This document was retrieved from the Boeing ISEARCH System.

Accession #: D196112945

Document #: SD-W259-ER-001

Title/Desc:
T PLANT SECONDARY CONTAINMENT & LEAK DETECTION UPGRADES
To: (Receiving Organization)
Distribution
Project W-259

From: (Originating Organization)
T Plant Projects

Related EDT No.:
N/A

Purchase Order No.:
N/A

Equip./Component No.:
N/A

System/Bldg./Facility:
2706-T/TA Plant

Proj./Prog./Dept./Div.:
TA Carlson

Cog. Engr.:

Proj. Remarks:
Attached is an approved copy of the Engineering Evaluation Request Document for Project W-259, "T Plant Secondary Containment and Leak Detection Upgrades."

Receiver Remarks:
This transmission is for WHC formal release of the Engineering Evaluation report for Project W-259, "T Plant Secondary Containment and Leak Detection Upgrades."

DATA TRANSMITTED

<table>
<thead>
<tr>
<th>(A) Item No.</th>
<th>(B) Document/Drawing No.</th>
<th>(C) Sheet No.</th>
<th>(D) Rev. No.</th>
<th>(E) Title or Description of Data Transmitted</th>
<th>Approval Designator</th>
<th>Reason for Transmittal</th>
<th>Originator Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHC-SW-W259-ER-001</td>
<td>--</td>
<td>0</td>
<td>Engineering Evaluation Report for Project W-259 "T Plant Secondary Containment and Leak Detection Upgrades"</td>
<td>Q</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

KEY

- **E, S, Q, D or N/A** (see WHC-CM-3-S, Sec. 12.7)
- **1. Approval**
 - 2. Release
 - 3. Information
 - 4. Dist. (Receipt Acknow. Required)

SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>(G) (H)</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
<th>Reason</th>
<th>Disp.</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Cog. Eng. TA Carlson</td>
<td></td>
<td>T3-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cog. Mgr. KM Quigley</td>
<td></td>
<td>T3-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>QA GC Noise</td>
<td></td>
<td>T3-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T Plant Project Files</td>
<td></td>
<td>T3-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature of EDT Originator

Signature: [Signature]

Date: [Date]

Authorized Representative for Receiving Organization

Name: [Name]

Date: [Date]

Cognizant Manager

Name: [Name]

Date: [Date]
This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

C. WILLINGHAM

10/19/95

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy. Printed in the United States of America. To obtain copies of this report, contact:

Westinghouse Hanford Company - Document Control Services
P.O. Box 1970, Mailstop H6-08, Richland, WA 99352
Telephone: (509) 372-2420; Fax: (509) 376-4989

Semstone is a trademark of Century Polymer Company.
THIS PAGE INTENTIONALLY LEFT BLANK
SUPPORTING DOCUMENT

2. Title
T PLANT SECONDARY containment AND LEAK DETECTION UPGRADES

3. Number
WHC-SD-W259-ER-001

4. Rev No.
0

5. Key Words
Environmental containment, leak detection and decontamination capabilities

6. Author
Name: TA Carlson

7. Abstract

W-259 will provide upgrades to the 2706-T/TA Facility to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. The project provides decontamination activities supporting the environmental restoration mission and waste management operations on the Hanford Site.

8. RELEASE STAMP

OFFICIAL RELEASE
BY WHC
DATE OCT 19 998
Station 35
THIS PAGE INTENTIONALLY LEFT BLANK
ENGINEERING EVALUATION

T PLANT SECONDARY CONTAINMENT AND LEAK DETECTION UPGRADES

PROJECT W-259

Prepared for

Westinghouse Hanford Company

October 1995

For Westinghouse Hanford Company
Subcontract 380393

Prepared by

ICF Kaiser Hanford Company
Richland, Washington

W259EE
ENGINEERING EVALUATION

FOR

T PLANT SECONDARY CONTAINMENT AND LEAK DETECTION UPGRADES

PROJECT W-259

Prepared by

ICF Kaiser Hanford Company
Richland, Washington

for

Westinghouse Hanford Company

Principal Lead Engineer

Project Manager

Technical Documents

Environmental Engineering

Projects Department
TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. SUMMARY .. 2

III. JUSTIFICATION ... 2

IV. DESCRIPTION OF PROJECT SCOPE 3
 A. IMPROVEMENTS TO LAND (460) 4
 B. BUILDINGS (501) .. 6
 C. OTHER STRUCTURES (550) 8
 D. UTILITIES (600) .. 12
 E. SPECIAL EQUIPMENT AND PROCESS SYSTEMS (700) 14
 F. OTHER PROJECT COSTS (900) 17
 G. DESIGN COMPLIANCE 18

V. METHODS OF PERFORMANCE 20
 A. ONSITE ARCHITECT-ENGINEER WORK (WBS 1.1 and WBS 1.2) 20
 B. PROCUREMENT (WBS 2.0) 20
 C. CONSTRUCTION WORK BY ONSITE CONTRACTOR (WBS 3.1) 20
 D. WORK BY OPERATING CONTRACTOR (WBS 3.3 and WBS 4.0) ... 20

VI. REQUIREMENTS AND ASSESSMENTS 21
 A. SAFEGUARDS AND SECURITY 21
 B. HEALTH AND SAFETY 21
 C. DECONTAMINATION AND DECOMMISSIONING 22
 D. PROVISIONS FOR FALLOUT SHELTERS 22
 E. MAINTENANCE AND OPERATION REQUIREMENTS 22
 F. AUTOMATED DATA PROCESSING EQUIPMENT 23
 G. QUALITY ASSURANCE/SAFETY CLASSIFICATION 23
 H. ENVIRONMENTAL COMPLIANCE 24
 I. PERMITS .. 26

