A study of total measurement error in tomographic gamma scanning to assay nuclear material with emphasis on a bias issue for low-activity samples

PDF Version Also Available for Download.

Description

Field experience with the tomographic gamma scanner to assay nuclear material suggests that the analysis techniques can significantly impact the assay uncertainty. For example, currently implemented image reconstruction methods exhibit a positive bias for low-activity samples. Preliminary studies indicate that bias reduction could be achieved at the expense of increased random error variance. In this paper, the authors examine three possible bias sources: (1) measurement error in the estimated transmission matrix, (2) the positivity constraint on the estimated mass of nuclear material, and (3) improper treatment of the measurement error structure. The authors present results from many small-scale simulation studies ... continued below

Physical Description

7 p.

Creation Information

Burr, T.L.; Mercer, D.J. & Prettyman, T.H. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Field experience with the tomographic gamma scanner to assay nuclear material suggests that the analysis techniques can significantly impact the assay uncertainty. For example, currently implemented image reconstruction methods exhibit a positive bias for low-activity samples. Preliminary studies indicate that bias reduction could be achieved at the expense of increased random error variance. In this paper, the authors examine three possible bias sources: (1) measurement error in the estimated transmission matrix, (2) the positivity constraint on the estimated mass of nuclear material, and (3) improper treatment of the measurement error structure. The authors present results from many small-scale simulation studies to examine this bias/variance tradeoff for a few image reconstruction methods in the presence of the three possible bias sources.

Physical Description

7 p.

Notes

INIS; OSTI as DE99001831

Source

  • 39. Institute of Nuclear Materials Management (INMM) annual meeting, Naples, FL (United States), 26-30 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001831
  • Report No.: LA-UR--98-3061
  • Report No.: CONF-980733--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 319617
  • Archival Resource Key: ark:/67531/metadc682281

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 20, 2016, 3:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Burr, T.L.; Mercer, D.J. & Prettyman, T.H. A study of total measurement error in tomographic gamma scanning to assay nuclear material with emphasis on a bias issue for low-activity samples, article, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc682281/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.