Comparison of the constant and linear boundary element method for EEG and MEG forward modeling

PDF Version Also Available for Download.

Description

We present a comparison of boundary element methods for solving the forward problem in EEG and MEG. We use the method of weighted residuals and focus on the collocation and Galerkin forms for constant and linear basis functions. We also examine the effect of the isolated skull approach for reducing numerical errors due to the low conductivity of the skull. We demonstrate the improvement that a linear Galerkin approach may yield in solving the forward problem.

Physical Description

6 p.

Creation Information

Mosher, J. C.; Chang, C. H. & Leahy, R. M. July 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a comparison of boundary element methods for solving the forward problem in EEG and MEG. We use the method of weighted residuals and focus on the collocation and Galerkin forms for constant and linear basis functions. We also examine the effect of the isolated skull approach for reducing numerical errors due to the low conductivity of the skull. We demonstrate the improvement that a linear Galerkin approach may yield in solving the forward problem.

Physical Description

6 p.

Notes

OSTI as DE96012732

Source

  • Biomagnetism conference, Santa Fe, NM (United States), Feb 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96012732
  • Report No.: LA-UR--96-1944
  • Report No.: CONF-9602101--10
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 432330
  • Archival Resource Key: ark:/67531/metadc682506

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Oct. 3, 2017, 7:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mosher, J. C.; Chang, C. H. & Leahy, R. M. Comparison of the constant and linear boundary element method for EEG and MEG forward modeling, article, July 1, 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc682506/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.