VII. IDENTIFICATION AND ANALYSIS OF UNCERTAINTIES 27

VIII. REFERENCES ... 31
APPENDICES

Appendix A. Work Breakdown Structure
Appendix B. Budget Authorized/Budget Outlay Schedule
Appendix C. Cost Estimate Summary
Appendix D. Revised/Proposed Project Schedule
Appendix E. Outline Specification
Appendix F. Energy Conservation Report and Analysis
Appendix G. Preliminary Safety Evaluation
Appendix H. Economic Analysis and Life Cycle Cost Analysis
Appendix I. Physically Handicapped Assessment
Appendix J. Sketches
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACDR</td>
<td>advanced conceptual design report</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>CDR</td>
<td>conceptual design report</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DST</td>
<td>double-shell tank</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FDC</td>
<td>functional design criteria</td>
</tr>
<tr>
<td>FHA</td>
<td>fire hazards analysis</td>
</tr>
<tr>
<td>HEPA</td>
<td>high-efficiency particulate air</td>
</tr>
<tr>
<td>HPS</td>
<td>Hanford Plant Standard</td>
</tr>
<tr>
<td>ICF KH</td>
<td>ICF Kaiser Hanford Company</td>
</tr>
<tr>
<td>I/O</td>
<td>input/output</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>MCC</td>
<td>motor control center</td>
</tr>
<tr>
<td>MOV</td>
<td>motor operated valve</td>
</tr>
<tr>
<td>MRP</td>
<td>Management Requirements and Procedures</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NESC</td>
<td>National Electric Safety Code</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administrator</td>
</tr>
<tr>
<td>PLC</td>
<td>programmable logic controller</td>
</tr>
<tr>
<td>PSAR</td>
<td>preliminary safety analysis report</td>
</tr>
<tr>
<td>PSE</td>
<td>preliminary safety evaluation</td>
</tr>
<tr>
<td>PUREX</td>
<td>plutonium-uranium extraction</td>
</tr>
<tr>
<td>QAP</td>
<td>Quality Assurance Plan</td>
</tr>
<tr>
<td>RL</td>
<td>U.S. Department of Energy, Richland Operations Office</td>
</tr>
<tr>
<td>RLIP</td>
<td>U.S. Department of Energy, Richland Operations Office Implementing Procedure</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SDC</td>
<td>Standard Design Criteria</td>
</tr>
<tr>
<td>SEPA</td>
<td>State Environmental Policy Act</td>
</tr>
<tr>
<td>VCP</td>
<td>video control panel</td>
</tr>
<tr>
<td>WAC</td>
<td>Washington Administrative Code</td>
</tr>
<tr>
<td>WHC</td>
<td>Westinghouse Hanford Company</td>
</tr>
<tr>
<td>WBS</td>
<td>work breakdown structure</td>
</tr>
<tr>
<td>WSDOH</td>
<td>Washington State Department of Health</td>
</tr>
</tbody>
</table>
ENGINEERING EVALUATION

T PLANT SECONDARY CONTAINMENT AND LEAK DETECTION UPGRADES

PROJECT W-259

I. INTRODUCTION

This Engineering Evaluation supersedes the ACDR for Project W-259, "2706-T/2706-TA Facility Secondary Containment and Leak Detection Upgrades," (Ref. 3). The Evaluation specifically addresses only the changes required for 2706-T and 2706-TA (2706-T/TA) Facility to provide environmental containment and leak detection (reference FDC ECN 621104). Decontamination process capabilities are also provided.

The T Plant facilities in the 200-West Area of the Hanford Site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. The facilities have served a variety of missions including direct nuclear material production, waste management operations, and current decontamination support activities. T Plant includes the 271-T Facility, the 221-T Facility, and several support facilities (e.g., 2706-T, 211-T Sump), utilities, and tanks/piping systems.

The 2706-T/TA Facility has been recommended as the primary interim decontamination facility for the Hanford Site. The decontamination activities planned for this facility support the environmental restoration mission and waste management operation for the Hanford Site. Project W-259 will provide capital upgrades to the 2706-T/TA Facility to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection.
II. SUMMARY

Capital upgrades would be required for this facility to ensure that operations are in compliance with the regulatory standards for secondary containment and leak detection. The decontamination activities planned for the T Plant facilities support the environmental restoration mission and waste management operations for the Hanford Site.

The Functional Design Criteria for Project W-259, "T Plant Secondary Containment and Leak Detection Upgrades," (Ref. 7) is the technical baseline for providing the upgrades necessary to allow the 2706-T/TA Facilities to perform these decontamination activities. The latest FDC revision eliminates the use of non-compliant storage tanks for decontamination processes in 221-T.

The actual operation of the decontamination systems will be performed by 2706-T/TA Facility operations and is not within the scope of project W-259.

Project W-259 was previously validated as a fiscal year 1996 Line Item (total estimated cost: $18.6M). The total estimated construction cost for this revised project scope is $9,600,000; other project cost is $2,600,000. The revised total project cost is $12,200,000.

The existing 2706-T/TA Facility configuration does not meet the requirements of secondary containment and leak detection (Ref. State/Federal Regulations).

III. JUSTIFICATION

Project W-259 will provide 2706-T/TA Facility upgrades to perform decontamination activities in support of the waste management and environmental restoration programs on the Hanford Site. The 2706-T/TA Facilities must be upgraded to meet EPA and Washington State Department of Ecology requirements for treatment of hazardous liquid waste.
Failure to validate project W-259 will result in delays of a functional on-line facility to support major decontamination activities and will jeopardize Tri-Party Agreement milestones M-32-03, "Complete T Plant Tank Action," and M-32-03-T06, "Complete Scheduled Upgrades to T Plant Tank System (project W-259)."

IV. DESCRIPTION OF PROJECT SCOPE

Project W-259 includes the design, procurement, and installation of the following items as required for each particular decontamination/transfer system.

