSGX2 ONLY _15171×3 6.88 = 6615 PSi THEREFORE TOTAL SHEAR STRESSES ARE 925+3808+6615 = 11348 PSi < 1.4×0.4×30000 =16800 mi THERE FORE COMPOSITE SECTION (TS GX2 & TS 4×4) IS ADEQUATE FOR SEISMIC LOAD CASE. **NAC International Inc.** Propared By: RP 6-4-97 WAR No. EF444-20-01 ACT MCO LOADING Checked By m Page 28 a 44

E-30

. H	NF-SD-SNF-DR-004,	Rev.	0.	
-----	-------------------	------	----	--

Design Report Hanford K East & K West Basin MCO Loading System

LOADS ON LATERAL SEISMIC RESTRAINTS. (X DIRECTION.) RHMAX = 3456 LBS DL+LL+SEISMIC SEISMIC CASE RH. MAX = 1335 LBS DL+LL NORMAL CASE SEISMIL CONDITION GOVERNS OVER NORMAL CONDITION. LOADS ON LONGITUDINAL SEISMIC RESTRAINTS (2' DIRECTION) PH = 1229 LBS DL+LL+SELSMIC SELSMIC CASE PH = 173 LBS DL+LL NORMAL CASE SEISMIC CONDITION GOVERNS OVER NORMAL CONDITION. LOADS ON VERTICAL SUPPORTS (Y DIRECTION) RMAX = 4029 LBS DL+LL+ SEISMIC VELT. R MIN = 285 LBS (UPLIFT) DL+LL+ SEIS. VERT. FMAX = 3935 LBS DL+LL+ IMPACT RMIN = 377 LBS (UPLIFT) DL+LL+IMPACT. FOR DESIGN PURPOSE, USE & = 4029 * \$ -377 * AND NORMAL ALLOWABLE CONSERVATIVELY NAC International Inc. Prepared By: RP WAR No. EF444-20-0 Dete: 6-4-97 MLO LOHOING Checked By: n Map: 29 of 44

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

DESIGN OF VERTICAL SUPPORTS (ITEM #4,5,6 \$7 DWG # 444-303 KEND) TWO VERTICAL SUPPORTS RESISTS ONLY VERTICAL LOAD AND TWO VERTICAL SUPPORTS RESISTS BOTH VERTICAL AND LONGITUDINAL LOAD. VERTICAL LOAD RANGES BETWEEN 4029 LBS (DOWNWARDS) TO =377 "LBS" (UPWARDS) CONSERVATINELY -TS 6x3x1/4 A=4.09 IN2; Sx=5.98 IN3; Sy=4.0 W3 1x= 2.09 IN; Yy= 1-21 IN. P=4029 # MOMENT = 4029 × 2.5 = 10073 IN.# OR MOMENT = 15171 "" TORSION FOR RAIL SECTION. $\frac{k \cdot \ell}{v_V} = \frac{1 \cdot 0 \times 223 \cdot 6}{1 \cdot 21} = 184 \cdot 8 \implies Fa = 4360 \times \frac{30}{36} = 3633 \text{ Painting}$ $f_{D} = \frac{M}{5} = \frac{15171}{4.0} = 3793 \ Pai. < 0.75 \times 30000 \ Pai.$ $20 500 \ Pai.$ $20 5000 \ Pai.$ $20 5000 \ Pai.$ 20 500022500 PSt $f_{A} = \frac{P_{A}}{4} = \frac{4029}{409} = 985 \text{ Psi} < F_{A}$ or the upurt. COMP. LOAD. TOTAL STRESSES = 3793+985 = 4778 PS1. 20.6× 30000 PS. 18000 PSI. THEREFORE, TWO VERTICAL SUPPORTS RESISTING ONLY VERTICAL LOADS ARE ADEQUATE FOR ALL LOAD CONDITIONS. NAC International Inc. Prepared By: RP Deta: 6-4-97 WRI No. EF 444-20-01 HALD LOADING Checked By: M Dete: 6/4/97 Page . 30 # 44

Design Report Hanford K East & K West Basin MCO Loading System

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

DESIGN OF VERTICAL SUPPORT CONTD. $fa = \frac{377 + 936}{4 \cdot 09} = 321 \text{ Psi}$ $\frac{kl}{V_{min}} = \frac{1.0 \times 223.6}{1.21} = 184.8 \implies Fa = 4360 \times \frac{30}{36} = 3633 \text{ psi}$ Fa . 1.7 × 3633 = 6176 PSI. fa/= 321/6176 = 0.052 < 0.15 COMBINED AXIAL & BENDING STRESS INTERACTION RATIO WILL BE $\frac{f_{a}}{F_{a}} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}}$ = 0.052 + 1119 1.7×18000 + 3793 1.7×22500 = 0.51 < 1.0 THERE FORE, TWO VERTICAL SUPPORTS RESISTING VERTICAL & LONGITUDINAL LOADS ARE ADEQUATE FOR ALL LOTADING CONDITIONS NAC International Inc. Prepared By: RP VIEL MLO LONDING Dete: 6-4-97 WRR No. EF 444-20-0 Checked By: m Dete: 6/4/97 32 + 44

N.

Design Report Hanford K East & K West Basin MCO Loading System

E-35

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

HECK WELD CONNECTION BETWEEN TS 6X3 \$ TS 6X2 (RAIL SUPT) (VERTICAL SUPPORT TO COMPOSITE VERT. TS GX3X% RAIL BEAM) ı٢ HORI. TS 6K2 Fy= 4029 # ; Fz= 1229 # ; Mz= 15171 "# WELD PROPERTIES $A\omega = 6x^2 = 12 \text{ in }; \quad S\omega_2 = \frac{6^2}{3} = 12 \text{ in}^2$ FORCE ON WELD PER INCH $= \left\{ \left(\frac{FY}{Aw} \right)^2 + \left(\frac{MZ}{Sw^2} \right)^2 + \left(\frac{FZ}{Aw} \right)^2 \right\}^2$ $= \left\{ \left(\frac{4029}{12} \right)^2 + \left(\frac{15171}{12} \right)^2 + \left(\frac{1229}{12} \right)^2 \right\}^2 \right\}^2$ = 1312 #/IN. Y FOR S.S. STEEL WELD SIZE REDD = 1312 + (.4×30000) = 0.11 IN. THERE FORE PROVIDE FLARE BEVEL & 3/1 FILLET WELD ON BOTH SIDES. . WELD IS OK NAC International Inc Prepared By: RP Date: 6.4-97 WRIT No. EF444-200 MCO LOADING m Date: L/c 34

Design Report Hanford K East & K West Basin MCO Loading System

Design Report Hanford K East & K West Basin MCO Loading System

sn.	SNI	E-DI	2_00	4	Rev	. 0	i
 	.2141	-01	1-00	-T 4		• •	

Design Report Hanford K East & K West Basin MCO Loading System

CHECK SEISMIC RESTRAINT (REF. DWG = 444-310 REV.D. ITEMS() LONGITUDINAL 'Z' DIRN, LENGTH OF RESTRAINT = 4-5 + 11-61 REF. DWG # 444-306 REV.O = 16.11 IN. THICKNESS Min = 0.288675xd 2" REF 6B. = 0.288675×0.5 = 0.1443 IN. REF 6 B PG.5.74 $= \frac{(.0 \times 16.11)}{0.1443} = 111.6 \implies Fa = 11400 \times \frac{30}{36} = 9500 \text{ Fsi}$ Fa = 1.7x9 500 = 16150 PSi. ACTUAL STRESS = P P= 3482 +2=1741 # SINCE TWO FLATES = 1741 ARE TAKING LOAD 2×0.5 * INCREASED ALLOW. FACTOR = 1741 PSi < 16150 PSI. .: SEISMIC RESTRAINT OL CHECK SEISMIC RESTRAINT IN X' DIRN (REF. DWG = 444-303 RID) LATERAL SEISMIC RESTRAINT. ITEM # 1 \$ 7 TO II THIS WEDGE BLOCK PSSEMBLY IS BEARING AGAINST CONCRETE STRUCTURE. THE BLOCK IS SUBJECTED TO A MAXIMUM LOAD OF (1281+1449) = 2730 # (SEISMIC LOAD) SHEAR PIN IS 3/4 0 SHEAR STRESS = 2730 2×17/4×-752 = 3090 PA DOUBLE SHEEP ALLOW SHEAR STRESS = 0.4×30000 ×1.4 -- INCR. ALLOW FACTOR = 16,800 PSI. > 7 3090 PSI. .: LAT. X'RES. IS OK NAC International Inc. Prepared By: RP Date: 6.4-97 WIR No. EF444- 20-01 MOLD LOADING Checked By: 614197 Page # 44

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

CHECK 1/4 × 24" × 24" FLATE & TS 2× 2× 1/4 UNDER THE GASKET CART & ATE (FLOOR ITEM +3 DNG + 444-302 F.E.O) FUEL WEIGHT = 3200 LBS. BASKET DIA = 24"& UNIFORM LOAD ON 1/1 THICK PLATE = 3200 TTZ x242 = 7.074 #/IN2 CONSIDER I WIDTH OF FLATE SPANNING 12" BET TUDES 2X2X/4 5 7.074 #/IN MAX. Mom = $\frac{\omega l^2}{8} = \frac{7.074 \times 12^2}{2}$ 12." = 127.33 IN # SELT. MODULUS $S = \frac{bd^2}{b} = \frac{1.0x.2s^2}{2} = 0.0004 \text{ m}^3$ $\frac{1}{5} = \frac{M}{5} = \frac{12733}{20104} = 12243$ psi. < 0.75×20000 psi = 22500 PH. . 1/4" X24 K24 FLATE IS OL CHECK TS 2×2×1/4 CHAT SUPPORT TUBES (SQUARE TUBES ITEM + \$ 5 DWG + 444-302 R/0) SPAN = 24" POINT LOTO = 3200/2 - 1600 # SIMPLY SUPPORTED BEAM MOMENT = PL/4 = 1600x24 = 6400 "\$ $f_{0} = \frac{M}{s} = \frac{6400}{0.766} = 8355$ psi. < 0.6x30060 psi. = 18000 psi. = 12000 fsi. NAC International Inc. Prepared By: RP Date: 6-4-97 WIR No. EF-444-20-0 Project: MCO LOADING Checked By: n Date: 6/4/93

E-40

Design Report Hanford K East & K West Basin MCO Loading System

¥,

BENDING & SHEAR STRESSES ARE OK . TS 2x2x1/4 ARE OK CHECK WELDING BETN TUBES (CART SUPPORT TUBE JOINT) HORIZONTAL CENTER PIECE TSEXEX/4 b=d=2" Fy = 1600 = 800 LBS κ WELD PROPERTIES ALD = LENGTH = 2×4 = 8" LOAD / IN OF WELD PER INCH = 800/g = 100 # Fy S.S.STEEL. WELD SIZE RED'D = 100 ÷ (.4K30000) = 0.01 IN. PROVIDE FLARE BEVEL WELD ON FLAT TO CURVED SURFACES 3/16 FILLET WELD ON FLAT TO FLAT DURFACES. THEREFORE WELDS ALE OK. SEISMIC CASE. DUE TO SEISMIC FACTOR OF 0.289 VERTICAL LOAD ON BASKET RATE & TS2XEX/4 WILL INCREASE BY 1.28. BUT ALLEWARGE FOR MATERIAL WILL ALSO IN LEGASE BY 1.7. THEREFORE, SEISMIC CASE IS NOT GOVERNING AND HENCE NOT ANALYZED. NAC International Inc. Prepared By: RP Date: 6-4-97 WAR NO. EF444-20-01 MLQ LOADING Checked By: M Date: Page 39 44

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

E-42

· · · ·	UNE OD ONE DD-004 RAV 0
Design Report	HNF-20-24-064, Kett 0
Hanford K East & K West Basin	
MCO Loading System	

	SUMMARY	OF REAL	TIONS FOR	VERTICH	SU PROTIT			
					20017-14.5			
ľ		FY	MX	MZ	LOAD CASE			
	POINT 'A'	4280 \$ 377 1	± 3105 (SEE NOTE	±9838 2) -	NORMAL			
		4029 ; 285 †	-	±15171	ડલડમાટ			
		FY	Fž	MZ				
	POINT B'	3935t 377 l	-	±9838	NORMAL			
		4029 4 285 t	±392	± 15/71	sesuic			
	NICTES I) LOADS ARE IN POUNDS & MOMENTS IN IN, LOS DIRECTIONS & LOCATIONS OF LOAD & LOAD POINTS ARE DEFINED ON PAGE #							
	2) MX AT POINT A' CART + FLEC WT = 250+3200 =3450" LOAD ON THE REEVING SYSTEM WILL BE APPROX. 10-10 OF							
	MOUNG LOAD. = 0.1 × 3450 = 345 #							
	$M_{X} = 9 \times 345 = 3105 \text{ mm}$ $K \qquad (Received (D))$ $F_{Y} = 3935 (1 + 345 +$							
	3) MZ NO	ORMAL POI	NT A & B	= 3935×2.5	=9838 ##.			
0	NAC International Inc.	Prepared By:	PP	Date: / // art				
<u>Cr</u>	Project MCO LOADING	Checked By:	M	Date: (/4 / 0 -	HAN NO. EF 444-20-01			
			1.2	6/4/9)				

.

