Electron transport in radiotherapy using local-to-global Monte Carlo

PDF Version Also Available for Download.

Description

Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ``steps`` to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per ... continued below

Physical Description

10 p.

Creation Information

Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.; Neuenschwander, H. et al. September 1, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 43 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ``steps`` to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given.

Physical Description

10 p.

Notes

INIS; OSTI as DE95009563

Source

  • International conference on mathematics and computations, reactor physics, and environmental analyses, Portland, OR (United States), 30 Apr - 4 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95009563
  • Report No.: UCRL-JC--118754
  • Report No.: CONF-950420--22
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 39026
  • Archival Resource Key: ark:/67531/metadc682086

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1994

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Oct. 4, 2017, 2:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 43

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.; Neuenschwander, H. et al. Electron transport in radiotherapy using local-to-global Monte Carlo, article, September 1, 1994; California. (digital.library.unt.edu/ark:/67531/metadc682086/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.