2706-T/TA Facility

- Systems for collection, filtration, transfer, and storage of mixed decontamination waste at the 2706-T/TA Facility include one automotive pit and one railroad pit sump; mixed waste transfer and filtration system to/from a storage tank; and a liquid waste load-out facility above the railroad pit inside the 2706-T/TA Facility.

- A concrete pad and building to provide secondary containment of the radioactive decontamination waste activities at the 2706-T/TA Facility.

- A concrete catch basin, two storage tanks, and building to provide decontamination waste storage and secondary containment.

- Microprocessor-based system to monitor, alarm, and control the level and transfer of waste for each tank location.

- Valve stations for connection to decontamination agents from the existing systems.

- New 13.8 kV electrical service, utility transformer and vault, and metering at the 2706-T/TA Facility.
- New 480 V switchgear for 2706-T and 2706-TA, and a power distribution system for 2706-TA similar to the power system for 2706-T.

- Site preparation and modifications for the installation of equipment and radioactive decontamination waste collection/storage system.

- Transfer pump and process piping flush capabilities.

- Air-cooled air compressors.

- Leak detection systems for the transfer piping, storage tank, basin sump, and pit sump liners.

- Waste transfer pipe from 221-T canyon to 2706-T/TA decontamination waste collection system.

- Fire protection features are to be incorporated into new facilities and will be modified in the existing 2706-T/TA Facilities as required to comply with applicable codes and standards.

A. IMPROVEMENTS TO LAND (460)

Civil/Structural
The area around the 2706-T/TA Facility and the new tank area will be regraded so that storm water can be collected and disposed of properly. Disposal will be to the correctly sized storm water collection sump.

2706-T/TA Facility Yard Storage Tank Pad
Two new storage tanks with catch basin and building will be located adjacent to the 2706-T/TA Facility on the north side. The existing grading will be modified to allow drainage around the catch basin. A soil sample test will be required to determine soil design parameters. Excavation and
backfill requirements will be determined after the soil is tested and the pad is designed.

Piping and Vessels

2706-T/TA Facility
Pumps, piping and associated and associated wiring/conduit inside the existing automotive and railroad pits will be removed and disposed.

The existing transfer routes between the automotive pit and the railroad pit will be plugged and abandoned in place.

Piping that is located in the pipe trenches will be removed.

The 211T Sump will be abandoned and buried. All equipment in the sump and all piping entering or leaving the sump will be capped. Above ground piping will be removed.

Electrical

General Site
A new poleline and underground service will be added from the existing overhead line C8-L4 to the 2706-T/TA Facility.

2706-T Building
The main 2400-480 V transformer will be removed.

2706-TA Building
A new main 13.8 kV-480/277 V transformer and vault will be installed next to the new electrical room.
B. BUILDINGS (501)

Piping
Piping between the 2706-T/TA Facility and the new 15,000-gal and 6,000 gal storage tanks, will be above ground. The process piping will be encased in a secondary containment pipe as required. The piping will be installed at an elevation that will not interfere with normal operations of the facility.

Fire Protection
The existing automatic fire alarm system and automatic sprinkler systems provide adequate fire protection for the current occupancy and configuration of the 2706-T/TA Facility. The 2706-T/TA Facility is classified as a Special Purpose Industrial Occupancy per NFPA 101 and an H-7 occupancy per the UBC due to health hazards presented by radionuclides in the facility. Use of organic solvents is not anticipated. Fire protection features to be incorporated into the scope of Project W-259 will be provided to comply with applicable requirements of DOE Orders, the Uniform Fire Code (UFC), Uniform Building Code (UBC), Factory Mutual (FM) Loss Prevention Data Sheets, and the National Fire Protection Association (NFPA) Codes and Standards. Fire protection features include the following.

- Transformer fluid will be an FMRC approved or equivalent less flammable fluid. Transformer installation shall comply with the NEC and FM Loss Prevention Data Sheet 5-4/14-8, "Transformers." Space separation between the building and transformer will comply with FM Loss Prevention Data Sheet 5-4/14-8.

- The tank storage facility and additions to the 2706-T/TA Facility will have exiting that meet requirements of the UBC and NFPA-101. The tank storage building, the new electrical room, and the new HEPA
filter room will each require a minimum of one exit. Emergency exit path lighting and illuminated EXIT signs will also be provided within the scope of this project.

- Automatic sprinkler protection will be provided as follows.

1) Throughout the new tank storage building, the new electrical room, the new HEPA filter room, and for protection under the new maintenance platform roof that form a connection between the filter buildings.

2) Sprinkler protection will be provided by connections to and extension/ modification of the existing sprinkler system protecting the 2706-T/TA Facility to provide a system designed for an ordinary hazard group 2 occupancy classification. Modifications to the existing sprinkler systems will include conversion of the existing dry pipe portion to a wet pipe system and replacement of existing non-rising stem control valves for the reduced pressure backflow prevention assembly with OS&Y valves. A hydraulic analysis of the sprinkler system will be performed to determine design requirements for new installations and requirements for modifications of the existing systems. Sprinkler system modifications will comply with NFPA-13.

- A fixed automatic water deluge spray extinguishing system will be provided inside the final filter plenum upstream of prefilters for protection of the HEPA filters. Fire screens shall also be installed upstream of the prefilters. Installation of the waterspray system and associated detection devices for initiation will follow guidance contained in the DOE Fire Protection Resource Manual.
• Modifications to the existing fire alarm system will include relocation and reconnection of alarm devices in HazMat storage facilities HS-030 and HS-032; installation of zone flow switches for the tank storage building and HEPA filter/electrical room sprinkler systems; installation and supervision of detection and alarm devices for the HEPA filter water deluge spray system, installation of additional alarm bells, new manual pull stations, and installation or revision of sprinkler system control valve supervisory devices as required. Fire alarm system modifications will comply with NFPA-72.