Design Report Hanford K East & K West Basin MCO Loading System

5.0 SUMM	ARY OF RESU	LTS/CONCLUSIONS						
	•	<u> </u>						
Summary	of Stress Analys	181						
Drawing Number	No.	Component 3)	Condition	Design Check	Calculated Stress	Allowsbie Stress	M.S.	Referen Page
444-304	2. 20 AND 21	ICOMPOSITE RAIL	NORMAL	AXIAL AND	16696	18000	0.07	25
444-304	2.20 AND 21	ICOMPOSITE RAIL	NORMAL	SHEAR	5533	12000	0.54	26
444-304	2. 20 AND 21	ICOMPOSITE RAIL	SEISMIC	AXIAL AND	23775	30600	0.22	27
444-304	2. 20 AND 21	ICOMPOSITE RAIL	SEISMIC	SHEAR	11348	16500	0.32	28
444-309	4 THRU 8	VERTICAL SUPPORTS	NORMAL	AXIAL AND	4778	18000	0.73	30
44-309	4 THRU 8	IVERTICAL SUPPORTS	SEISMIC	AXIAL AND	16126	30600	0.47	31
44-309	4 THRU 8	VERTICAL SUPPORTS	SEISMIC	AISC	0.51 (EQUATION	1.01 V 1.6.2)	0.49	32
44-310	1 4 THRU 8	SPLICE IN VERTICAL	SEISMIC	AXIAL AND BENDING	5108 (LOAD)	7886 ; (LOAD) ;	0.35	35
44-310	6	LONGITUDINAL SEISMIC RESTRAINT	SEISMIC	AXIAL	1741	16150)	0.89	37
44-303	1 AND 7 TO 11	ILATERAL	SEISMIC I	SHEAR	3090	16800	0.82	37
44-302	3	FLOOR PLATE	NORMAL	BENDING	12243	225001	0.461	38
44-302	4 AND 5	CART SUPPORT TUBES	NORMAL !	BENDING	8355	18000	0.54	38
44-300	20	ROD	NORMAL	AXIAL	936 (LOAD)	7952 : (LOAD)	0.88	36
,								
							¥	

Design Report Hanford K East & K West Basin MCO Loading System

SUMMAR	Y OF RESULTSA	CONCLUSIONS (cont.)						
Summary	1 Stress Analysis	1 1			<u> </u>			
Drawing	ttern	Component	Loed	Design	Weid Size	Weld Size	MS	Peterson
Number	(PER DWG)		Condition	Check	Required	Provided		Page
444-310	7108	VERTICAL SUPPORT	SEISMIC	SHEAR	0.066	0.1875	0.65	33
444-309	4 THRU 7 TO	VERTICAL SUPPORT	SEISMIC	SHEAR	0.11	0 1875	0.41	
	2. 20 AND 21	BEAM						
444-302	4 TD 5	CART SUPPORT	NORMAL	SHEAR	0.01	0.1875	0.95	39
ONCU	ISION : TH	HE STRUCTUR	H DESI	GN OF	SHUTI	LE ME	=75	
ONCU	<u>USION</u> : TF A	HE STRUCTUR LL OF THE A	M DESI PPLICABI	LE DES	SHUTI	LE MER	=75 4ND	
ονεμ	<u>1510N</u> : Tr A L	HE STRUCTUR LL OF THE A ODE REQUIREM	H DESI PPLICABI AENTS. T	GAN OF LE DES HEREFO	SHUTI	TE MER ITERIA A E DESIG	=75 4ND m	•
ONCU	<u>1510N</u> : TF A Li 15	HE STRUCTUR LL OF THE A ODE REQUIREN S ADEQUATE A	M DESI PPLICABI AENTS. TI NO HEI	lan of Le Des Helefo NCE Ad	SHUTI IGN CR RE, TH LEPTAB	TE MERIA A ITERIA A E DESIG	=75 4ND 5N	•
ονεμ	<u>USION</u> : TF A Li IS	HE STRUCTUR LL OF THE A ODE REQUIREN S ADEQUATE A	H DESI PPLICAB NENTS. T NO HE	lan Of Le Des Herefo VCE Ad	SHUTI IGN CR RE, THI LEPTAB	LE MER ITERIA I E DESIG	=75 4ND 6N	
ονεμ	<u>изіол</u> : ТР А Ц	HE STRUCTUR LL OF THE A DDE REQUIREN S ADEQUATE A	H DESI PPLICHEN NENTS. TI NO HEI	lan Of Le Des Helefo NCE Ad	SHUT1 IGnJ CR RE, TҢ СLEPTAB	TE MER ITERIA A E DESIA	=75 4ND	
ονευ	15 : <u>1001</u> : 77 A L IS	HE STRUCTUR LL OF THE A DDE REQUIRES S ADEQUATE A	H DESI PPLICAB NENTS. TI NO HEI	lan OF Le DES HELEFC VCE Ad	: SHUTI IGNJ CR REE, THI CLEPTAB	TE MER ITERIA A E DESIG	ETS AND AND	
ονευ	<u>изіо</u> й : 77 А Ц	HE STRUCTUR LL OF THE A ODE REQUIREN S ADEQUATE A	H DESI PPLICHE AENTS. TI NO HEA	lan of Le Des Helefo NCE Ad	: SHUTI IGN CR RE, THI	LE MER ITERIA A E DESIG	=75 An D m	
ονευ	1 <u>1500</u> : 77 A L 13	HE STRUCTUR LL OF THE A ODE REQUIREN 5 ADEQUATE A	H DESI PPLICHE NENTS. TI NO HE	lan of Le Des Helefo VCE Ad	SHUTI IGN CR RE, TH CLEPTAB	TE Med ITERIA / E DESIA IE.	=75 AUD m	
ονι	<u>изіол</u> : т А Ц	HE STRUCTUR LL OF THE A ODE REQUIREN S ADEQUATE A	H DESI PPLICAB MENTS. TI ND HE	GAN OF LE DES HEREFO NCE AC	SHUTI IGNJ CR RE, THI CLEPTAB	TE MER ITERIA / E DESIG	=75 ₩D ₩	
ονι	151001 : 77 A G 15	HE STRUCTUR LL OF THE A ODE REQUIRES S ADEQUATE A	H DESI PPLICAB AENTS. T NO HE	GAN OF LE DES HELEFO NCE AU	SHUTI IGN CR RE, THI	TE MERIA ITERIA I E DESIG	=75 AwD m	
<u>ovcu</u>	<u>15101</u> : 77 A G I :	HE STRUCTUR LL OF THE A ODE REQUIRES S ADEQUATE A	H DESI PPLICHE AENTS. T. ND HE	GAN OF LE DES HELEFO NCE AU	SHUTI IGN CR RE, THI CLEPTAB	TE MERIA ITERIA D E DESIG	=75 AND M	

Design Report Hanford K East & K West Basin MCO Loading System

γ.

	~		
			: · · ·
1	6.0 REFERENCES		1
F			
	A) DESIGN SPEC	CIFICATION WHC-5-0546 REV-C	SAND NAC
	DOCUMENT	NO. 444-5-01 REV.0	
1		-	. [
F	B) AMERICAN IN	NSTITUTE OF STEEL CONSTRUCTION	AISC.ASD
	MANUAL OF	STEEL CONSTRUCTION, 9TH EDITION	av.
ŀ			
_	C) DESIGN OF W	ELDED STRUCTURES BY O.W. BL	DGETT STHED.
	PUBLISHED BY	THE JAMES F. LINCOLN ARC WE	DING FOUNDATION
	D) AWS DI. 1 190	d harrow harrow h	
	WELDING CODE	, AMERICAN WELDING SOLIETY,	STRUCTURAL
1º			
	E) STANDARD A	RCH-CIVIL DESIGN CRITERIA	
	E) LETTER NO. D.		DC-4.1 KEV.12
	.,	- 523-045 FROM DE ES HANFORD	INC, 5-30-97
	G . DWG = 444-300	REV.O SHUTTLE ASSEMBLY, MLO LOA	DING SYSTEM -
	· DWG + 444-301 A	WHC DWG NO: H-1- 82911	
	• •••••••••••••••••••••••••••••••••••	WHC DWG NO: H-1-82912	f System
	· DWG + 444-302	REV.O CART WELDMENT, MLO LONDI	VG SYSTEM
	· DN6# 4444 -303 A	REV.O WEDGE ASSEMBLY MAD LOND	
	· DW/+ = 444 -2011	WHC DWG NO: H-1- 82914	NG SYSTEM
		WHE DWG 120 H & COLO	DING SYSTEM
	DWG * 444-306	REND SEISMIL RESTRAINT, MID LOAN	White Substant
	· DW6 = 444-309 R	LEV-D UDDER MOLLET	20100
_ ·	DAKe + HUH	WHE DWG NO: H-1- 81920	sy sten
		WHE DIVER MOUNTS, MCG LOADING	SUSTEM
	· DWG # 444 - 305 RA	EV.O CABLE MOUNT-CYLINDER MA	82921.
	· DWG # 444-307 RE-	WHL DWG NO. H-1-82916	Contract System
•	. DWG # 444-308 000	WHL DWG # H-1- 82918	stem.
-	NAC International In-	WHE DWG NO: 4-1- 82919	Ister -
ġ.	Project MCO LOADING	Y: KP Date: 6-4-97 WRR No.	EF 444-20-01
	System. Clicked		44 + 44

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

RINTE	RNATIONAL	CALCULATION PACKAGE COVER SHEET		Work Requ EF 4 4 4 Page_1	est/Calculation No: 20-02 of_70_					
PROJEC	CT NAME: LOADING	SYSTEM PROJECT	CLIENT: WESTINGHOUS	E HANFORD	(OMPANIN					
CALCU	CALCULATION TITLE:									
STRU	STRUCTURAL EVALUATION OF GANTEY (MAST FOR MCO LOADING SYSTEM									
PROBLE	PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:									
THIS	CALCULAT	ION EVALUATES GANT	TRY / MAST F	OR HANFOI	20 KEAST					
ANDI	K WEST !	BASIN MCO LOADING	System FOR	STRUCTURA	L ADEQUACY					
PER SI	PECIFICATI	ON WHC-5-0546 RE	V.O AND N	AC DOCUM	R/D					
					10					
										
Revision .	Affected Pages	Revision Description	Nam Of F	e and Initials Preparers & Checkers	Project Manager Approval/Date					
0	[THE 70	ORIGINAL ISSUE	RAMES Leroy GA	H PATEL RP BUHOP 12 197	Anna Albur 6-4-97					
					*					
					. 3					

E-47
Design Report H Hanford K East & K West Basin MCO Loading System

v,

Wo	ork Request/Calculation	on No: EF444-20-02 Revision	0				
Sc	ope Of Analysis File:	THIS CALCULATION EVALU	ATES GAN	TRY /	MAS	T SYSTEM FOR	<u>π</u> .
Re	view Methodology:	Check Of Calculations Alternate Analyses Other (Explain)	M				40
Co	nfirm That The Work I	Request / Calculation Package	Reviewed	i inclu	des:		
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis i Statement of Conc	ose Anatysis ions Record Iusions / Recommendations (if applicabl	e)		MA 716 716 716	
Step		Activities	Veri	fication			
2	A. Are the required 1. Material pro- 2. Geometry (r 3. Loading so: If a support define the ic defined? B. Are boundary cc Is the method of cashe	data input complete? perties drawing reference) urce term ing analysis is required to had state, has it been inditions acceptable?	ר גנגר				
3	Is the worst case loading	configuration documented?	V				
4	Are the acceptance crite	ria defined and complete?					
5	Has all concurrent loadin	g been considered?					_
6	Are analyses consistent approach?	with previous work for method and			v	NEW CALC	+
_	Are the records for input	and output complete?		+	-+	PK4	+
-	Is traceability to verified s	oftware complete?	1		-	CAT 3	┨
	and acceptable for the pr purpose?	isions and recommendations comple oject and objectives of the defined	ete 🗸				1
e R	or BISINP fully	mt 6/4/9	2				-

Design Report Hanford K East & K West Basin MCO Loading System

4

	TABLE OF CONTENTS	
SECTION	DESCRIPTION	PAGE
-	CALCULATION PACKAGE COVER SHEET	1
-	INDEPENDENT DESIGN VERIFICATION CHECK SHEET	2
-	TABLE OF CONTENTS	3
1-0	INTRODUCTION (PURPOSE	4
2.0	METHODS OF ANALYSIS	4
4.0	ASSUMPTIONS / DESGEN INPUTS	4
5.0	SUMMARY OF RESULTS / CONSIDER AS	5
6.0	REFERENCES	68
		10
	•	
	· · ·	

NAC International Inv			
Project MLO LOADING	Checked By: R.P.	Date: 6-4-97	WRR No. EF444-20-02
29312402		Date: 6-4-97	Page 3 of 70

Design Report Hanford K East & K West Basin MCO Loading System

4.

444-R-01 Revision 0 Volume 1

	· ·			_
•				
1.0 INTRODUCTION	1 / PURPOSE			
THE PURPOSE C	OF THIS CALCU	ATION IS TO EN	ALUATE THE	
GANTRY / MAST	FOR HANFORD	K EAST AND	K WEST BASIN	
MCO LOADING	HSTEM FOR 17	S STRUCTURAL	ADEQUACY PER	
SPECIFICATION U	JHC-5-0546	REV.O AND N	JAC DOCUMENT	
NO. 444-5-01 Ref. DWG # 444-215	LEV.O REV.O MASTW WHC DW	ELDMENT, MCO G NO: H-1- 8289	LOADING SYSTEM	
· DWG # 444-211 RE	V-O GUIDE SUE WHC DWG	NO: H-1-82889	OADING SYSTEM	
. DWG * 444-232 1	LEVIO DRIVE SU WHC DW(B ASSEMBLY, MC & NO: H-1-82903	o LOADING SYSTEM	
DWG + 444-220 R	EV.O RAIL SUBASS	HA DWG NO: H	(NG SYSTEM_	
2.0 METHOD OF	ANALYSIS		- 52 870	
HAND CALCULAT	ONS USING a	LLASSIC TEXT B	OOK SOLUTIONS	
ARE USED TO ST	RUCTURALLY EVA	LUATE ALL A-PP	LICABLE ITEMS.	
ACTUAL STRESSES	ARE THEN CO	MPARED AGAN	UST AISC-ASD	
CODE ALLOWABLE	STRESSES. LOTU	S 1-2-3 RELEAS	E 4 IS LISED TO	
THE WEIGHT	s and detern	INE THE GG.	CCENTER OF GRAVITY	Л
3.0 ASSUMPTIONS /	DESIGN INPU	TS		
THERE ARE NO	INWERIELED A			
CALCULATION. 41	LOCIABLE CON		MITHIN THIS	1
ALSC - ASD MANU	H. REF & LG	AND REF A	is are used per	
MATERIAL	-,		••	
TIMELIAL PROPERT	B. TP	304 S.S. STEE	PL	1
ASTM A-36	FY	= 30000 PSL		1
Fy = 36000 psi	Fu	= 75000 PSC		
FL = 58000 PSI	E	= 27.6×10* Ps	ć	
E = 29 x106 PH	V	= 0.305	2	
Rs = 0.288 #/1N3	22	= 0.288 # [/N		
Prep MCOLOADING	red by: R.P	Date: 6-4-97	WRR No. EF444-20-02	
SUSTEM_ CHE	ed ey: M	Date: 6/4/97	Page 4 # 70	1

E-50

Design Report Hanford K East & K West Basin MCO Loading System

4.0	ANALYSIS DET	AIL				
	This structure i analysis is requ only.	is classified as nired. The sur	non-safety ea ucture shall be	puipment and therefore designed to resist d	ore no seismic lead and live load	
	The following	Seven nages a	re spread shee	te summerizing the	which and CC	
	location for var	ious configur	ations. Sketch	es following the spi	read sheets identify	
	the items tabula	ated with a de	tail tabulation	of item weight and	location following.	
	NOTE The indi	ividual item n	umbers used f	or the CG location d	etermination are	
. •	not the	same as the m	aterial item m	mbers shown on the	e drawings.	
						×
						×
						·
						×
					· ·	×
					· ·	
MAC	International Inc.	Prepared By:	RP	Date: 6-4-97	WER No. EF444-2/	202

