Dynamo and anomalous transport in the reversed field pinch

PDF Version Also Available for Download.

Description

The reversed field pinch is an effective tool to study the macroscopic consequences of magnetic fluctuations, such as the dynamo effect and anomalous transport. Several explanations exist for the dynamo (the self-generation of plasma current)--the MHD dynamo, the kinetic dynamo, and the diamagnetic dynamo. There is some experimental evidence for each, particularly from measurements of ion velocity and electron pressure fluctuations. Magnetic fluctuations are known to produce energy and particle flux in the RFP core. Current profile control is able to decrease fluctuation-induced transport by a factor of five. Improved confinement regimes are also obtained at deep reversal and, possibly, ... continued below

Physical Description

Medium: P; Size: 27 p.

Creation Information

Prager, S.C. August 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The reversed field pinch is an effective tool to study the macroscopic consequences of magnetic fluctuations, such as the dynamo effect and anomalous transport. Several explanations exist for the dynamo (the self-generation of plasma current)--the MHD dynamo, the kinetic dynamo, and the diamagnetic dynamo. There is some experimental evidence for each, particularly from measurements of ion velocity and electron pressure fluctuations. Magnetic fluctuations are known to produce energy and particle flux in the RFP core. Current profile control is able to decrease fluctuation-induced transport by a factor of five. Improved confinement regimes are also obtained at deep reversal and, possibly, with flow shear.

Physical Description

Medium: P; Size: 27 p.

Notes

INIS; OSTI as DE99000800

Source

  • 25. European Physical Society conference on controlled fusion and plasma physics, Prague (Czech Republic), 29 Jun - 3 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000800
  • Report No.: CONF-980678--
  • Grant Number: FG02-96ER54345
  • Office of Scientific & Technical Information Report Number: 291139
  • Archival Resource Key: ark:/67531/metadc682319

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 4, 2015, 5:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Prager, S.C. Dynamo and anomalous transport in the reversed field pinch, article, August 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc682319/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.