• New construction will be noncombustible or fire resistive rated assemblies.

• Vents to the exterior of the Tank Storage Building will be provided for liquid storage tanks. (Anticipated quantities of organic solvents in solution will be less than 20% of the total volume and are not considered to be a sufficient hazard to require flash arresters on tank vents or classified electrical equipment within the tank storage building.)

• Duct smoke detection will be installed in the exhaust ducting and will be interlocked with the HVAC system to shut down fans.

C. OTHER STRUCTURES (550)

2706-T/TA Facility Decontamination Waste Collection System
The railroad and automotive pits will be provided with special protective coating on walls, columns, and floor. The sumps below the railroad and automotive pits will be a double shell with leak detection and grating over the top of the pit. In the existing railroad pit, concrete in the bottom of the pit will be removed and the new sump installed below the existing grade. The concrete bottom of the railroad pit will be resloped to allow
water to flow to the sump. In the existing automotive pit the elevation of the bottom will be raised to four feet or less below grade such that the automotive pit will no longer be a confined space. The sump will be sized to fit in the space which will be filled.

The floor of the 2706-T/TA Facility will be sloped resulting in diversion of all liquids to the two new sumps. The floor, existing pipe trenches, and the walls of the railroad and automotive pits will be grouted to provide a smooth surface. A polymer-type coating (e.g., epoxy) will be applied to all exposed interior concrete surfaces (see Appendix E for special protective coatings).

2706-T/TA Yard Storage Tanks

Two new storage tanks, one 15,000-gal and one 6,000-gal, will be located adjacent to the 2706-T/TA Facility. Both tanks are provided with a concrete secondary containment catch basin. Tanks and basin are provided with cover.

The tanks will be fabricated from stainless steel. Each tank will be designed to accommodate the following features:

- One vertical pump mounted at the top of the tank.
- One agitator mounted at the top of the tank.
- Leak detection at the low point of the basin.
- Access for sludge grab sampling.
- Concrete catch basin is sized for 110% of the tank volume.
Level monitoring and control for the tanks shall interlock to prevent filling over 90%.

Waste stream sample return connection.

Vent with HEPA filter.

Waste stream inlet connection.

Sump pit in the catch basin with sump pump to deliver sump water to 15,000 gal tank.

2706-T/TA Loadout Station
The loadout station (i.e., rail car loading arm) for the 2706-T/TA Facility will be located inside the 2706-T/TA Facility above the existing railroad pits (see sketch ES-W259-M02). The design and construction of the new 2706-T/TA radioactive decontamination waste water loadout station will comply with DOE Order 6430.1A.

Heating, Ventilating, and Air Conditioning
HEPA filtration will be installed in the vents on the 15,000-gal and 6,000-gal storage tanks located next to the 2706-TA Building. The HEPA filters will be self-contained, fire- and moisture-resistant, high temperature and high humidity nuclear grade filters.

The existing ventilation system that provides exhaust from the existing 2706-T automotive and railroad pits will be modified to ventilate the primary containment region of the new double-walled sump containment liners being installed in the pits. The existing underfloor exhaust ducts (i.e., one duct serving the automotive pit and one duct serving the railroad pit) will be extended and connected to the double-walled sump
containment liners (see sketch). Demisters will be installed in the proposed additions.

Exhaust fans will be interlocked with the fire alarm system and arranged to shut down upon activation of a fire alarm.

A new HEPA filtration exhaust system will be installed for the 2706-TA Building. The system will consist of exhaust ducting inside 2706-TA, a new filter room on the south side of 2706-TA, a single HEPA filter train, and an exhaust stack.

The duct system will consist of five inlets located at floor level along the north wall. The branch ducts will take the air to the ceiling of the building where it will be collected in a header. The duct will cross the building at the ceiling to the south side where it will enter the filter building. The new filter will have an inlet plenum, a demister, heater, test section, HEPA filter section, test section, and fan section. The filter housing will be a purchased unit fabricated of stainless steel and will have three rows of four filters. The filters will be bag-in/bag-out type with access from both sides of the housing for filter removal and installation.

The fan will discharge from the filter building into a new exhaust stack located adjacent to the building. The stack will be monitored by an exhaust monitoring system.

New heat pumps will be installed to maintain the interior temperature of the 2706-TA Building. The heat pumps will be split systems with the condensers located outside the building and separate fan/coils inside the building.

The storage tank building will be heated during the winter for freeze protection and ventilated during the summer. Heat will be provided by
electric resistance unit heaters. Roof ventilators will provide air flow during the summer.

D. UTILITIES (600)

Electrical System Design

Project W-259 will install equipment that requires 480 V, 3-phase; 208 V, 3-phase; 277 V, single-phase; and 120 V, single-phase power. All electrical systems will be fail-safe in the event of a power failure. Interlocks and alarms will be provided on systems or components to prevent operation in a manner that may affect safety or be detrimental to the equipment. The electrical and lighting systems will be designed according to IEEE recommendations, the IES Lighting Handbook, NEC, NESC, and DOE Order 6430.1A requirements.

A new 13.8 kV overhead and underground service will be provided to the 2706-T/TA facilities from the existing overhead power line C8-L4. A new 13.8 kV-480/277 V, 1000 kVA maximum, oil filled, pad-mounted transformer was used for estimating purposes to serve the 2706-T/TA Facilities. Metering of the transformer will be installed. The actual size and type of transformer and metering specifications will be determined by the A/E engineering and onsite electrical utilities group.