Design Report Hanford K East & K West Basin MCO Loading System

ISPREAD SHEET FOR COLOR	ATTON FOR WAST AND CANT	1000000000		
TTU RESEARTION	100			
I MARE CHORS TURES	AFA THINKY SKYN Y		* *	2 40
2 BASE LATERAL ANGLES	2 84 L1 8X1 5X 188817	31	8 8 7 3	
A MAGE LATERAL TUBES	2 EA THUR 2422	4477	0 0 7 313	14 0 0 10 11 11 11 11
BRIAST VERTICAL ANGLES	4 BA LAKAT 240225	\$115	0 0 7 764	23 15 1040 15
BIMAST HORIZ TUBES	TTS SX5X 188X100	61.85	0 0 1746 1076	3 8 8
D BAAST HORIZ ANGLES	L 1.6x1.6x 148x100	18.3	0 0 118.65 1815	<u><u> </u></u>
11 MAST HORE ANGLES	1. 1. S.X1. S.L. 184X102	16.3	0 0. 43 45 9707	
13 MAST HORE ANGLES	4 1.5X1.5X 101X102	153	0 0 3545 544	8 0 0
TS MAST DUAL ANGLES	1L 1.5X1.5X 184X131 47	15.3	0 0. 4645 448	0 0
17 MAAST DIAG ANGLES	L 1.521.52 1002131 47	18.72	0 0 132 45 2811	1 0 0
18 MAST DIAG ANGLES	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	18 72	0 0 77 25 1523 3	<u> </u>
21 MAST DIAG ANGLES	1 1.5x1 6x 100x131 47	1977	0 0 22.05 434.82	
22 MAST DIAG ANGLES 23 MAST DIAG BRACE WELDWENT	11 1.5X1 5X 188X131 47	1872	8. 0 42 15 401.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 ISDE PLATES	13023 5X12 3EA	40.61	0 0 306 11234	
THORNE SHALT		8 37/	0. 0. 3 121.8	1176 1180
SO CLANTRY REARINGS	147 DA 1717	144	0 0 200 44	1375 47.6
23 MOTOR BRACKET BASE	LEX14KB	110 14.	304018 35 355	4 440
STANTOR BRACKET BOTTOM	1351 ALLA 20.77	11.04	1 1784: 373: 4013	4 47.64
37 MERT RAL SUPPORT	HEA	18.17 18.8	1 200.106 -46.3711 -7003	4 47.64
30 NERTICAL RALS SO ISCREW DRIVE BRING SUPPORT	24A 1.0004X10125		0 78.375 6740.25	0 0
41 MALL NOT	4400.975	54.00	01 37301 39423	6
42 DRME SHUT	CAPROX 110 CUIN	835	0 37 3 44414	<u> </u>
AN MENDING HOUSING MOUNTING LUC	IALEA & O THICE 1.0	171	0 3478	0 0
46 BEARING BPACER	7. MODIA MOX4	20.33	0 345 366 75	<u> </u>
40 IBRARE DELK	107Y 1 11400X 375	14.87 2	0. 41.821 418.80	<u> </u>
BO BOTTOM HOUTING CAP	110 80000 7500 8000	21	0. 41371 3131151	0.0
STROUSING	10.000X7 7740X10.57	134.38	0: 37.62 406.5	8 8
53 NERT GUIDE TUBE BEARING	DEA SIDE	43.26	0	01 0
SO WERT GUIDE TUBES	BOMMOTIONEN TUBERCES	255 0	0 170 1530	0 0
ST LOWER THE BAR	WEA 144 THES S	1244 0	0: 173 3751 147718	<u>6</u>
SOUGHER MALER TUBE	200x1.8750x11	123 0	0 41 4140 6	0.0
STINNER TUBE ADAISTER	DIALS SLONG	425 0	0 47 -147.5	8. 81
AS LVOT TUBE & HARDWARE	204404 878X4 RODS	1 24	0: 47: 444	0 0
ASIOUTER TURE	CODA 1 67540X130 61	15 0	0 -14074 34111	145 446
67 BALL SCREW	1.825DIAX17LONG	10 0	0: 337 5: 3376	0 0
44 FAL BAFE LATCHES	STATISTICS AND	10 0	0 154.85 31164.5	0 0
TO IDIAGONAL BRACE TUBES	Dia x 25 x 63 37x 264	406 0	0: 45 125 -1276 6	75 304
TSIENAT BRACKET	LSKT 25KE OTY 4	251 0	0 0251 121 175	0 0
TO PLATE UNDER TEAKAR 25	L 816 727 3 OTV 6	42.54 0	446.54 06 10704	13 75 345 3
TALENCLOSURE FLATES	L 125-2403 1 07V 4	100 0	0 4280 4283	18 5 1860
SO MACHINE PLATE	L SIE SIS OTY 2	1378	0 0.25 00.56	50 5 360 72
TOTAL		201		0; 0;
	Meio	in the second se	43425	11317.0
	CG COORDINATES	L .	4 3118 Tr . 12 10012	24333
TRANS NOT USED IN CO PART THE				
DIRACK CEAR	SECOND LOOKY	181: 0.	6 20 100	
DI MACK BURNONT ANGLE	100 01Y 2 1	W2: 0.	0 103 87324	21 1246 8
TIDAMTRY AND TUBES	4242,312117 CTV 2	200 0	0: 04571 7134511	24: 3016.2
TOTAL		A7!	478	1784 - aliao 14
	MERO	1	3066.8	10057 %
	COORDINATES	b -	ON . 4.18242	21.0752
C International Inc. Pres	wered By: RP		Date: 6-14-97	WIR NO SEAAA
HEC LOADING	ted By An		0-4-77	
SYSTEM	m.		Date: 6/4/9)	Page (o ef

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

•	INPREAD SHEET	OR COLOCATION FOR MALT AND	CAN'NY WITH MART D			
	THE NORSCHITTON	14025	ANE KONT &		-	
	I MASE CROSS TO	ES A EA YEAKAY SAVA	375 94			
	2 BASE LATERAL	ACLES 2 EALT SKI SK 18	LK17 \$1	<u> </u>	7 1022 0	<u> </u>
	4 MARE LATERAL T	URES DEACTARE	44 77	<u> </u>	7 466 0	<u> </u>
	SHASE LONGITUD	HAL TURES IS EA TEAMAR HAS	1.5 \$64.60	<u> </u>	7 748,23 15 1	07 801
	7 MAST HORIZ TU	ES ///S SELL 1482108	5 511.5 61.63	0 0 000	5 507154 O	•
	BINAST HORE AND	LES IL 1.6X1.6X.148X102	153	0 0 1462	2237.65 0	
	10 MAST HOR 2 AND	LES IL 1.5X1 SX 198X102	1113	0 0 1186	1815.25 0	
	12 MAST HORIZ AND		153	0. 0 4345	\$70 785 0	.
	13 MAST HOREZ AND	LES IL 1.5X1.5X (MEXINE	18.3	0 0 34.65	- 548.505 - D - 441.61 - D	8
	15 MAAST DIAG ANG	L 1.5X1.5X 141X127	47 19.72	0 0 4845	-046 30 0	<u> </u>
	17 MAST DIAG ANGL	5 0. 1 Ax1 Ax 186x131	47 1972:	0 0 1245	2611 01 0	
	18 MAST DIAG ANGL	5 4. 1.4x1.4x 100x131	19.72	0 0 104 65	1523.37 64 0.	<u> </u>
	20 MALST DIAG ANCI	5 <u>A. 1.5X1.5X.160</u> X131	47 18.72	0. 0. 4986	679 CM . 0	-01
	27 MART DIAG ANGL	3 1. 1. SX1 SX 188X131	18.72	0. 0 -18.85	30165 0	-*
	23 MAST DIAG BRAC	WELDWENT TRACK 244.1 MIL	100 328.00	0 0 4213	431.21 8	
	SINDE PLATES	245014312 284	40.61	0 0 3	121.40 0	6
	27 IDANE SHAFT	GEAR BOX	66 373	1 3818 a 3781	4441 13751 3	100
	28 IGANTRY BEARING		-	0 0 0 0	0: 1375 e	7.5
	SO INCTOR BRACKET	ASE LEXHOL	110. 18.	30401 38	3460 41	440
	34 MOTOR BRACKET	DES 215 AREA 8027	11.66	5 178.41 -37.51	444.6	
	MINOTOR PULLEY		15 1 10 10 1	1 201.00 44 11	418 73 4 47	<u>.</u>
	MINERTICAL RALS	CEA 1.00DIAX1E1 95	24	0 0 78.375	1754 6	
•	40 ISCREW DRIVE BAN	3 SUPPORT Prot 1 \$22 5022 5	170.0	0 1 34.375	40007 61	-
	41 BALL NET	CONTRACT CHARGES (S	4.25	0 0 373	-2166.2 0	ă.
	43TOP BEARINGS	INTY 2		6 6 37 2	-1641.8 0	8
	44 IBRING HOUSENG MC	UNTING LUG WHEA SO THIS 1.0	17	2	-1034 4 0	1
	4 INCARING BRACES	2.5 LA EA OTY 3 7.8800x8.80x4:	7.5	0 34.81	384 75 0	ŏ
	40 IBOTTOM BEARING	10TY 1	1487	0 41,82	414.60 01	8
	SOUNCE PLACEY	740000375	29.4	0 41.141	404 7 0	ě.
	51 HOUSING	110 BODX2 7540X 5425	13.00	144 (20 10	404.5 0	8
	S3 NERT GUIDE TUBE	HO BODX4 64/DX 84	18.07 6	0 42.31	442.00	휢
	AN WATEROTATION SPL		<u></u> *	0 44.5	5401 8	<u>ğ</u>
	SOUPPER TE BAR	HAREA 91 THIS 3.25	5 25 0	0 -122.5.	33786 0	8
	SOLOVER TRAVEL GUID	AREA 144 THES 3	1244 8	0 3415	30913 0	ត្ត
	SOUPPER PRIER TUBE	200x1 #7540x11	1,23 0	0 250	30mm8 0	ğ .
	STIPHINER TUBE ADJUST	R 20444 BLONG	425 0	0: 357	403 0	6
	ADILVOT TUBE & MARDA	204424 875X4 RODS		0 457	22616/ 0/	릚
·	ASTOUTER TUBE	200x1 87540x136.61	13 17 45	0 380741	-1040 -7.45 -48 5	
	AL MCO GRAPPLE	11.62504AX17LONG	10 0	01 336 11	64407 6	5 ·
	BICAMERA AND MOUNT	NG	30146 0	0 3315	3081 0	5
	72 DIAGONAL BRACE TU	LAREA 21 THE SHIPLES	15 0	0	0075 01 0	
	73 IDUTRICICER PLATES	OWER PLAKE STJ S DTY 4	131 0	0 Mel 24	3 76 27.6 257	đ
	7518HALT BRACKET	PL ST 25X4 OTY 4	251. 61	0 027 1	7377 0 2	
	TEIPLATE UNDER TEAXAL	25 PL SIS 727 3 OTY 6	42.36 0	0 00 1	0 704 13 73 345 3	4
	TO ENCLOSURE PLATES	PL 12122425 1 0TV 4	100 0 46 75 A	0 4,280	429.3 18.5 7850	1
	BO MACHINE PLATE	PLATES IPLANE SUS OTY?		0. 0.3	1.61 301 01 0	
	TOTAL		Ø	0	M18 0 0	
			4373 81	-1363 8 -18		
		CC COORDENATE				
		NATH SCREW IN FULL DO	NAN POSITEM	403116N	344 2 . 741356	
	ITEMS NOT USED IN CO	CALCFORMAST				
	SO RACK GEAR	122 SKCAUX 104PH LG OTY	101: 6	0 30 3	100 M 4927	
	31 PLACK SUPPORT ANGLE	ALBOAK SALIDE OTY 2	140.2 0	0 102 57	34 34 1348 8	
	TI CANTRY MAL TUNES	T\$4243, 3123117 0TV 2	1423 0:	0 0237 713	24 40808	
	AUTAL				478 46 784 4880 54	
			WEIGHT		48334	
		CC COORDONATES				
				017 . 42	104 ji o 31,8744	
NAC inte	ernational Inc.	Prepared By: D.D		1 11 00		
	MOLONU		Uart	6-4-37	WIR No. EF44	4-20-02
Project:	SYSTEM	Checked By: M	Date	114100	Base 7	
		1/2		0/4/97		ef 10

E-53

Design Report HNF Hanford K East & K West Basin MCO Loading System

4

γ.

