The production and confinement of runaway electrons with impurity killer pellets in DIII-D

PDF Version Also Available for Download.

Description

Prompt runaway electron bursts, generated by rapidly cooling DIII-D plasmas with argon killer pellets, are used to test a recent knock-on avalanche theory describing the growth of multi-MeV runaway electron currents during disruptions in tokamaks. Runaway current amplitudes, observed during some but not all DIII-D current quenches, are consistent with growth rates predicted by the theory assuming a pre-current quench runaway electron density of approximately 10{sup 15} m{sup {minus}3}. Argon killer pellet modeling yields runaway densities of between 10{sup 15}--10{sup 16} m{sup {minus}3} in these discharges. Although knock-on avalanching appears to agree rather well with the measurements, relatively small avalanche ... continued below

Physical Description

5 p.

Creation Information

Evans, T.E.; Taylor, P.L. & Whyte, D.G. December 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Prompt runaway electron bursts, generated by rapidly cooling DIII-D plasmas with argon killer pellets, are used to test a recent knock-on avalanche theory describing the growth of multi-MeV runaway electron currents during disruptions in tokamaks. Runaway current amplitudes, observed during some but not all DIII-D current quenches, are consistent with growth rates predicted by the theory assuming a pre-current quench runaway electron density of approximately 10{sup 15} m{sup {minus}3}. Argon killer pellet modeling yields runaway densities of between 10{sup 15}--10{sup 16} m{sup {minus}3} in these discharges. Although knock-on avalanching appears to agree rather well with the measurements, relatively small avalanche amplification factors combined with uncertainties in the spatial distribution of pellet mass and cooling rates make it difficult to unambiguously confirm the proposed theory with existing data.

Physical Description

5 p.

Notes

INIS; OSTI as DE99001958

Source

  • 17. IAEA fusion energy conference, Yokohama (Japan), 19-24 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001958
  • Report No.: GA--A22976
  • Report No.: CONF-981064--
  • Grant Number: AC03-89ER51114;AC05-96OR22464;FG03-95ER54294
  • Office of Scientific & Technical Information Report Number: 319809
  • Archival Resource Key: ark:/67531/metadc682353

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 1, 2016, 6:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Evans, T.E.; Taylor, P.L. & Whyte, D.G. The production and confinement of runaway electrons with impurity killer pellets in DIII-D, article, December 1, 1998; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc682353/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.