A new 2,500 A switchboard, with a minimum of 25,000 A interrupting current bracing, will be installed in the new electrical room 2706-TA. The new switchboard will include a 2,500 A main circuit breaker and 2 feeder 1,200 A circuit breakers. The main circuit breaker and feeder circuit breakers will be provided with grounded fault protection. A new 1,200 A, main lug only, distribution panelboard, similar to 2706-T’s main panelboard, will be provided. A new MCC with a minimum 25,000 A interrupting current bracing will be installed in the 2706-TA electrical room. The MCC and distribution panelboard will be oversized.
approximately 20% to allow for additional expansion. Two new MCCs, 480-208 V/120 V transformers, and single-phase panelboards will be installed near the outdoor storage tank located by the 2706-TA Facility.

Electrical power conductors and control conductors will not be routed in the same conduit. All 480 V, 3-phase power wiring will be routed in conduits separate from the 120 V, single-phase wiring.

A one-line diagram and details and a site plan for the 2706-T/TA Facility have been included to illustrate the electrical system explained in this report (see sketch).

The need for standby and/or backup power for tank heaters, heat tracing, motorized valves, pumps, and agitators has been evaluated and is not required at this time.

Compressed Air

Compressed air will be used for decontamination processes, waste water transfer pump, and agitation inside storage vessels. A single stage vertical air compressor will be installed to provide compressed air through the existing compressed air system. New piping will be routed from the existing compressed air line to the decontamination supply station, waste water transfer pump, and tank sparge systems.

Steam

Steam for decontamination activities will be supplied at the 2706-T/TA Facility through portable steam generators (furnished by others).

Pressurized Water

Pressurized water will be used for decontamination processes. Pressurized (service) water will be supplied through the existing service water system. New piping will be routed from the existing service water line to the
decontamination supply station. Backflow protection will be installed as required.

E. SPECIAL EQUIPMENT AND PROCESS SYSTEMS (700)

Piping

2706-T/TA Facility
Two electrically driven diaphragm pumps will be installed for each pit sump within the 2706-T/TA Facility. These pumps will be used to transfer decontamination waste from the pit to the new tanks located adjacent to the 2706-T/TA Facility and are designed to prevent liquid from reaching the top of the sump liners. Outdoor piping between the 2706-T/TA Facility and storage tank building will be provided with an encasement to meet containment requirements.

One vertical turbine-style pump will be installed in each new 15,000-gal and 6,000-gal storage tank. The pump transfers decontamination waste from the tank to the loadout station in the 2706-T/TA Facility.

One agitator will be installed in each new 15,000-gal and 6,000-gal storage tank to provide sludge mixing. The agitator will be mounted at the top of the tank, and positioned so that the blade has appropriate clearance from the lower unit of the pump and other tank internals. Pumps and agitators will be provided with high-efficiency motors.

The storage tanks will have a HEPA filter on the tank vent.

The wash water in the 2706-T/TA Facility is collected in the railroad pit sump and the automotive pit sump. After two stages of filtration to remove solid particles, the wash water is then transferred to the holding tanks prior to disposal to the Tank Farm.
The filtration system is designed for removal of up to 90% of the solids contained in the decontamination waste water. The solid removal in each pit sump is accomplished in two stages. The first stage is in each of the pit sumps where a multiple filter is located to catch larger particles. The liquid in the pit sump is then pumped by an air operated diaphragm pump into a common second stage duplex filter. Wash water after the second stage duplex filter is discharged to 15,000- and 6,000-gal holding tanks for disposal to the Tank Farm. The air operated diaphragm pump has liquid lifting and solid handling capabilities. The solid removal system after two stages of filtration is capable of removing better than 90% of solid. The solids collected by the first and second stage filters are to be transferred to a solid waste disposal facility. The mesh of the filters can be changed, if necessary, to a larger or a smaller size depending on future considerations. The filter media will be designed for easy removal using the overhead crane.

The wash water transfer piping inside the 2706-T/TA Facility and inside the holding tank building is single piping, the outdoor piping between the buildings is provided with an encasement to meet double-containment requirements. The encasement will be provided with low-point drains and a leak detection system as required.

Piping for transferring liquid waste from 221-T canyon to 2706-T/TA Facility is discharged to the 2706-T/TA filtration system by-passing the existing 211-T sump.

All outdoor process piping will be provided with encasements with low-point drain connections to facilitate system drainage and, thereby, reduce the potential for freezing the liquid accumulation in those regions.

Electrical heat trace freeze protection will be provided and installed on the outdoor piping.
Liquid sampling connections (i.e., valves and associated piping) will be provided at the 15,000-gal storage tank. The sampling station (connection) will be provided from a recirculation line as shown on sketch ES-W259-I3A.

All valves and associated non-encased piping located above the storage tank, will be inside of a cabinet enclosure that will serve as secondary containment. The cabinet vent will be provided with HEPA filtration, and the cabinet will drain to the storage tank, as well as have leak detection.

The loadout arm in the 2706-T/TA Facility will be designed to include retraction capabilities (multiple swivel planes of rotation, as required) to facilitate continued normal operations of the crane within the building.

221-T Canyon
A SST pipe encased overhead pipe line shall be installed from 221-T canyon to the liquid waste collection system in 2706-T/TA. Penetrations through fire-rated walls shall be sealed with a UL-listed or FM-approved material in accordance with a UL-classified or FM-approved configuration.

Control and Instrumentation

Microprocessor-Based System
A programmable logic controller (PLC) will be centrally located in the Electrical Room to provide control, monitoring and alarms for the new 2706-T waste collection, storage and loadout systems, and the new ventilating system. The PLC will be provided with a man-machine interface (MMI) to provide a human factors based system for the operator.

2706-T/TA Waste Collection, Storage and Loadout Systems
Controls and instrumentation will include pump and valve controls, pit and tank level monitoring and alarms, leak detection for pit and tank basin
sumps, and leak detection for waste transfer piping (see sketches in Appendix K). This equipment and instrumentation will interface with the PLC.

Ventilating System

Fan and damper controls, HEPA filter monitoring, and alarms will be provided to interface with the PLC. Fan controls will also be interlocked with the fire alarm system.