444-R-01 Revision 0 Volume 1

Description Description Description Test part to be called a start and to be c						
The Mathematical Applie <	BAREAD BARET	CICCLE CALCULATION CONTRACTOR	Mark Contraster			
Image: http://www.image: http://wwww.image: http://www.image: http://www.image: http://www.image	THE MODEL CAR AND	422	MELONT IX			
Name Name <th< td=""><td>1 MASE CROSS THE 2 MASE LATERAL AN</td><td>A EA TRAVER HURS</td><td>13 14</td><td>0 0 7</td><td>1000</td><td></td></th<>	1 MASE CROSS THE 2 MASE LATERAL AN	A EA TRAVER HURS	13 14	0 0 7	1000	
Table Construction Total Construction Total Construction Total Construction Total Constre Construction Total Construction	3 MASE DIAGONIAL A	ALLES DEALTSTICT	12.6 0.0	8 8 7	187 0	
Total Property and the interaction of the second	STRATE LONGITUDIN	AL TURES 2 EA TEAKOR SUIST	44.77	0 0 7	311.10 20.777 60	7 401
····································	7 MALET HOREZ TUBE	GLES 4 EA LAXAX 24 (24)	811.6	0 0 40.55	307156 0	बर्झ
	B MAAST HORIZ ANGL	1 IL 1.4.X1.6X 146X100	183	0 0 1748	10784 5 0	-÷
	10 MAAST HIGHLE ANGLE	3 IL 1. SX1. SX 1482100	143	0 0 114.45	1813.35 0	- č
The second sec	12 MAAST HORE ANGLE	4. 1. SX1. SX 188X102		0 04	070 785 0	*
Table 1 Table 2 Table 2 <t< td=""><td>14 MALET HERET ANGLE</td><td>4, 1.5x1.5x 100x100</td><td></td><td>0 38</td><td></td><td></td></t<>	14 MALET HERET ANGLE	4, 1.5x1.5x 100x100		0 38		
1 1	10 MAAST DIALS ANGLES	L 1.5.41.50 100/131 47	18.72	0 4545	3154 10 8	
	10 MAAST DIAG ANGLES	1. 1.521 52 1362131 d7	18.72	0 12045	B11.81: 0	
11 0007 1000 100011 1100 1000011 1100 100011 1100 100	20 MALET DIAD ANGLES	A. 1.6X1.5X 184X131 47	19.72	0 7735	199 27: 0	- Star
Statistics Statist	21 MAAST DIAG ANGLES	IL 1.4X1.4X 140X131.47	19.72	0 206.	04 828 0	0
State in the second s	20 MAST DWO MALE	CLOWENT TRAXES SHE 1. ST. AT	11.72 8	0 4215	431.2 0	
В развити залица Ван дос. Ban doc. Ban doc. <td>2 BLOI FLATES</td> <td>128/023 6X12 28A</td> <td>40.61: 0</td> <td> M.E. 1</td> <td>12147: 0</td> <td>š</td>	2 BLOI FLATES	128/023 6X12 28A	40.61: 0	M.E. 1	12147: 0	š
Biology and State State Biology and State	27 DRIVE SHOTTOR & C	AN BOX	40.81 07.84		171.45: 0	ě
Statistical and price a	22 LECREW DRIVE LATIN	Total and	144	01 0	6. 1375 417	3
Expering Expering Ball, MAR RET. Title Fill That Had Addite	13 SACTOR BRACIET BA	A ISTOR	110 18.85	2040.51 301	3840 1276 2351	
The event of the second seco	25 MOTOR MACKET BO	TON LAXID 21128	11.8 13	17541 3751		2
BATCHERA, ALL BATCHERA	37 MERT RAL SUPPORT	444	1511 188	201.000	18.73 41 470	5
	MISCREW DRIVE LINUS	BA 1 CODAKIES 25	241 0	0 78.375 4	784.6	5
CONSTRUE Description Description <thdescription< th=""> <thdescription< th=""> <t< td=""><td>ACTECATIVE DRIVE BRING &</td><td>UPPORT L'LOCULETS</td><td>170.61 0</td><td>0 323: 4</td><td>207 0</td><td>6</td></t<></thdescription<></thdescription<>	ACTECATIVE DRIVE BRING &	UPPORT L'LOCULETS	170.61 0	0 323: 4	207 0	6
Status Status<	CORNE SHOP	ANNIAL TIS CU M	4.35 0	61 47.26 3	321 8	2
Statistical Internet Directory 1/2 0 3.8 0 3.8 0 3.8 0 0 3.8 0 0 3.8 0 0 3.8 0 0 3.8 0 0 3.8 0 0 3.8 0 0 3.8 0 0 3.8 0	44 HERENG HOLDENG MOLEN	THIS LUG WARA & D THIS I A	20741 0	0 3738	M14 0	1
2 20100 ELANSE DY THE CALL 2000 ELANSE DY THE CALL 2000 ELANSE DY THE CALL AND THE	45 COAD CELLS	125 LB RADTYS	7.6 01	0 333 4	4.85 0 0	
d Dirk Nature House Products House P	47 IBCTTOM BEAKING	IOTY 1	14.01	0 3887 38	14	1
1 - собрая Собрая	40 UDENTE PULLEY	11400X375	164 0.	0 01 141 4		1
El vert inset inset insettion social instr is is< <td>51 HOLISHIG</td> <td>110.800x2.750x.825</td> <td>13.60 8.</td> <td>0 43.64</td> <td></td> <td></td>	51 HOLISHIG	110.800x2.750x.825	13.60 8.	0 43.64		
	53 VERT GUIDE TUBE BEA	IIO.BODIA 640X.84	18.071 01	0 37.0 40	87 0 0	
B (C) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	SI VERT GURDE TURES		5136 0	0 443 38	01 <u>8</u> 8	
B OWA TRAVE CODES BOUNDARY 201	ST LOWER THE BAR	UNEA BI THICS 125	46.2. 0/	0 .195 .37	H 0 0	
Construction	58 OVER TRAVEL GUIDES	12DialoThec 2EA	1264 0	0 2465 30	13 0 0	
L DORT TWARL DORT L DORT TWARL DORT 0.0007 TWARL DORT 0.0007 TWARL DORT 0.0007 TWARL DORT 0.0007 TWARL 0.0007 TWARL 0.00	60 AR CYLINDER	20041 8750211	123 0	0 37125 333	0 0	
L LOUR A TRANSMENT TO TRANSMENT	62 DALA TRAVEL ROOS	20MACH BLONG	425 0	0 378 4 110	5 0 0	
	AA LOWER WHER TUBE	11 7500x1 6770000 68	13 745	4 4 30 30	N 6 5	
	S SUTER TUBE	4 500X40X170 42	13. 01	0. 34074 4381	1 0 0	
ALCOURT CONSTITUTE OF ALL THE FORMENT OF ALL	BI CAME RA AND MORENTING	Treatoed T/LONG	201451 01	6 475 d	5 0 5	
Протисов в сиги токи Реселенных сиги токи Реселен	72 Descent ALLES	WEATI THE SHIPLES	101 0	0 400 76 4007		
13.830/19.02007 10.000 0 <th0< th=""> <th0< th=""> 0 0</th0<></th0<>	73 IOUTRICIER PLATES LOW	TR PLACE AND SOTA	106. 0.	0 344 3087	7 0 0	
Настояние Солодинали со состание Сост	TS ISHAFT BRACKET	HIS STANDOTYA	25 11 0	0. 0.251 121 17	5 01 0	
	TTITE BAR	CHILGOTY 2	42 3075 4	0 475 1076	1375 3465	
ПОТА	TE KUTRUGGER DAGONAL PL	ATES HE STE ATE OTY &	M75 0	0 4383 439	185 1860	
Intra. 3500 6 7 441.13 6 6 WIDD III UBD III UBD III UBD IIII UBD IIIIIII UBD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LOADED BALLET	A CONTRACTOR OF THE OWNER	11370 0	0 0.25 m f	385 3872	
Model	TOTAL		1000 0	0	8 0	
International lac. International lac. Preserved by: <		M	GHT -13		11817.8	
Image and the control to the		CG COORDINATES	4. 01			
Infinite up of (abb bit (2) Cut: for cut: (1) Cut		DOWN I	Carl Die		1.53075	
Biology Process Biology Proces Biology Process Biology Pro	INTERS NOT DEED IN CO. DA	die man				
3 MACE LEAPORT MEET 1002/mix Aux (LeavOrt) 100 (1/2 m/2) 100 (1/2 m/2	SO BACK GEAR	122 MICHAER LO DTY	-			
11 Good Mark Mark (1994)	TO KOANTEY BALLE	LECT STOR OTY 2	812: 0: 1992: 0:	0 102 573.54	24 4344	
ROTA 0 3 2010 1011 2010 MADDAT 0 2010 2010 2010 2010 MADDAT 0 2010 2010 2010 2010 2010 CE COMPANITY 0 0 2010 2010 2010 2010 CE International Inc. Prepared By: P.P Date: 6 -4 -97 WRR No. EFE 444-20-02 Systemut Systemut Date: 6 -4 -97 WRR No. EFE 444-20-02 -02	TI CANTRY RAL TUBES	TE4243.312X117 0TV 2	143.5 01	0 0457 713051	34 40001	
WRST 0 WRST COLOMBALING 0 WRST WRST COLOMBALING D COLOMBALING WRST P D STOTOL COLOMBALING COLOMBALING <th< td=""><td>nio/At</td><td></td><td></td><td>0</td><td>18 Yes 4860.50</td><td></td></th<>	nio/At			0	18 Yes 4860.50	
Control line Prepared By: P.P Data: 6-9-7 WRR No. EF444-20-02 international line Micro Longonuch Oseched By: MI Data: 6-4-97 WRR No. EF4444-20-02		Millio	en '	0 1000.0	14557	
C International Inc. Prepared By: RP Data: 6-4-97 WRR No. EF444-20-02		CG COOKINGATIS	R -	ew -		
HIC LOADING Checked by M Deter (10100)	C International Inc.	repared by: R.P	Date		31.574	
	SYSTEM	Decked By: M	Date	(1010)	WAR ING. EF4	44-20-02

E-54

HNF-SD-SNF-DR-004, Rev. 0

Design Report Hanford K East & K West Basin MCO Loading System

v,

					August 1997	
	ISMEAD SHEET	FOR COLOCATOR FOR MAST AND GA	WITH WITH MALET DE	SALAND LOAD WITH LOD		
1.	THE REPORT OF THE	807		the second s	MAN ECCENTRICTIV	
- F	A MARE PROVED IN				2 441	
	2 MASE LATERAL	ALLES DEALS AND IN	<u> </u>	0 0	1022 0 0	
	STRASE DIAGONAL	ANGLES 2 EALI SAL AN ANT	<u>a ii</u>	<u>* * +</u>	337 0 0	
	SHALL LONGITUD	MAL TURES DEA TRAVAL PARTS	1/20 44	0 0 7	313 30 20277 807 801	
	BIMAST VERTICAL 7 MAST MEMORY THE	HOLES 4 EALANAX 2502223	\$11.5	0 0 0000 7	780 23 15 Heat 35.	
	S MAST HORE AND	15 //15 30312 1002100		0 0 1746 1	10794.5 0 0	
1	S HEAST HORIZ AND	LES IL TAXIAL IMAXIO	153	0 0 118.65 1	23745 0 0	
	11 MAST HORIZ AND	11 1.5X1.5X 180.102	15.3	0 0 91.66 1	15.35 350 0 0 0	
1	12 MART HORIZ AND	ES 1. 1. 5x1.4x. 188x102	183	0 0 10 0	10785 0 0	
	14 MAST HORE ANG	ES EL 1.5X1.5X 140X102	15.3	0. 0 38.86	Alt al 0 0	
1	15 MAST DIAG ANCLE	3 L 14x1 \$x 18x131 67	18.72	0 14000 5	44.50 0 0	
1	17 MAST DIAG ANGLE	A 1.5X1.5X.100(131.4/	19.72	6 0. 11245 30	A1101: 0 0	
	18 MAST DIAG ANGLE	5 IL 1.6X1.5X 100X131 27	10.72	0 0: 77.25 15	17.64 0 0	
	20 MAST DIAD ANGLE	1 1.5X1.5X 100X131 4/		5 6. 4663 BY	100 0 0	
	21 WAST DWD ANGLES	5 A. 1.6x1 5x 146x131 47	18.72	0 -11.45 3	4636 0 0	
	23 MAST DIAG BRACE	WELDWENT TRACINCIAL LAST AN	117	0 4215 4	0121 0. 01	
	BILLE FLATES	1.25023 \$X12 28A	40811 0	5 0: 3i 17	A	
	26 CANTRY MOTOR &	GEAR BOX	40 61		110 0 0	
1	28 IGANTRY BEAKSKO	11 437 Dia X 73.78	- MI 0		AL 1375 487.5	
	32 ISCREW DRIVE MOT	OR & GEAR NEAD	110. 18.8		.000 12 70 2361.83	
	34 MOTOR BRACKET S	ALL LAXION	1813 1212		400:	
I	25 MOTOR MRACIET BY	OTTOM (SX10,711X8	11.76 17.1	1754 3731 4	44.5	
1	37 WERT RAL SUPPOR		1511 18.55	30,908 -0.371 31	173 di 47.04	
1	SI MERTICAL RALS	DEA 1.000MAX182.25	2241 0	0 78.375 175	A6 0 0	
1	ADISCREW ORNE MUK	SUPPORT PIPE 1 St22 St22 3	172.61 0	0 3435 40	23 8 - B	
1	41 MALL NUT		8231 0	0 3730 310	A2 0 0	
1	STOP BEARINGS	KATPROX 110 CU M 1		BI		
	45 ILOAD CELLS	ATTING LUG LAREA & O THOS 1.0	171 61	0 -315		
1	4 BLARING SPALER	7.800046.80743	73. 01	0, 348 344	256 0 0	
	47 IBOTTOM BRANDIG	IOTY 1	14.87: 01	0 -11.67 -78		
1	40 TORINE PULLEY	116044.3/3	104 D:	0 41 14 40	7 8 8	
	51 HOUSING	AP 110 BOOK2 7580X 5825	13.66 01	0:		
1	52 ITOP HOUSING CAP	110 80034 844DX 84	134.36; 0'	0 37.82 308	<u>d 8 8</u>	
1.	MINANTI-ROTATION SPLT	ARING CEA SIDE	10 1414	0 411 544	8 0 0	
	SOMERT CODE TUBES	INCOMENTATION OF THE PARTY	255 01	0 30 -1	<u>a a a</u>	
	ST LOWER THE MAR	LAREA 01 THICS 3.25	65.2: 0	0 -14 625 -1416		
	SHIDVER TRAVEL GUIDES	S IT2DIAZ?THK 28A	1244.0	0 3415 3081	<u></u>	
	BO MAR CYL BOER	200x18740x11	1.22 01	0. 37125: 3000		
	AZIOVER TRAVEL ROOS	E 12Deale R. ONG	435: 01	0: 371 442	<u>s ö ö</u>	
1	ADILYOT TURE & MARDING	ARE	- 34	0 .287 .3267	0 0	
1	ASIOUTER TURE	200x1 #7360x136 61	18 0.	0: 350741 4281	5 76 48	
	BE NICO GRAPPLE	IT SISDAXT/LONG	10:0	01 398.31 4460	//	
1	MICAMERA AND MOUNT		301 44 0	0. 38 15 300	<u> </u>	
	12 DUACONAL BAACY TH	WHEA 21 THE & MUPLES	10-01	0. 408 751 4087 3	<u> </u>	
1	THOUTRECER PLATES U	ANTER PLEVESSISOTY 4	63.6. 0	0. 388 3405 W	7 6 704	
	74 COUTRIGGER PLATES UN	FRE PLAT 24X6 OTY 4	251 07	0: 025 121 175	1 0 0	
	TE PLATE UNDER TRAKER	35 PL SKE 7X7 3 OTV 6	174 3075	Lasta: 08: 10704	13751 3453	
	TETE MAL	04160TY2	100 0	0: 475 200 736	12 78 640 683	
	To IOUTRIGOER DIAGONIAL	PLATES IPLAXA SUS OTY 2	A 73 0	0 414 30415	10.5 1000	
	ROADED BALLET		113 76 0	0 925: 4811.6	30.51 300 721	
	TOTA		2750		131 4000	
		NWEP	KAHT	1000 () () () () () () () () ()	11467.0	
		CG COORDINATES	- a			
		MITH SCREW IN FULL DOWN	POSITION	1820 17 .	2.50076	
	TIEAS NOT LEED IN CC.	CALC FOR MAST				
	ED RACK GEAR	DE SECONDE LO OTY	101; 0	0 20 3430		
	TO COMPARY BURPORT ANGLE	13 MILE SE 100 OTY 2	143: 0	0 10.2 573.34	241 1348 8	
1	TI CANTTER BAR, TUBES	TEAM STATUTION	H13! 0	0 040 71301	34 4000 8	
	TIOTAL		200	0 1 474	18 7841 4880 88	
		MAY		0	14625.7	
		CO COMPANY		+		
				6W . 4303417	·	
•	NAC International Inc.	Prenared But 0.0	10	_		
n.	1100 10000	rispence ay. pup	Dar	#: 6-4-97 1	WIR No. SEALA	A
	Project MLD LDADING	Checked By: M			C.F 2.9444	-20-02
		115	Der	# 6/4/97 1	Page 9 /	et 70
				Name and Address of the Owner, where the		

MCO Loading System Hanford K East & K West Basin Design Report HINE-SUF-DR-OO4, Rev. 0

