A Particle-based model for water simulation

PDF Version Also Available for Download.

Description

The Smooth-Particle Applied Mechanics (SPAM) model is a relatively recent physical modeling technique It can model both fluids and solids using free-moving particles An implemented SPAM model is described that solved the compressible Navier-Stokes equations to produce animations of splashing and pooling water Because the particle positions are known explicitly each timestep, the SPAM technique produces data amenable to visualization A ray-tracing renderer is also described It samples the underwater light-field distribution and stores tbe information into a Light Accumulation Lattice which is used for scattered light calculations and caustics.

Physical Description

9 p.

Creation Information

Max, N., LLNL January 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Smooth-Particle Applied Mechanics (SPAM) model is a relatively recent physical modeling technique It can model both fluids and solids using free-moving particles An implemented SPAM model is described that solved the compressible Navier-Stokes equations to produce animations of splashing and pooling water Because the particle positions are known explicitly each timestep, the SPAM technique produces data amenable to visualization A ray-tracing renderer is also described It samples the underwater light-field distribution and stores tbe information into a Light Accumulation Lattice which is used for scattered light calculations and caustics.

Physical Description

9 p.

Notes

OSTI as DE98058815

Other: FDE: PDF; PL:

Source

  • 25. international ACM conference on computer graphics and interactive techniques, Orlando, FL (United States), 19-24 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98058815
  • Report No.: UCRL-JC--129378
  • Report No.: CONF-980702--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 310908
  • Archival Resource Key: ark:/67531/metadc682220

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 6, 2017, 6:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Max, N., LLNL. A Particle-based model for water simulation, article, January 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc682220/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.