Ventilating System Exhaust Monitoring System

The exhaust radiation isokinetic monitoring system will be located in the new HVAC filter room to monitor the exhaust stack to warn the operator of the potential radioactive releases to the atmosphere. The system may consist of the following major subcomponents: isokinetic probe, sample/return lines, vacuum pump system with flow control, beta/gamma exhaust monitor, record sampler and system cabinet. The stack will be of sufficient height to meet system vendor stack straight run requirements. Local controls, monitoring and alarms will be provided including a radiation strobe light. Alarms will also be provided to the PLC.

F. OTHER PROJECT COSTS (900)

Other project costs are the expense funded activities directly associated with the implementation of project W-259 that are not included with the capital costs encompassing the total estimated construction costs. The advanced design activities to be performed by the operating contractor include, but are not limited to, permitting; project documentation and integration; design reviews; and operations planning, training, and support.
G. DESIGN COMPLIANCE

The design and construction of project W-259 will be performed in accordance with the following design criteria:

- American Society of Mechanical Engineers
 ASME B31.1, "Power Piping"
 ASME B31.3, "Chemical Plant and Petroleum Refinery Piping"

- American National Standards Institute/American Water Works Association
 ANSI/AWWA D100, "Welded Steel Tanks"

- Washington Administrative Code
 WAC 173-303, "Dangerous Waste Regulations"
 WAC 173-400, "Air Pollution Sources"
 WAC 173-802, "SEPA Procedures"
 WAC 246-221, "Radiation Protection Standards"
 WAC 246-247, "Radiation Protection - Air Emissions"
 WAC 286-45, "Safety Standards for Electrical Workers"

- Code of Federal Regulations
 10 CFR 830, "Nuclear Safety Management."
 10 CFR 835, "Occupational Radiation Protection."
 10 CFR 835/2, "Implementation Guide for Occupational ALARA Program."
 40 CFR 260, "Hazardous Waste Management System: General."
40 CFR 265, "Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities."

- **U.S. Department of Energy Orders**
 - DOE 4700.1, "Project Management System."
 - DOE 5400.1, "General Environmental Protection Program."
 - DOE 5400.2A, "Environmental Compliance Issue Coordination."
 - DOE 5400.3, "Hazardous and Radioactive Mixed Waste Program."
 - DOE 5400.5, "Radiation Protection of the Public and the Environment."
 - DOE N5480.6, "Radiological Control Manual."
 - DOE 5480.7A, "Fire Protection."
 - DOE 5480.11, "Radiation Protection for Occupational Workers."
 - DOE 5484.1, "Environmental Protection, Safety, and Health Protection Information Reporting Requirements."
 - DOE 5820.2A, "Radioactive Waste Management."
 - DOE 6430.1A, "General Design Criteria."

- **U.S. Department of Energy, Richland Operations Office Orders**
 - RL 5440.1A, "Implementation of the National Environmental Policy Act at the Richland Operations Office."
 - RL 5480.11A, "Requirements for Radiation Protection."
 - RL 6430.1C, "General Design Criteria."
 - RL 5820.2A, "Radioactive Waste Management."
 - RLID 5480.7, "Fire Protection."

- **General Environmental Regulations**
V. METHODS OF PERFORMANCE

A. ONSITE ARCHITECT-ENGINEER WORK (WBS 1.1 and WBS 1.2)
The engineer/constructor contractor will perform the definitive design, engineering during construction, and acceptance inspection, prepare as-built drawings, and perform project turnover for the secondary containment and leak detection design.

B. PROCUREMENT (WBS 2.0)
The engineer/constructor contractor will procure long-lead items such as engineered equipment, burial boxes, and instrumentation. The construction contractor will procure and install the balance of equipment for this project.

C. CONSTRUCTION WORK BY ONSITE CONTRACTOR (WBS 3.1)
Construction of the secondary containment and leak detection will be within radiation zones. The engineer/constructor contractor will perform construction services for work that occurs within the T Plant and 2706-T/TA boundaries, utility tie-ins, and contaminated areas.

D. WORK BY OPERATING CONTRACTOR (WBS 3.3 and WBS 4.0)
The operating contractor will support the project by providing input to the review of the design and by providing oversight of construction activities. Included in this WBS are input to design; review of design media for operability, maintainability, quality assurance, safety, and environmental compliance considerations; review of procurement and construction
submittals for engineered items; operations, safety, and quality assurance support to the construction effort; and T Plant operator support to construction. The operating contractor will provide for the burial of contaminated soil, equipment, and debris removed during construction.

The operating contractor will provide overall project management during design, procurement, and construction.

VI. REQUIREMENTS AND ASSESSMENTS

A. SAFEGUARDS AND SECURITY
Project W-259 will take place within the 200-West Controlled Area and will require appropriate clearances and badging for access. Existing safeguards and security measures at T Plant will not be impacted by this project. No new measures beyond the current site practices will be required as a result of this project.

B. HEALTH AND SAFETY
Project W-259 will support remediation of safety concerns that exist at T Plant by providing storage of low- and high-level radioactive decontamination fluids for transport.

Project W-259 is not anticipated to add new safety requirements to the 2706-T/TA Facility for splash and spill prevention during loadout operations.

Accommodations for the physically handicapped will not be provided (see Appendix I).

Construction contractors will comply with State of Washington, ICF KH, and WHC standards in performance of work, and will ensure that all applicable OSHA standards are enforced during the project. These
measures include providing continuous access to construction areas by emergency vehicles and personnel, and ensuring that emergency evacuation routes are unobstructed.

No increase in the release of radiation from the area or site is anticipated by the construction or operation of this project. Exposure to personnel resulting from the operation of this project will also be minimized through the use of engineered/administrative controls, and personal protective equipment.