2

0 noisiveA

10-X-444

I	volume

		01 .		_ 0/ 9/) :sound		un/	hecked By:	PNION TO LONNE
20-07	***	13 ** *	AAS	6-2-2	:#URG		88	. Ag pavedar	A
	1	7	1	1	-	I NOLL	CONFIGURA	ONIGHINS ON	
5,43681	+;	711902 92		1	_	NOLLISO	A AR TINS N	WILH SCREM	v
	1		1	Alter		• ×(SETAM	03000 00	
00.0018	Ţ	0.00140	1	_		LHOH	JAN .		
W. 7814	+	A ACTOR	·	6.EBET-		69.1946			TOTAL
9	0	91955	6.84-	10	10	182'511			
11.696	19.45	195.36	28	10	10	196'6	72	TO SXE BXE . IS	INACHINE PLATE
1990	5.81	5.925	682.1	10	10	92.98	101	SCX+2*521 14	IENCTORING DIVIER
240.082	15.78	200.735	94.9	0	10	192 29	944	2110 91 12	STYLING THE STYLING
396	STEL	11.6161	19'0	85 895-	51'00-	198.51		5.14	I THAT BRACKET
<u> </u>	0	121.121	1928	-10	10	52.11		O 9XS2 LXS 14	IOUTRIGGER PLATES UPPER
1152	54Z	34.255	36.6	10	0	9'66	2 31X SEV	3 X 85. X AKI 0	STORES BAYES LOWER
5.36-	577-	15.Meric	120.941	0	10	501.45			INVERSE
	0	19 1171-	15.95-	10	0	18.621	007222X0	1788.1X0027.1	JPANORAH & JBUT TOVI
	0	19.17741	1845.571	10	10	82'51	2 3 2 2	WHEN BI THKS	TOWER THE BAR
	10	10051	19.72	-10	10	552	SEZXER	WWOLXWWOS	IVERT GUIDE TUBES
	0	L CRSZ-	5.83-	10	10	192'50		2010 427	BUILDE NOTATOR-TUAL
	0	CO 299-	12.22	0	10	140.81	PØ XC	IN BODX4 BAIL	UNAST GUIDE TURE READING
	0	12,800	25.25	-18	10	124 28	. 15.01X01	ATT TXOOB.OP	SURVEY
	0	6'10C1-	145.94-	0	10	8 62	9695 XC	10.60DX2 750	BOTTOM HOUSING CAP
	0	4'858-	96.18-	10	10	18.81		925 X0091-	SBOKE BITTER
	0	91.997.	19.85	10	0			1110	BOTTOM BEARING
	0	\$1.885	5.	10	10	-54		UN 9300987	
	8	198.95	1975	10	10	21	015	WHILD'S VERY	BRICE HONZING WORKLING THE
	ŏ	9.1281-	192 /S-	10	10	17/.62		0113	SDNIRABE GOT 5
	0	1162-	82-	0	10	192.8	MILL.	ULL XOBAAV	LIVE SHAFT
	<u> </u>	12.29855	82.72	10	10	90.95		STE XEXAL	TROUGH SUNE BRING SUPPORT
	ě –	192'07/9	196 94	10	10	199	9.22	X972X91 14	THOPPORT BRING SUPPORT
	9	19.2271	945.84	10	10	19722		NEV.	
0.18- 1	<u>-</u>	2001-	145.34	1901.085	99.81	11.61			YELL PULLEY
10- 1	*	5 899	\$25	1860 LOC	ISL.	96'11	17.0	SXUEDIXS:	MOLTOR TENDARE ROTOMS
199	-	55 105-	36.36-	945 581	12125	16.131		SXVLXG	3 WOLOK BRACKET BASE
199	12.75	05985-	8	30102	199781	1011		(EVD	SISCREW DRIVE MOTOR & GEAR
£1 19	94.61	951	92.7	115190	1997/5-	196	92 5	2 X VIQ 259 1	LIDGINE SHVEL
<u>-</u>	0	CT121	5	10	10	19.07	SEA 1	21X2222X15	SELOE PLATES
	š	L'HZL	30.0	10	18	119:09	SEV 1	ZIXE EXXEL	SELVIG BOY
:0		12108-1	S1 20-	10	10	22.61	1 29 12128	H XG LXG L T	THAT DAY BRACE WELDHENT
	2	-206.65	99'91-	10	0	-21.61	49'151X9	1.32.132.1 1	STIDNY DYR LSWI
	í	SCX PCP	55.05	10	10	72.61	19151209	N XG LXG L 1	STIENY EVIC LEVIE
0)	1222 21	R U	10	÷ 0	24 61	27 121 201	L'XS'LXS'L T	SETONY OVIC LSVN 81
		19 190Z	28.101	0	0	24'81	29/101X95	11.32.133.1 11	SETONY OVIC LSWILL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		61 9515	50.081	0	0	2/ 61	20 121X00	11.X2.1X2.1.1	SELENA DAIO TRANI 81
0		948'30	59.65	0	<u>ő</u>	12.31	201 201	L'XS'LXS'L 7	SETONY OVICILS WITH
		19-19-	58.82-	0	0	15.21	201 X99	1.X2.1X2.1 7	SETONY ZTHOH LSWIEL
		S05 895	CP.CG	<u> </u>	<u>0</u>	C.21	201308	1.72.136.1 1	SEIDINA SUPPLY ANGLES
0		1283 01	\$0.18	0	ŏ	291	201 X99	1 251251 1	SETIONY ZHOH LSTITLE
		1812.35	20.811	0	0	5.21	201 298	LXS'LXS'L TI	SETENY ZINOH LEVING
		C'GRIOL C	52.391	<u></u>	<u>°</u>	6.61	201 X89	1 X51X51 1	BINAST HORIZ ANGLES
- O		9'51200 9	0.09	<u>.</u>	<u>.</u>	C.116	CTS7757	YEAR ST	
1991 51		ST 691 1		0	0	69'601	\$"\$\$X\$2"¥	SEV LOW	SERVICE FORCE STREET
206 11	202	213 38		0	0	11.20	X JAX35	TEN TSAXA	STRUL TYLELVI JSVE
ő		1 32		ŏ		86	9 25X981 XS	LXY LT VE Z	3 BASE DIVISIONAL ANGLES
0		201 2		0	ò	991	GL SEXSZ X	TXTSL VE P	STREECKOSS LORES
_						and the second se			

W,

06 10 01 ma 6/6/8/ ma

# Design Report Hanford K East & K West Basin MCO Loading System

2					
SPREAD SHEET FOR CG U	CATION FOR SUPPORT PLAT	ELOAD			
TEM NOESCRIPTION	ISIZE	WEIGHT IX	INEx	iY iMy C	1Mz
41 BALL NUT		8.25	0.0	-26 -231	
43 TOP BEARINGS	IOTY 2	49.441	0: 0	37.25: -1841.6	0.
44 IBRNG HOUSING MOUNTING	LUGIAREA 6.0 THKS 1.0	1.7	0:0	-34.78 -1034.4	0
45 IBEARING SPACER	2.5 LB EA QTY 3	7.5	0.0	-34.5: -258.75	0
47 IBOTTOM BEARING	IOTY 1	14.871	- 01 - 0	-38.671 -786.161	0
48 IBRAKE DISK	11400X.375	15.4	0 0	-41.52 -618.891	0.
SOIBOTTOM HOUSING CAP	ITO BOOX 2 TAILY FINE	29.8	0 0	-46.371 -1381.9	0
51 HOUSING	110.80DX7.774/DX10.57	13.881	0 0	43.84 -606.51	0
54 JANTEROTATION SPINIS	110.80DX4.64IDX.84	18.07	0 0	-37.92 -5095.71	0
55 IVERT GUIDE TUBES	ACHINY 10404 TO BEY 204	9	0 0	-20 -180	0
56 IUPPER TIE BAR	IAREA 91 THIKS 3.25	A5 7		-132.5 -337881	0:
58 OVER TRAVEL CUMPES	AREA 144 THKS 3	124.4	01 0	-16.625 -1615.5	0
59 IUPPER INNER TUBE	200X1.875(0X11	118.4	01 01	-259 -306661	0,
60 IAIR CYLINDER		251		-271.251 -333.64	0!
62 IOVER TRAVEL BODS	2DUAX4.9LONG	4.251	0. 0	-278,881 -1185.2	
63 ILVOT TUBE & MARDWARE	11.7500X1.6570X220 06 /	88)	0 0	-257 -22616	01
64 ILOWER INNER TUBE	200X1.87510X138.81	15	7.43 -96.59	-251 -32631	-7.43 -96.
66 MCO GRAPPLE	4.50DX4IDX170.42	163.81	0 0	-335.21 -549071	
67 IBALL SCREW	11.625DOAX17LONG	10	0 0	427.5 42751	0.
68 CAMERA AND MOUNTING		10		-35.15 -7081	0
LOAD	AREA 21 THK .5 HAPLCS	151	DI OI	-275.13 -4126.9	
TOTAL		4050.591			0
	M	EIGHT		-2150671	-96.5
	CG COORDINATES				
	WITH SCREW IN FULL DON	IN POSITION	-0.0207 Y	46.794 2	-0.020
					<b>%</b>
					3
NAC International Inc.	and he of	1-			-
MAC International Inc.	Prepared By: P.P	Det	* 6-4-97	WRR NO. EF 4	44-20-02

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

	·					
•						
ISPREAD SHEET FO	R CG LOCATION FOR SUPPORT PI	ATELONO				
ITEM N DESCRIPTION	SIZE		H MAXIMUM E	CCENTRICITY		
41 IBALL NUT		WEIGHT (	K Max	Y	My	2 11-
43 TOP BEARINGS	APPROX 110 CU IN	825	0	0 -28	-231	
44 IBRING HOUSING MOI	INTING LUGIAREA 6.0 THKS 1.0	29.74		0 -37.25	-1841.6	0 0
46 IBEARING SPACER	2.5 LB EA OTY 3	7.5	<u>0</u>	0 -33.5	-56.95	
48 IBRAKE DISK	IQTY 1	20.33	0	0 -38.67	-258.75	0 0
50 IBOTTOM HOUSING C	P 44555	16.41	0	0 -41.62	-618.89	<u> </u>
52 TOP HOUSING CAP	110.800X2.75IDX.5625	13.86	0	0 46.371.	-1381.9	0 0
54 ANTI-ROTATION SPLIN	110.800X4.64IDX.84	134.38	0.	0. 37.92	-5085.7	0 0
56 IUPPER TIE BAR	AREA OF THE	9:	01	0 20	-582.03	0 0
58 OVER TRAVEL GUIDES	IAREA 144 THKS 3 25	85.2	0:	0 -132.5	-33788	<u> </u>
60 AIR CYLINDER	1200X1.875:0X11	118.4	0,	0 -248.51	-30913	0 0
61 INNER TUBE ADJUSTER	IZDIAXA BI CAUS	2.5	01	0. 271.25	333.64	0 0
63 ILVOT TUBE & HARDWAY	IZDIAX24.875X4 RODS	4.25	0	0: -278.88	-642.5	0 0
65 IOUTER TUBE	120DX1.875IDX138.61	13	7.43 -06.5	01 -257	22616	0 0
66 IMCO GRAPPLE 67 IBALL SCREW	1.625DIAX17LONG	163.8	01 0	350.74	201.1	-7.43 -96.59
68 CAMERA AND MOUNTING	3	201.45	0: 0	427.5	4275	0 0
LOAD	IAREA 21 THK .5 (4)PLCS	10:	0 0	409.75 4	-70611	0: 0
		2700		-275.13 -4	126.9	01 01
	M	EIGHT	-96.59	-21	8067	-1.5 -4050
	WITH SCREW IN FULL DOW	x =	-0.0232	× - 1	i. I	
		POSITION			417 2	-0.9966
						- 1
						1
						1
						1
AC International Inc.						
POINT MLD LOADIN VA	rispared sy: RP	Date:	6-4-97	WRR No	E 4 4 4	

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1



E-59

Design Report HNF-SD-SNF-DR-004, Rev. Q Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

ITEM	DESO	EL PTION						
٩	BASE L WT= 1-1	ATERAL TU 833 x 2 × 1	BES T: 221 =	5 4×4×1⁄4 44-77 #	1-10°LG( X=0;	2) 12.2 Y=7-0	u#/ >";=	= 20.277
5	BASE LO	WGI. TUB	es 754	1×4×1/4 ×.	54 ⁴ 1G (2)	12.2	ı */ı	
	ز ^ت ص= ۲	¥ = 7.0	>″; ∉	=15"	$WT = \frac{54}{12}$	×12·21×2	2= 109-	B9 #
			,					
						•		
						•		,
	•							
						:		
NAC Interna	tional Inc.	Prepared By:	DD	In				

×,

Design Report Hanford K East & K West Basin MCO Loading System

7.



Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

·		7
ITEM	DESCRIPTION	1.
6.	MAST VERT. L4×4×14 232.5" LG (4) 6-6+/1 WT= 511.5 #	
	X=0 j y=60.05 ; 2.0 4x232.5x6.6=511.5 +	1.
Ø	MAST HORI. TUBES TS 3×3×3/16 27"LG (4) 6.87" WT= 61.83"	
	X=0; y=174.6"; 2=0 4×27 ×6.87 = 61.83#	
8	MAST HOLL, L1/2×1/2×3/12×102"LG 1201, WT=152 +	
	x=0; y= 146-25; z= 0	
۲	SAME AS ITEM # 8 EXCEPT Y = 118.65"	
6	SAME AS ITEM # 8 EXCEPT y = 91.05	
(1)	SAME AS ITEM # 8 EXCEPT y = 63:45	
(12)	SAME AS ITEM # & EXCEPT Y = 35.85	
(3)	State at least 10 Europe in an or	
	STIME AS ITEM # 8 EXCEPT 9 = -28-85	
(4)	SAME AS ITEM # 8 EXCEPT y= -55.45	
15)	MAST DIAGONAL L1/2×1/2×3/16 × 131.47 LG 1.8 +/1 WT = 10 70 +	
	X=0 ; y=160.05"; Z=0	
16	SAME AS ITEM + 15 EXCEPT 4=132.45	
17)	SAME AS ITEM #15 EXCEPT VEIDA DE	
18)	SAME AS ITEM #15 EVENT 11	
3	Shut Ad 1554 4 15 5 6 67 4 = 77.25	
2	Shine As ITEM # 15 EXCEPT y = 49.65	
9	SAME AS ITEM * 15 EXCEPT y = 22.05	
り ・	SAME AS ITEM # 15 Except y =-15.55	
2) 5	SAME AS ITEM # 15 EXCEPT y = -42.15	
Project	MCD LOADING	
1	System ( maded by: M. Date: 6/4/97 Page 16 of 70	

E-62

٧.

Design Report HNF-SD-SNF-DR-004, Rev. 0 444-R-01 Hanford K East & K West Basin Revision 0 MCO Loading System Volume 1

ITEM # (23) MAST DIAGONAL BRACE 23.7 33.4 TS 4×3×1/4 69.8 (THP) L12×12×3/6 (TYP) 69.71 X===0 560 38" ¥ = 27.6+9 = 36.6 IN AB - CENTER TO CENTER LENGTH OF TS 4XBX/4 AB = 38 (0356 - 2 = 69.71" WT= 1051"/1 WT OF TS =  $2 \times \frac{69.71}{12} \times 10.51 = 122.1 *$ CENTER T'S WT = 17.7 × 10.51 = 10.5 + 4 - 61/2 +1/2 ×3/16  $34.8''L6 \quad 1.8*/1 \quad WT = 4 \times 1.8 \times \frac{34.8}{12} = 20.88*$ 30" TOTAL WT = 2 (122.1 + 10.5+20.88)=306-96" NAC International Inc. Prepared By: RP Deta: 6-4-97 WAR No. EF 444-2002 Project MLO LOADING Checked By: m Data: 6/4/97 Page 17 1 70

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System



Design Report Hanford K East & K West Basin MCO Loading System



Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1



v,

Design Report Hanford K East & K West Basin MCO Loading System

v.



Design Report Hanford K East & K West Basin MCO Loading System

Υ.



Design Report Hanford K East & K West Basin MCO Loading System



Design Report HNF-Hanford K East & K West Basin MCO Loading System

•			
ITEM #	DESCRIPTION		
24	SIDE PLATES 1/4× 23	·5×12 (2)	
	WT = 2×0.25×23.5	×12 ×0-288 = 40.6	
	X=0; y=3.0	5 2 = 0	
25	SAME AS ITEM # 24		
26	GANTRY MOTOR & GEA	& Box ωτ=96 [#]	
-	x=-37.66"; y=-4.	75"; = 1375"	
27)	DRIVE SHAFT 1.437 D	NAX7378 WT=34	r•
	X=0; 4=0; 2	= 13.75	
(28)	(+ANTRY BEARING		
G	X=0; y= 2.962 ;	2 = 12.78	
<u>ی</u>	GANTRY RAIL 225Kg/ X=0; Y=20; Z= 24	m 144"LG WT=1	81 [#]
30 ⁴	RACK GEAR 1.5×1.38×. × = 0 ; y = 10.2 ; 2	18 QTY 2 WT = 3 =24	56-2 *
31 [#] K	Ack Support Angle , X=J=0 Z=24	L3XBX. SXIDS &TY	2 WT = 169.2
32 5	CREW DRIVE MOTOR &	GEAR HEAD WT=	lin t str
- ×	= 18.55 ; 4 = -35 ;	₹=-4	NO ESI.
* THESE	ITEMS ARE NOT USED IN	N CG CALCULATIONS	FOR MAST.
MAC Internation	al Inc. Prepared By: RP	Date: 6-4-97	WAR No. EF 444-20-02
Project MLO	STEM Checked By: M	Date: L/A/A>	Pare D. d. d. D.