C. DECONTAMINATION AND DECOMMISSIONING

Project W-259 will add a minimal amount of additional equipment to the 2706-T/TA Facility. This equipment has been reviewed against requirements for the ease of decontamination and decommissioning at the closure of T Plant in accordance with section 2.4 of the FDC. The additional equipment and facilities include the 2706-T/TA storage tanks; the decontamination fluid transfer system; the transfer pumps; filters; miscellaneous piping connectors, valves, instrumentation, and controls; and the MCC with buckets, an uninterruptible power supply, a panelboard, motors, and transformers. Decontamination and decommissioning of the additional equipment and the closure of T Plant are not within the project scope. The new system components will be installed with lifting lugs as required. Lifting lug locations will be determined during definitive design.

D. PROVISIONS FOR FALLOUT SHELTERS

No provisions for fallout shelters will be made as part of this project. No additional manned facilities or permanent staffing is envisioned as a result of this project.

E. MAINTENANCE AND OPERATION REQUIREMENTS

Project W-259 will result in significant reductions in the maintenance requirements for T Plant due to reduction of the safety concern regarding
contamination fluid accumulation. The successful completion of this project will result in the elimination of the current mitigation program.

All new facilities will be designed to allow access for maintenance. Equipment and instruments will be designed to operate in the environment in which they are located and will be maintained with standard tools whenever practical.

The operating contractor will verify the accuracy of existing facility drawings with current site conditions in support of design and construction.

The operating contractor will provide soil sampling and characterization to identify special requirements during construction and to classify waste for disposal.

F. AUTOMATED DATA PROCESSING EQUIPMENT
No automated data processing equipment will be provided for this project.

G. QUALITY ASSURANCE/SAFETY CLASSIFICATION

Quality Assurance Activities
Quality assurance activities for all contractors involved in the design, procurement, construction, inspection, and testing of the proposed project will be formulated and executed in accordance with the project specific QAPP. Based upon a graded approach, the QAPP will implement applicable quality assurance requirements identified in 10 CFR 830.120, "Quality Assurance Requirements." The QAPP will provide a format for establishing the scope of the quality-related activities and the specific quality assurance requirements and responsibilities based upon assigned safety classifications.
For project W-259, the 2706-T/TA loadout station storage tanks will be designed in accordance with DOE Order 6430.1A, Division 13. The radioactive waste decontamination solution storage tanks have been determined to meet applicable special requirements under Section 1323, "Radioactive Liquid Waste Facilities."

Safety Classification
The PSE for project W-259 has been completed (ref 7). The maximum safety class category due to direct exposure of the offsite public or the onsite worker is Safety Class 3. The maximum safety class category due to adverse environmental impact was determined to be Safety Class 3. The evaluation of the safety classification is provided in the PSE.

H. ENVIRONMENTAL COMPLIANCE
Decontamination activities at T Plant generate hazardous and radioactive waste. Project W-259 will provide the upgrades required by State and Federal regulations for containment of hazardous wastes and leak detection. The upgrade designs will provide containment of liquid waste spills during waste transfers or releases from tank systems.

The materials used for containment will be compatible with the mixtures and concentrations of wastes. The hazardous wastes expected from decontamination activities are caustics and acids. Calculations will support the choice of materials (e.g., type of stainless steel) for the primary and containment. The coatings chosen to provide secondary containment will be tested physically prior to construction using nonradioactive simulated waste. If the actual waste differs appreciably from the simulated waste after construction, coupons from the installed coatings will be tested.

Stainless steel tanks installed within concrete catch basins will provide primary and secondary containment for liquids collected from the decontamination waste outside the 2706-T/TA Facility. The concrete pit
sumps and surrounding floors in the decontamination areas of the 2706-T/TA Facility will be coated with a special protective coating to provide a gap-free surface to direct liquids to collection sumps. The collection sumps will have double-walled stainless steel liners as primary and secondary containment. The liners are considered as tank systems according to WAC 173-303-640. Secondary containment systems will have the following features:

- The secondary containment system will be capable of detecting and collecting spills and releases.
- The leak detection system will be designed to detect the failure of the primary containment structure within 24 hours.
- The secondary containment structure will be sloped to drain and remove the collected liquids within 24 hours, or in as timely a manner as possible, to protect human health and the environment.

All secondary containment systems will be tested and certified after installation.

Ancillary equipment such as piping and pumps will have secondary containment.

Before construction of each tank system, a certification of design integrity will be produced by a qualified, independent registered professional engineer. A qualified installation inspector will inspect the tank system prior to enclosing or placing the system in use. All tanks and ancillary equipment will be tested for tightness prior to being enclosed or placed in service.
Waste minimization and pollution prevention will be addressed during definitive design to ensure the minimization, proper control, and disposal of any hazardous construction materials.

A Construction Quality Assurance Plan will be prepared for this project following release of the PSE. The plan may require identification of a Construction Quality Assurance Officer.

I. PERMITS
The operating contractor will prepare all required permit applications for DOE submittals. The following environmental reviews, permits, and approvals will be required prior to construction and/or operation of the facilities included within the project.

National Environmental Policy Act
Federal agencies are required to assess the potential environmental impact associated with their projects. The DOE will determine what level of NEPA documentation is required for the project. NEPA CX has been approved for W-259 revised scope (Ref. Gary Wells letter).

State Environmental Policy Act
A SEPA environmental checklist will be prepared if required by a State or local agency. Based on information in the checklist, the agency will determine if a State environmental impact statement is required or issue a determination of no significance.

Dangerous Waste Permit - WAC 173-303
Hanford facility units that treat, store, and dispose of dangerous waste are being permitted in accordance with the requirements of WAC 173-303 and the Resource Conservation and Recovery Act of 1976 as amended.
Permitting Strategy

Air permitting and proper notifications to the WSDOH for this project are estimated to take up to 52 weeks. Construction activities, including long-lead procurement, are not to proceed without all required permits. Permitting will be initiated by the operating contractor.