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

網	Project:	SYSTEM	Checked By:	m	Date: 6/1/97	Page 25 of 70
0	NAC Inte	mational Inc.	Prepared By:	RP	Date: 6-4-97	WRR No. EF-444-20-02
		WT= 82/12	XB-5= 58	8.08 [#] , X = Z	=0 y = -3	5- LG 5-2
9	9	2 PC's 23/	" ¢ 2	PC'S 17/1" 1	6 TATA 0	8.5 #/FT
0	3		j = -53	- 25 IN		
		W = 3 = 0	+ × (· S × ·	205 = 170.8	4	
		41T- 200	· · · · /4·	x10.82x1	%4×3•5 = 39	5·4 IN
		LESS 1-11	ა. ა ዋ წ . c ² m	2-3½ ¢ H	oles $T \sim 2 - \infty$	r i2
(	39)	SCREW DR	WE BRAK	supt. Re 2	2.5 59 x1/2 1	HICK
. (	38	VERTICAL RA	465 264	1"4 ×193-25	43"EA U X=Z	ur = 86 [#] y=78.375 =0
(	57	VERTICAL	RAIL SU	pp01273 4 En	4.564 y: x=z=0	= 78.375 WT=224#
(	3	MOTOR PI	LLEY	WT = 1517	X = 18.55,	y = -46.371, 7 = -4
			ω	T= + 5× 10.21	× 8×.288= 11.	76*
	$\cup$	X=17.1 5	4 = -	44.11 5 2	= -4	
	35)	MOTOR B	RACKET B	OTTOM 4.x10	0-21 ×8 (J)	T= 1176 *
		X=15;	· y=-	37-5 ; 2 :	-4	
		ω⊤= <u>8</u> 3.	075 2.25	X-288 X2	= 1(.96 =	
		AREA - (1	4×10.21)	- (9.21×13	x 0.5) = 83.	075 W ² .
	34)	MOTOR B	BRACKET	SIDES 1/4" THI	ICK R A= BO	-345 IN2 GTY. 2.
	_	WT .	= 0.5× 14×	8 × 288 = 1	6.13	
	(33)	MOTOR 1 X = 12.12	ISRACKET	-36.86 ' E	×8 0·288 * :=-4	11NS NT = 16.13
	_			0.4		
	ITEM	DESCR	IPTION			
		•				

E-71

Design Report	HNF-SD-SNF-DR-004,	Rev.	0
Hanford K East & K West Bas	sin		
MCO Loading System			

444-R-01 Revision 0 Volume 1

TEM DESCRIPTION 4 BALL NUT WT= 8-25 * 4=-28 X=2=0 **A**2 DRIVE SHAFT 4.5" OD X 2.1" ID X 13.8" LG 1724 (4-5²-2.1²)× 13.8× 288 = 49.44 # y = -37.25" X=2=0 43 TOP BEARINGS TOTAL 2 WT=14.87+2= 29.74* X=2=0 3 = -34.78 44) BRNG HOUSING MNTG LUG A= 6 IN2 1" THICK WT=1.7 # X===0 y = -33.5 **(73)** LOAD CELLS (3) 2.5" EA WT = 7.5" 4=-34-5 X=2-0 BEARING SPALER 68"ID × 7.88 OD × 4"LG 1)  $\pi_4 (7.88^2 - 6.89^2) \times 288 \times 4 = 13.35^*$  Y = -38.67 W. 2)  $\mathcal{D}_4(4\cdot 2^2 - 3\cdot 15^2) \times 4 \times 288 = 6.98^* \times =7_{=0}$ TOTAL WT= 13.35+6.98= 20.33* **A** BOTTOM BEARING WT = 14.87 + X=Z=0 y=-41.62 BRAKE DISK 14 ODX.375 BEARING 16.4# 4=-51.14 IN. 48 X=2=0 **(**<del>9</del>) Drive pulley wt 29.8* y= -46.371, x=2=0 50 BOTTOM HOUSING CAP 10,8 OD ×2.75 ID ×3/16 WT = 774 (10.82-2.752) ×.5625 ×.288 = 13.884 y=-43.84 X=2=0 NAC International Inc. Prepared By: RP Dute: 6-4-97 5 WER NO. EF 444-20-02 Project M CO LOADING Checked By m Date: 6/4/97 Page 26 # 70

E-72

×,

v,

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

ITEM DESCRIPTION ଚ HOUSING LO'S OD X 7.774 ID X 10.57 LG WT = 174(10.82-7.7742) × 10.57 ×.288 = 134.38 # X=2=0 2 = -37.92  $\bigcirc$ TOP HOUSING CAP 10.8 ODx 4.64 10 x.84 x=2=0 WT= TT4 (10.82-4.64) x.84x.268=18.07 4 =-32.21 63 VERT. GLUDE TUBE BEARING 2 BALL BUSHING 8.63 " EA. } 26.63" PER SIDE HOUSING ~18 * EA : WT = 26:63x2 = 53.26 # 4= -48.5, X===0 (54) ANTI ROTHFION SPINE 9# EST. 4=170 TO-20 X=2=0 VERTICAL GUIDE TUBES BOMM ODX70 MM ID X 235 W LG. 53 WT = 174 \$ (80)2-(76)2 * 235×-268 ×2 = 255 * WNO. OF TUBES GOD IN GID IN y = + 57.5 TO -132.5 ; x = 2 =0 B UPPER THE BAR AREA DI IN2 3.25" THICK. WT= 91×3.25×.288 = 85.2 # Y= 173.375 TO -16.625 ; X = 2=0 67) LOWER TIE BAR AREA =144" THICKNESS 3", X=Z=0 Y= -58.5 TO -248.5 WT= 144 × 3 × 288= 124.4# NAC International Inc. Prepared By: RP Date: 6-4-97 WAR No. 65444-20-02 MCO LOADIN Checked Sy: m Date: 6/4/97 Page 27 # 70

Design Report Hanford K East & K West Basin MCO Loading System

DESCRIPTION ITEM OVER TRAVEL GUIDES 12" + x 2" 2EA. 63) WT= 59.2 + TOTAL 2 : WT= 59.2×2 = 118.4 + 4= -69 TO -259 ; x===0 ଚ୍ଚ Upper INNER TUBE 2"OD X1-875" ID X11"LG 1.34"/1 1/12 ×1-34 = 1.23 # 4= -81.25 TO -271.25 ; x====0 6 AIR CYLINDER WT = 2.5 * EST. y= -67 To -257 ; x== =0 6) INNER TUBE ADJUSTER ~ 2"& DIA 4.9" LG W = 4.25 # y = -88.88 TO -278.88, ×= = = = = = 62) OVER TRAVEL RODS 2" & X24.875 LG 4 GUIDES GACH 22# TOTAL WT = 22×4 = 88# y=-67 TO-257 X===0 (63) LUDT TUBE & HARDWARE 1.75 OD X1.687 1D X222 1/16 WT= 13 # X= -7.43; Z= -7.43 y=-6(TO-25) ; x===0 LOWER INNER TURE 2" OD X1.875" ID X 138.61 LG (64) The (22-1.8752) × 138.61 × 288 = 15 # Y=-160.74 TO -350.74 ; x= 2=0 OUTER TUBE 4.5" OD X 4" ID x 170.42 LG X=2=0 65)  $T_{4}^{r}$  (4 5² - 4²)×170.42 × 288 = 163.8 # Y = -145.21 TO - 335.21 NAC International Inc. RP Prepared By: Date: 6-4-97 WER No. EF 444-20-02 1 MCO LOADING m **Checked By:** Date: 6/4/97 Page 28

HNF-SD-SNF-DR-004,	Rev.	U
--------------------	------	---

Design Report Hanford K East & K West Basin MCO Loading System

DESCRIPTION ITEM MCO GRAPPLE~178" \$ X17"LG W=10 * 6) 4= -237.5 TO - 427.5 ; x=2=0 6 BALL SCREW WT=201.45 * 4=154.85 TO -35.15 ; X=2=0 63 CAMERA & MOUNTING WT=10" y=-219.75 TO -409.75 X=Z=0 69 FAIL SAFE LATCHES AREA 21 THICKNESS 0.5 4-PIACES + HAPDWARE WT=15 * x=0 Z=0 4=-85.125 TO -275.125 10* GENTRY FAIL SUPPORT PAD 0.875 THICK X 3" WIDE XIDS"LG BAR 2 SIDES WT= .875×3×108×.288×2= 163.3 # X=0; Y=.437; Z= 24 (71) GENTRY RAIL TUBES 4×4× 5/16"× 117"LG (2) WT = 14.85 #/1 × (117+12) ×2 = 289 # X=0 ; y=-2; 2=16.784 * THESE ITEMS ARE NOT USED IN CG CALCULATION FOR MAST (12) DIAGONAL BRACE TUBE (PIPE) 3"\$ SCH. 40 7.8 #/1 {(2×27.6)2+362+27.52 } = = 72 IN WT= 72 × 7.8 = 46.8 64. 2 SIDE TOTAL = 936 + X= O IN. y= 36.6 2 = 27.5 NAC International Inc. Prepared By: RP Date: 6-4-97 WER NO. EF 444-20-02 1 Project: MCD LDADING Checked By: n Date: 4/4/97 Page 29 ef 70

Design Report Hanford K East & K West Basin MCO Loading System



Design Report Hanford K East & K West basin MCO Loading System

	ITEM	DESCRIP	DION				
	76)	RATES L	INDER TS	4×4×1/4	TOTAL - 6		
	Ŭ	1/2×6.7×	7.3 LG	WT= 0.57	6.7 × 7.3×6 ×	288= 42.26 4	
		X=0 ;	y = 4.7	5;2.	12.78		
	77	TIE BAR	2×3.5	x2-0 LG	(2)	USE WT = 100 #	
		$WT = 2 \times 2$	× 3.5×2	4x.288 =	96.768 =	TO INCLUDE 2- PIL	1000
		X=0 ;	y = 4.29;	ء ۽ ز 8	18.5		
	78	Enclosure	PLATES	(4) 4/BX	24 × 25~1" Ll+.		·
		WT = 0.125	×24 × 2	S-1x - 288 x	4 = 86.75 #		1
		X=0;	y = -41.	4 ; <del>2</del> =	0		
	79	OUTRIGGER	DIAGON	AL PLATE	s (2) 4/26	5×5	
		WT = 0.5x	6.5×5×5	2×.288 =	9.36 -		
		X=0 ;	25-9 - يا	; [:] 2 =	(27.5+12) = ?	5-5 "	
	80	MACHINE	PLATES (2	) SPACE	AL RATES CU	T FROM BAR	
		CROSS SECTI	ON ARE	4 = 13.17 1	we is Lowe.		
		WT- 13.17	× 15 × 2 ×	·268 = 11	3.79 #		
		X=0 ; ;	ز <b>٥ = ٤</b>	y = -4	8.7 IN.		
		BOTTOM OF	BAR IS	SAME AS	BOTTOM OF M	AST. VERT. L4K4.	
						•	
						*	
i	NAC Int	ernational Inc.	Prepared By:	R-P	Date: 6-4-97	WRR No. EF=444-20-01	2
	Project	SYSTEM	Checked By:	m	Date: 614197	Page 31 4 70	1

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1



4

v,

Design Report HI Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

FIND A MAX. FORCE IN VERT. ANGLE 4+4+/4 REP. SPREADSTREET PAGE + 8 FOR CASE + 1 CASE 1 PMAX=1574 * (FUEL WT 3200* W/O ELC) VERT- LOAD = 7574 "; Mx = 1364""; M3 = 11518" MAX LOAD ON  $\angle 4 \times 4 = \frac{7574}{4} + \frac{1364}{2 \times 24} + \frac{11518}{2 \times 24}$ = 2162# CASE 2. P MAX = 7074 # ; Mx=1364 " ; M3=15568 " REF. SPREADSHEET PAGE # 9 (FUEL WT. 2700 WITH 1.5" ECC.) MAX. VERT. ON  $L4x4 = \frac{7074}{4} + \frac{1364}{2x24} + \frac{15568}{2x24}$ = 2121 # . FROM CASE 1 & 2, LOAD CASE 1 GOVERNS NOTE : ALLOWABLE STRESSES FOR ALL STRUCTURAL MEMBERS IN THIS CALCULATION USED ARE LOWER OF IT OR I THEREFORE FOR A-36 MAT'L FU GOVERNS = 58000/5 = 11600 PSi. AND FOR STANLESS STEEL FY/3 GOVERN = 30000/3 = 10000 PSi. FOR AXIAL ALLOW USE LOWER OF ALSO OR ABOVE ALLOW. NAC International Inc. Prepared By: RP Date: 6-4-97 10 WRR. No. EF444-20-02 MLO LOADING Checked By: m Date: 6/4/97 33 1 70

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1



E-80

v.

Design Report Hanford K East & K West Basin MCO Loading System

CHECK AXIAL STRESS IN HORI TS 4×4×14 (OUT RIGGER HORIZONTH)  $fa = \frac{P}{A} = \frac{1458}{356} = 406 \text{ PM}.$  (ITEM +5 DWG + 444-215 P/o) < 11600 PST. :. OK :. HORI. TS 4+4× 1/4 OK. MAST HORIGONTALS (ITEM# 12, 16 & 32 DWG + 444-215 N/c) - CONSIDER THIS HOLL LIGANZA CARRIES FULL LOAD OF FBRACE HORI. COMPONENT. (CONS.) HORI. LOAD = 2608 x 605 56 = 1458 + = BR+CE = 2608 +  $f_a = \frac{P}{A} = \frac{1458}{527} = 2767 \text{ psi}.$  $\frac{K\ell}{V_{min}} = \frac{1.0 \times 24}{0.293} = B2$ ⇒ Fa=15130 psi. UsE Fa=11600 ps 27 fa : L11/2×11/2×3/16 OK. TENSILE STRESS ON 1/4" x 12x 23 1/2" LONG FLATE PLATE 1/4" AXIAL FORCE 15 1458 # (ITEM + 20 DWG+ 444-215 R/0) SAME AS LOAD ON TS 4x4x1/4  $f_{a} = \frac{P}{A} = \frac{1458}{0.25\times4} = 1458 \text{ Pei} < 11600 \text{ Psi} \quad \therefore \text{ Pe is OK}$   $(3.15\times4) = 1458 \text{ Pei} < 11600 \text{ Psi} \quad \therefore \text{ Pe is OK}$ NAC International Inc. Prepared By: RP Date: 6-4-97 WAR No. EF444-20-02 siert M CO LOADING Checked By: m Date: 6/4/97 35 Page ef 70

Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1



E-82

Design Report HNF-SD-SNF-DR-004, Rev. 0 Hanford K East & K West Basin MCO Loading System

1	•					
	CHECK WELD	ON HOLI	CONTAL 73	<u>4×4×14.</u> β	WTRIGGER HOR	נד אידומפו.
	TENSION LOAD	ON 75.	4×4 (5 0	NLY 1458 +	( ITEM # 5 TO	
	USE TWO SIL	ed 3" (	JELD PAT	reen, Cons.	(REF DWG 44	4-215 R/6)
		f" Le	NGTH OF W	ELD = 2×3 = 6	<b>6</b> ″	
	3.	FOR	LE PER IN	= 14-58/6		
			,	= 243 #		
	WELD SIZE	<i>REQ'D = 1</i>	243 ÷ 1160	00		
		= 0	.0209 IN			
	PROVIDE	3/16 FIL	LET WELD	MIN. 3" LG	- ON TWO S	RIDES
	. NELD	IS ADE	PULATE			
				· ·		
						. I.
						1
	1					
	not attentional Inc.	Prepared By:	RP	Date: 6-4-97	WRR No. EF 444 -	20-02
	SYSTEM	Checked By:	<u>m</u>	Date: 6/4/97	tope 37 ef	70
444-R-01 Revision 0 Volume 1



v,

Design Report Hanford K East & K West Basin MCO Loading System



Design Report HNF-Hanford K East & K West Basin MCO Loading System

γ.



Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1



E-87



Design Report H Hanford K East & K West Basin MCO Loading System



444-R-01 Revision 0 Volume 1



4

Design Report Hanford K East & K West Basin MCO Loading System





Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1



E-93



Design Report H Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

CHECK STRESSES IN CIEKI'S & LAXA ALLOW STRESS SMALLER OF Fy or Fy 3 Governs = 7019 98  $\frac{k\ell}{F_{min}} = \frac{1.0 \times 32.1}{0.293} = 109.55 \Longrightarrow$ For =11670 PS1. Fu = 11600 PSi. · USE For 11600 Pr. >7019 Pri. - LIZXIZXX6 4 2. 24×4×1/4 Pmax = 9232 # MEM # 25 (MAST VERTICAL) (ITEM # 1 DWG 444-215 0/0) A=1.94 W2 Vmin= 0.795 IN. 184 48  $fa = \frac{P}{A} = \frac{9232}{1.94}$ = 4759 PSi  $\frac{kl}{r_{min}} = \frac{1.0 \times 27.62}{0.795} = 34.74 = 3$ Fa=19580 < 11600 Pri. . USE 11600 PSI. : L4×4× 1/4 ofL THEREFORE ALL TRUSS MEMBERS ARE ADEQUATE NAC International Inc. Prepared By: 17 RP Project: MCD COADING Date: 6-4-97 WIR No. EF 444-20-02 Checked By: M Date: 614197 Page 49 1 70

444-R-01 Revision 0 Volume 1

	••								_
- (									
- 1	THE FOLLOW	ING MEM	BERS ARE	CHECK	ED TO	ENSU	RE TH		,
- 1	HAVE ADEQUATE STIFFNESS TO BEAVE THE TOUSE								
- 1			1070		ETRUS	2.			1
1	DIAGONAL /	1/2 xile al							
- 1		1/2 ~ 1/2 X -	116						
- 1-		42+242)1/2	= 41.2						
-			- 402 IN.						
	· WA UNCO								
	$\frac{Re}{D} = \frac{U(41)}{4}$	$\frac{2}{2} = 141$	1000						
	min 0.293	- 1-1	200	0	κ.				1
	DIAGONAL L	1/2×1/2-31		. ~.					1
		12 112 11	6 IN ROL	1- JUA	NE DE	TWEE	1754	{x4x1/2	
	-MAX = (402	+212)12	= 45 IN.						
<b>_</b>	Ky (I) (	45)	. 0						
	min 0.15	3 = 15	4 < 200	<i>.</i>	5K				
	0 11								
	3" & SCH 40 PIPE								
	PIPE I PALLAN	204							
	LANC LENGTH =	12 PG	¢ 29 .						
	KR (1)(72	1							
1	rmin LIC	- = 62 1	1 < 200		~				
	1 116			•.					.
				,					1
									1
-, 21									1
									1
									1
	NAC		_						1
	mail atternational inc.	Prepared By:	RP	Date: 4	-4-97	-	EFL		ł
	Project NCO LOHDING	Checked By:	m	Date: /	10/00		=1944	-20-02	]
			1.7		14197	Page	50	1 70	1

4

4

Design Report Hanford K East & K West Basin MCO Loading System

Г

Υ.

CHECK WEIDED				
DIAGONIAL BRAVE TO	NIVECTION F	OR BRACE L	1/2×1/2×3/16	
	MAST VERCTICAL	.(ITEM# 2 TO	DWG # 444 -215 F	10)
MAX. AXIAL LOAD =	3693 1	LEM # 26	PAGE # 48	-
USE WELD LENGTH	OF IN TWO S	10 60		
TOTAL LISTO IS				
WITC WELD LONGTH	= 2 "			
111.00				- 1
WELD FORLE PER INC	$H = \frac{3699}{2}$			
	= (850 4			
		Ev	C	
WELD SIZE REQ'D =	1850/11/00		The covers	
	1 1600		55000	
=	0.159 IN		5 = 11600 PSI	
THEREFORE PROVIDE 3				
ON TWO SUDES @ =	in PILLET W	ELD		
	TCH END			
: WELD IS OK				
1				
1				
			•	
1				
1				
			×:	
NAC International Inc. Prepared In	DD			
Project MLD LOADING Checked By	m	Dane: 6-4-97	WRR No. EF 444-20-02	- ·
	115	Tome: 6/ 4/97	Page 51 of 70	]

444-R-01 Revision 0 Volume 1

(ITEM # 17 DWG = 444-215 4/0)7 STRESSES IN TOP TS 3×3×3/16 DUE TO VERTICAL LIFT. (TOP HORIZON) CONSIDER LOAD LIFTED AT TWO MID POINTS OF IS 3X5×3/16 LOAD ON EACH TS = 3762/2 = 1881 # (PG * 10) 1881 # MAX MOM = PL = 1881×24 = 11286 114 24"  $fb = \frac{M}{3} = \frac{11286}{1.73} = 6524 \text{ PM}.$  $< \frac{F_{4}}{5} = \frac{58000}{5} = 11600 \text{ PS}($ OR FY = 36000 =12000 PM CHECK SHEAR STRESS fu = 1881 2x.1875x3 = 1672 PSI < 11600 PSI OK . TS 3×3×3/16 15 ADEQUATE. CHECK WELD BETN TS 3X3× 3/16 & L4X4× 1/4 USE HALF LOAD & HALF MOMENT ON WELD  $\frac{1}{2} - \frac{1}{2} = \frac{1881}{2} = 941 \# M2 = \frac{11286}{2} = 5643 \# \#$ 17 4 MX=1881/2 × 3 = 2822 "* Aw= 8"; Swx= 4x3=12 W'; Jw= 43+3x4x32=28.67 1N3 FORCE ON NECD =  $\left\{ \left( \frac{2822}{12} \right)^2 + \left( \frac{941}{8} + \frac{5643x2}{28\cdot67} \right)^2 + \left( \frac{5643x1}{26\cdot67} \right)^2 \right\}^{\frac{1}{2}} = 636^{\frac{1}{2}} / 10.$ WELD SIZE RED = 636/11600 = 0.055 W. LOWER OF FY OR FY - GOVEN PROVIDE FLARE BEVEL & 3/16 FILLET WELD. 53000 = (1600 PH. . WELD IS OK NAC International Inc. Prepared By: PP Date: 6-4-97 WRR No. EF 444-20-02 Project: MCO LOADING Checked By m Date: 6/4/97 Page 52 1 70

Design Report Hanford K East & K West Basin MCO Loading System



Design Report HNF-SD-Hanford K East & K West Basin MCO Loading System

Г

	SYSTEM	Checked By:	m	Date: 6/4/97	Page 54 # 70	-		
唐	Project MCOLOADING	Charles of	<u>H</u>	Data: 6-4-97	WAR NO. EF 444-20-	22		
0	NAC International Inc.	Prepared By:	0.0			_		
	1		DOLT LOAL	Э.				
	USE P=	700 +	for		GOVERNS.			
	( )	1007 - 4	-01/3 =0	334" <1	799# LOAD CASE	1		
	LOAD /	BOLT = A	661/0 -1	CT 4 4				
	LOAD CASE 2	NOE	C 3200#	Flac.				
	THEREFORE T	STAL LOA	D = 1387.	+412 = 170	9, #F			
			= 4/2 #					
	(2,7							
	TUPL LOHU = P = I = TATAGOIS							
	ADD'L LOOD	- O - M	LC 4244	× 6.875				
	ADD MX & M3 CONSERVATIVELY 4147+97 = 4244 11+							
				= 70.9 124				
		*		- +1.21+2	3.9.9			
				- 4707 -	0.40			
	ī ī	L 3.4375	4	$= 1(6.875)^{2}$	+2(3.4375)2			
1.				MOMENT O	F INERTIA			
1		6.875 ma	1					
		- CRADIL	5					
	RUDL COND I	DUE TO I	NOMENT					
	DIRECT LOAD @ EACH POINT = 4161 = 1387 #							
	LOAD CASE 1	l' EL	. 2700*	FUEL.				
1	BOIT CIRCLE	1						
	•							



444-R-01 Revision 0 Volume 1

ANALUSIS OF SCREW SUDDOLT PLATE AT DOINT A (MOUNTING RUTE) - PG# 54 1799 # CONSIDER LOAD ACTING @ 3.54" AWAY @ MIDPOINT OF 5.08"XII" PLATE 3.54 ". 11.9 SECT. MODULUS  $S = \frac{bd^2}{4} = \frac{11 \times 1.5^2}{4.125} = 4.125 \text{ m}^3$ 5.02 MOMENT M = 1799×3.52=6368 " fb = M = 6368 = 1544 PSI < 11600 PSI MAX. DEFLECTION  $S = \frac{Pb^2}{KET} (31-b)$  P=1799 #; l=5.08" @ FREE END h=3.54 W.  $\int = \frac{1799 \times 3.54^2}{6 \times 2956 \times 2.5000} \left( \frac{1}{3 \times 5.08 - 3.54} \right) = \frac{11 \times 1.5^3}{12} = 3.09575''$ REF # = 0.00049 IN. ALSO CHECK DEFLECTION CONSIDERING BOTH END SIMPLY SUPT. USE 3.08" × 11" PLATE STRIP LONS. 5.08 - - 3-01 S  $= \frac{ba^{13}}{12} = \frac{3.08 \times 1.5^3}{12} = 0.866 \text{ IN}^4$ 11"  $S = I_{L} = \frac{0.8662S}{0.75} = 1.155 \text{ IN}^3$ 120MENT = PL = 1799×11 = 4947 11+  $f_{b} = \frac{M}{S} = \frac{4947}{1155} = 4283 \text{ Psi} \leq 11600 \text{ psi}.$ . PL IS ADEQUATE. Prepared By: RP Date: 6-4-97 Project MLO LOADIIJ6 Checked By WRR NO. EF444-204 M 6/4/97 56 of 70

4

444-R-01 Revision 0 Volume 1



E-103

Design Report Hanford K East & K West Basin MCO Loading System



Design Report Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

SECT. MODULUS  $S = \frac{T}{C} = \frac{1.028}{.75}$ = 1.37 IN³ MOMENT =  $\frac{Pl}{4} = \frac{1799 \times 9.79}{4} = 4403 \#$  $f_{D} = \frac{M}{5} = \frac{4403}{1.37} = 3214 PSI < 11600 PSI. <math>\therefore$  5L  $\delta_{MAX} = \frac{Pl^{3}}{48 ET} = \frac{1799 \times 9.79^{3}}{48 \times 2956 \times 1.028} = 0.0012 IN.$ 

STRESSES AND DEFLECTIONS ARE LOW, THEREFORE 12 PLATE IS OK

		•			
A	NAC International Inc.	Prepared By: 6	ep 1	Date: 6-4-97	WRANG FEAAA-20.02
	Project: MLO LOADING	Checked By:	n	Date: (///02	Page 59 of 70
				<u> </u>	37 170

444-R-01 Revision 0 Volume 1

						_
	<u>CHECK 24</u> MAXIMUM L IS 1799 # BE 1799 x 3/ PG# 54	<u>×3×3/₈</u> OAD ON THEREF 4 = 1349	P& 2007 <u>ITEM # 40.</u> LOAD CEL DRE MAX. # (LOAS)	(Support Litered L BASED C LOAD ON	T ANGLE) 39 DWK#442-215 A W ECCENTRIC LO 24X3X9/B COUL	6) DADILUG D
	P=13	49 # 	VERT 2 4×4 ТУР.	Apply OF Spa Moment fb_ Laxs = M	FULL LOTED IN CE TH CONS. $T = \frac{PL}{4} = \frac{1349 \times 24}{4}$ = 8096  II-1 $= \frac{8096}{1-44} = 5545 \text{ B}$	<i>₩TEL</i>
	ALSO CHECK LOAD & I" WI	۷.4×3 %	TOP FLANGE		< 11600 PSi 4×3×348 de 4×5×548 de	
2-1	815 FER INC. 815 - 560 *	4 = 1349 Момент Sect. Мо fb = Mz =	22.5 = 60 = 60×2.1875 Dulus = $\frac{bd^2}{6}$ 131-25 5-02344	$= 131.25$ $= \frac{1 \times .375^{2}}{6}$ $= 5559 F$	2 SUPI- 1€A7E 0.02344 IN ³ #i <11600 PS	
		<4x3	× ³ /8 15 AC	EQUATE .	. · · · ·	
	MAC International Inc.	Prepared By:	PP	Date: 6.4-97	WAR NO. EF444 20 40	4
-	SYSTEM	Checked By:	m	Date: 6/4/97	Page (10 of 70	-

E-106

Design Report H Hanford K East & K West Basin MCO Loading System

· •				_			
CHECK WELD BETWEEN LAXBY 3/ AND VERTICAL LAXES IN							
SUPPORT AND	GLE TO MAST VERT	KALS.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
(ITEM # 33 TO 1 REF. DWX+ 444-215 R/0)							
CONSIDER WE	LD ONLY ON VERS AT EACH JOINT	ical sides co Weld Lengi	NSELVATIVE H = 2×3 =	ц) 6″			
T [ ]	LOAD @ EACH	JOINT 15 40	61/* 4 = 116:	5 *(C <i>o</i> NS)			
1 c	WELD SIZE RED'D	=( <u>1165</u> ) ÷ 116	00				
= 0.0167							
• ,	THEREFORE PROVID	E 3/16" FILLE	T WELD	.ok			
* SEE SPREADSHEET PAGE #11							
				×;			
NAC International Inc.	Prepared By: RP	Date: 6-4-97	WRR No. ISCAA	4-20-02			
 Project PLCO LOHDING	Checked By: MA	Date: (14/97	Page 61	et 70			

Design Report Hanford K East & K West Basin MCO Loading System

¥,

γ.

444-R-01 Revision 0 Volume 1

CHECK LUG 1.5" DEEP \$ 2.8" WIDE (ITEM # 23 DWG * 444-232 K/o) LENGTH OF LUG L =  $\frac{13.75}{2} - \frac{9.5}{2} = 2.125$ M = 1799 (2-125) = 3823 "" GOVERN. S.S.STEEL  $5 = \frac{2 \cdot 8 (1 \cdot 5)^2}{5} = 1.05$ Lower of I on Fu  $f_b = \frac{M}{5} = \frac{3823}{105} = 3641$  PH < 10,000 PH 30000 =10000 PSI  $f_{V} = \frac{1799 \times 1.5}{2.0 \times 1.5} = 643 \text{ Psi} < 10,000 \text{ Psi}.$ i. ok WELD IS 1/2" PARTIAL PENETRATION ON EACH SIDE (Support LNG TO SHAFT DWG # 444-232 RID, ITEM=23 TO ITEM=22) TENSION ON WELD DUE TO MOMENT = 3823 =3268LBS LENGTH OF WELD IS 2.8" SAME AS LUG'S WIDTH  $f_T = \frac{3268}{2.5 \times 1.0} = 2334 \text{ psi}$  $f_{v} = \frac{1799}{(1) \times 2.8} = 643 \text{ psi.}$  $f = \int f + \frac{2}{r^2} + \frac{1}{r^2} + \frac{1}{r$ = 123342+6432 = 2421 PSi. < 10,000 PSi. Fy = 30000 = 10000 pSi. THEREFOLE PARTIAL PENETRATION WELD IS ADERILATE NAC International In Prepared By: RP WAR No. EF444-20-02 6.4-9 MLQLOADING

Page 67

ef 70

Design Report H Hanford K East & K West Basin MCO Loading System



444-R-01 Revision 0 Volume 1



4

Design Report Hanford K East & K West Basin MCO Loading System



Design Report HNF-S Hanford K East & K West Basin MCO Loading System 444-R-01 Revision 0 Volume 1

DETERMINE THE REACTIONS ON STEEL BY OTHERS CASE I P=7574 # M=11518 " # PG # 8  $R = \frac{7574}{2} + \frac{11518}{100}$ R = 3787 +115 · R = 3902 LBS. CASE II P= 7074 * M= 15568 "* PG # 9.  $R = \frac{7074}{2} + \frac{15568}{100}$ = 3693 LBS. CASE I GOVERNS RU=3902 LBS. DETERMINE D.L. RDL = 859 = 430 LAS CONSERVATIVE 4 NAC International In Prepared By: RP Date: 6-4-97 WAR NO. EF 444-20-02 MLO LO Checked By: n Date: 6/4/97 Page 66 et 70

E-112

444-R-01 Revision 0 Volume 1

SUMMARY OF LOAD ON STEEL BY OTHERS

RDL = 430 LBS

RLL = 3902 LBS

THE ABOVE LOADS SHALL BE APPLIED AT ANY SINGLE SUPPORT PAD LOCATION SO AS TO PRODUCE MAXIMUM LOAD IN SUPPORT STEEL.

IN ADDITION TO ABOVE VERTICAL LOADS APPROPRIATE IMPACT, LATERAL AND LONGITUDINAL PERCENTAGE OF THE LOAD SHALL BE APPLIED TO PRODUCE MAXIMUM LOAD ON SUPPORT STEEL THIS STEEL SHALL HAVE A MINIMUM MOMENT OF INERTIA OF 248 IN 4 FOR THE PURPOSE OF ALIGNMENT AT CRITICAL PICK UP LOCATION:

<b></b>					
	NAC International Inc.	Prepared By:	RP	Date: 6-4-97	WRR NO. EF444-20-02
	Project MLD LOADING	Checked By:	m	Date: 6-4-97	Page 67 et 70

Design Report HNF-Hanford K East & K West Basin MCO Loading System

x,

4

444-R-01 Revision 0 Volume 1

	·	1			- <del></del>	·		
Summary	of Stress Analysi	8						
Drawing	Item	Component	Lond	Design	Calculated	Allowable	M.S.	Reterenc
	(PER DWG	3)		Check	Stress	Stress		Page
444-215	1	MAST VERTICALS	LIFTING	AXIAL	4759	11600	0.59	49
444-215	2.3,30 AND 36	IDIAGONAL BRACE	LIFTING	AXIAL	7019	11500	0.39	40
444-215	5	IOUTRIGGER HORIZ.	I NORMAL	AXIAL	406	11600	0.97	26
444-215	6	OUTRIGGER DIAG.	NORMAL	AXIAL	844	11600	0.07	
444-215	39	SUPPORT ANGLE	NORMAL	BENDING	5550	11000	0.03	
444-215	12.16 AND 32	MAST HORIZONTALS	NORMAL	AYIAI		11000	0.52	60
44-215	17	TOP HORIZONTAL	LIFTING	RENDING		11600	0.76	35
44-215	20	PLATE 14"	NORMAL	AVIAL	0324	11600	0.44	52
44-211	13	MOUNTING PLATE	NORME	MAL	1458	11600	0.87	35
44-232	23	MOONTING PLATE	NORMAL	BENDING	4283	11600	0.63	56
44-220		CANTER DATE NOTES	NORMAL	BENDING	3641	10000	0.84	62
44.732	22 44/0 23	GANTRY RAIL TUBES	NORMAL	BENDING	7739	11600	0.33	63
	22 AND 23	LUG TO SHAFT	NORMAL I	SHEAR	2421	10000	0.76	62

E-114

Design Report Hanford K East & K West Basin MCO Loading System

444-R-01 Revision 0 Volume 1

SUMMARY OF RESULTS/CONCLUSIONS (cont.)

Denting			1					
Number		Component	I Load	Design	The state	<u> </u>		1
	(PED IN/		1 Condition	Check	Wild Size	Weld Size	M.S.	Referenc
	(FER DR	G	1		- Required	Provided		Page
444-215	16 TO 1	MAST HOPIT TO		1	<u>├───</u>			1
		MAST VERTICAL	NORMAL	SHEAR	0.0157	0 1875	0.000	
		THE TENTING	+			0.10/5	0.021	36
444-215	6 TO 5 AND	OUTRIGGER DIAG T	AL NODICAL			+		
	6 TO 1	IMAST VERT. AND TO	DI NORMAL	SHEAR	0.0375	0.1875	0.80	
		IOUTRIGGER HORIZ	+				0.00	30
44.915		T	+					
-215	20 TO 1	PLATE TO MAST	INORMAL	SHEAD				
		IVERTICAL		STEAK	0.016	0.1875	0.91	36
44-215	5701	101 Provide Care		+				
		IOUTRIGGER HORIZ	NORMAL	SHEAR	0.0200			
		TIO MAST VERTICAL			0.0200	0.1875	0.89	37
44-215	2 TO 1	IDIAGONAL READE						
		ITO MAST VERTICAL	LIFTING	SHEAR	0.159	0 1876		
		1 TENNER I				0.1073	0.15	51
4-215	39 TO 1	SUPPORT ANGLE TO	NORM					
	/	MAST VERTICAL	NORMAL	SHEAR	0.0167	0,1875	0.01	
4.215	17701						0.01	61
-210	1/101	TOP HORIZONTAL TO I	LIFTING	PHEAD				
		MAST VERTICAL		SPIEAK	0.072	0.1875	0.62	70

CONCLUSIONS: THE STRUCTURAL DESIGN OF GANTRY MAST SYSTEM MEETS ALL APPLICABLE DESIGN CRITERIA AND CODES REQUIREMENTS. THEREFORE, THE DESIGN IS A DEQUATE & ACCEPTABLE.

Project: MLO LOADING	Prepared By: R.P Checked By: M	Date: 6-4-97	WER No. 67444-20-02 Page 69 of 70

•

v.

	•					]	
	6.0 REFERENCE	<u>:ES</u>					
	A DECIGNE	DEVIEICATION	J WHC-S	-0546 Rev-	O AND NA	LC I	
	DOCUMENT	r NO. 444-4	-OI REV	Ð			
	B. AMERICAN	INSTITUTE OF	STEEL C	NSTRUCTION	AISC-ASD		
	MANUAL DI	f steel lons	ruction,	9TH EDITIO	N		
	C. DESIGN O	F WELDED S	TRUCTUR	ε By ο.ω.	BLODGETT	8774 ED.	
	PABLIANEL	, 107 Mile Ju				and Difficult	
	D. AWS DI-1 WELDING (	1994, Ameri Ode steel.	ICAN WE	DING SOLLE	ry, struct	IRAL	
			•				
	E. STANDARD ARCH-CIVIL DESIGN CRITERIA SDC-4-1 REV-12						
	F. LETTER # 97-5CB-045 FROM DE & S HANFORD, INC						
	DATED MAY 30, 1997.						
	G. OVERHEAD	> HOIST (UN	DERHUN	G) ASME P.	630-16-199	3	
	SAFETY ST	ANDARDS FOI	CABLED	Mys, CRANE	S, DERGICKS	, H ol STS,	
	HOOKS. JA	teles AND SL	INGS				
	H. AMERICAN	NATIONAL S	MARA	1015777777	HISI NUL	1943	
	SECTION 4	1-2.1			///031 /014/1	5-505	
	I 1)DWG# 444	- 215 R/O. MA Wt	ST WELDM	ENT, MCO LOA VO : H-1-82	DING SYSTEM 1892		
	2) DWG # 444.	211 RO GUI	DE SUBAS	SEMBLY, MLO H-1-82889	LOADING SY.	STEM	
	3) DWG • 444-	232 Flo DRIVE WHC	SUBASS	MBLY, MCO LI H-1-82903	DADING SYSTE	m i	
	t) DwG # 444-2	220 RIO RAILS WHC	SUBASSEMBL DWG-NO:+	y, Mco LoADIN 1-1-82896	6 System		
	NAC International Inc.	Prepared By: R	P	Date: 6-4-97	WAR NO. EF44	4-20-02	
7	Project: MCD LOADING	Checked By:		Date: / 14/02	Page 70	4 70	

# **DESIGN REPORT**

## FOR THE HANFORD K EAST AND K WEST BASIN

### MCO LOADING SYSTEM

#### Volume 2

Appendix F - Drawings Revision 0

June 6, 1997

Report Number: 444-R-01

#### **Prepared For:**

Duke Engineering & Services, Hanford Under Contract Purchase Order MCB-SLD-A01129

**Prepared By:** 

NAC International, Inc. 655 Engineering Drive Norcross, Georgia 30092



#### Design Report Hanford K East & K West Basin MCO Loading System

#### 444-R-01 Revision 0 Volume 2

#### MCO LOADER SYSTEM DRAWING LIST

	NAC DWG. NOS.	WEST DWG NOS.
Equipment General Arrangement		
Fuel Basket Insertion	444-000, SHT-1	H-1-82960, SHT-1
Shuttle Pick-Up Position	444-000, SHT-2	H-1-82960, SHT-2
Immersion Pail Handling	444-000, SHT-3	H-1-82960, SHT-3
Installation Layouts		
Plan	444-101, SHT-1	H-1-82887, SHT-1
Elevation	444-101, SHT-	H-1-82887, SHT-2
View AA	444-101, SHT-3	H-1-82887, SHT-3
		1
Shuttle Assembly		
Sheet 1	444-300, SHT-1	H-1-82911, SHT-1
Sheet 2	444-300, SHT-1	H-1-82911, SHT-2
Cart Assembly	444-301	H-1-82912
Cart Weldment	444-302	H-1-82913
Wedge Assembly	444-303	H-1-82914
Rails and Support		
Sheet 1	444-304, SHT-1	H-1-82915, SHT-1
Sheet 2	444-304, SHT-2	H-1-82915, SHT-2
Sheet 3	444-304, SHT-3	H-1-82915, SHT-3
Cable Mount/Cylinder	444-305	H-1-82916
Seismic Restraint Subassembly	444-306	H-1-82917
Cable Return	444-307	H-1-82918
Cable Return	444-308	H-1-82919
Upper Mounts	444-309	H-1-82920
Upper Mounts	444-310	H-1-82921
Return Pulley Assembly	444-311	H-1-82922
Pneumatic Schematic	444-314	H-1-82927
Gantry Assembly		
Sheet 1	444-200, SHT 1	H-1-82895, SHT 1
Sheet 2	444-200, SHT 2	H-1-82895, SHT 2
Sheet 3	444-200, SHT 3	H-1-82895, SHT 3
Grapple Subassembly		
Sheet 1	444-201, SHT 1	H-1-828902, SHT 1
Sheet 2	444-202, SHT 2	H-1-828902, SHT 2
Guide Subassembly		-
Sheet 1	444-211, SHT 1	H-1-82889, SHT 1
Sheet 2	444-211, SHT 2	H-1-82889, SHT 2
Sheet 3	444-211, SHT 3	H-1-82889, SHT 3
Mast Weldment		
Sheet 1	444-215, SHT 1	H-1-82892, SHT 1
Sheet 2	444-215, SHT 2	H-1-82892, SHT 2
Sheet 3	444-215, SHT 3	H-1-82892, SHT 3
Rail Subassembly	444-220	H-1-82896

#### Design Report Hanford K East & K West Basin MCO Loading System

Bridge Drive Subassembly	444-225	H-1-82898
Screw Drive Subassembly		
Sheet 1	444-232, SHT 1	H-1-82903, SHT 1
Sheet 2	444-232, SHT 2	H-1-82903, SHT 2
Control Station Schematic	444-400	H-1-82940
Control Station Cabinet Assembly	444-401	H-1-82941
Control Station Cabinet Wiring	444-402	H-1-82942
Diagram (Sheet 1 & 2)		
Control System Field Wiring Diagram	444-403	H-1-82943
Field Junction Box Assembly	444-404	H-1-82944
CCTV Basin Viewing Cabinet Ass'y.	444-405	H-1-82945
CCTV Remote Viewing Cabinet Ass'y.	444-406	H-1-82946
CCTV Viewing Power Schematic	444-407	H-1-82947
CCTV Field Wiring Diagram	444-408	H-1-82948
MCO Structure Brace	457-117	
MCO Structure Brace	457-118	
MCO Structure Brace	457-119	


.

.












































































.































DISTRIBUTION SHEET								
То	From	From			Page 1 of 1			
Distribution	SNF S	SNF Storage Projects				Date 6/19/97		
Project Title/Work Order					EDT No. 620124			
Design Report for the Hanford K East and K West Basins MCO Loading System (HNF-SD-SNF-DR-004, Revision 0)					ECN No. NA			
Name		MSIN	Text With All Attach.	Text Onl	y	Attach./ Appendix Only	EDT/ECN Only	
<ul> <li>K. E. Ard</li> <li>S. A. Brisbin</li> <li>D. M. Chenault</li> <li>G. M. Davis</li> <li>W. A. Frier</li> <li>W. D. Gallo</li> <li>L. H. Goldmann</li> <li>V. L. Hoefer</li> <li>K. M. Jones</li> <li>A. T. Kee</li> <li>C. B. Loftis</li> <li>M. A. Meier</li> <li>T. D. Merkling</li> <li>R. W. Rasmussen</li> <li>L. A. Rodgers</li> <li>E. J. Shen</li> <li>C. A. Thompson</li> <li>SNF Project File</li> <li>Central Files</li> </ul>		X3-85 R3-48 R3-86 X3-80 X3-74 R3-11 R3-86 X3-76 X3-85 R3-85 S7-41 X3-74 X3-79 R3-86 X3-85 X3-75 R3-85 X3-75 R3-85 R3-81 R3-88	X				X X X X X X X X X X X X X X X X X X X	