VII. IDENTIFICATION AND ANALYSIS OF UNCERTAINTIES

The following uncertainties were evaluated to determine the proper contingency to be used in the conceptual cost estimate. Each of the uncertainties has resulted in the inclusion of additional contingency on a percentage basis. However, the contingency allowance does not assume the worst case impact from all the uncertainties. Including the costs for all worst case impacts would not be economically feasible or justified based on the historical costs and contingency usage of other projects.

Fire Protection

The Tank Storage Building is a Group H, Division 7 occupancy per the UBC due to storage of liquids having radiation contamination. Although, the majority of the 2706-T/TA Facility is similar to a Group F, Division 1 occupancy per the UBC, it is classified as an H-7 occupancy due to the presence of radionuclides. Per NFPA 101, this facility is considered to be an ordinary hazard special purpose industrial occupancy.

The quantity of additional fire alarm notification devices (gongs, bells, and/or strobes) is to be determined based upon review of existing fire alarm arrangements and evaluation of ambient background noise levels.

The quantity of manual pull stations required is dependent upon the locations of existing pull stations and new exits from the building.

DOE Order 6430.1A specifies: "Each building shall be protected by a minimum of two [fire] hydrants." (0266-4) and "Hydrants shall be provided so that hose
lays from hydrants to all exterior portions of a protected building are no more than 300 feet." (1530-9). Although there appears to be sufficient hydrants, the fire hose lay from hydrants, around obstructions (fences, storage, etc.) to the exterior portions of the building should be evaluated to determine if additional fire hydrants and underground mains will be required.

HEPA filters to be used will each have a leading filter surface area of 4 ft\(^2\). These 12 inch thick, 2 ft by 2 ft filters will be arranged in a 6 ft by 8 ft array having a total leading filter surface area of 48 ft\(^2\). Since this is a new installation, protection is required and shall be from an automatic water deluge spray system in the final filter plenum. The existing HEPA filters for the building are not currently protected. Guidance contained in the DOE Fire Protection Resource Manual (FPRM) permits existing installations to remain unprotected unless there is a significant hazard that endangers building occupants. A waiver or exemption from the requirement to provide a deluge water spray system for protection of the HEPA filters may be possible.

Collection/containment of fire protection water discharge is required by the UFC and DOE Orders. The containment basin should be sized to collect the anticipated sprinkler system discharge for a period of 20 minutes plus contain the volume of the largest tank. Sprinkler discharge is estimated to be 7,344 gal (0.20 gpm/ft\(^2\) density over the area of the tank building [currently 1,836 ft\(^2\)] or a 2,000 ft\(^2\) design area, whichever will be smaller).

The solid waste fire protection SRID may take precedence over portions of DOE Orders 6430.1A, 5480.7A, RLID 5480.7, and the DOE Fire Protection Resource Manual, including the DOE Filter Plenum Protection Standard and the Hanford Chapter of the Resource Manual. Per the solid waste SRID, the UBC is the code of record for design issues. This design effort is based on DOE orders requirements and does not include solid waste fire protection SRID requirements. Compliance with the fire protection SRID and use of the UBC as the code of record may impact construction, fire protection, and exiting features that are
required for the facility. Applicability of the fire protection SRID needs to be identified in criteria documents.

This design effort does not propose utility upgrades in support of the fire protection system additions and improvements. Additional fire hydrants are not required per requirements of the DOE orders and NFPA codes. However, if the UBC becomes the code of record and is the basis for the fire protection design, additional fire hydrants and underground main improvements may be required.

In compliance with fire protection requirements of DOE 5480.7A, proposed protection for the new HEPA filters will consist of a fixed automatic water spray system with detection arranged in accordance with requirements of the draft Filter Plenum Protection Standard contained in the DOE Fire Protection Resource Manual. The existing HEPA filter units for the 2706-T Facility currently do not have any fire protection in the filter plenum or enclosure. Addition of this required protection may be added to the scope of project W-259.

Although not required per NFPA 90A or FDC direction, interlocks between the fire alarm system and HVAC fans are proposed for consistency with the existing 2706-T Facility exhaust system and to prevent smoke from plugging the HEPA filter units.

This design input is based upon the assumption that there will be no organic solvents used in the decontamination process and organic solvents will not be in the waste stream. If organic solvents are to be used or contained in the waste stream, the design will require additional fire protection features that may include: fire-rated separations, electrical equipment classified for hazardous locations, additional tank venting, explosion relieving construction for the tank building, revisions of the mechanical ventilation systems, and other fire protection system improvements as needed depending upon properties and quantities of the organic solvents.
A revision of or an amendment/supplement to the approved T-Plant Fire Hazards Analysis (FHA) is required prior to finalizing fire protection design and specifications. The FHA revisions shall address facility modifications and additions that are within the scope of this project.

Decontamination Chemical Characteristics
Certain design concept limitations have been assumed because of requirements to control tank temperatures, tank stresses, tank and piping life, and operating conditions. A major limitation is the material corrosion resistance requirement for the expected 20-year life of project W-259. The 1/16-in. total corrosion limitation over 20 years equates to a yearly average allowance of about 3 mils/yr in the stainless steel components of the piping, transfer, and storage system.

Phosphoric acid and sulfuric acid should not be used as decontamination chemicals because of the corrosion effects they have on stainless steel. The corrosion rate will be kept below 1/16 in. and will be verified periodically to ensure the 20-year life of the project W-259 components. Changes in these requirements could cause significant changes in the design concept and construction sequencing. Common practice has been to apply more restrictive operating parameters as the systems progress in age and service.

In addition to the chemical resistivity requirements, the piping and equipment will accommodate silicate solids of 20% by volume.
VIII. REFERENCES

APPENDIX A

Work Breakdown Structure
WORK BREAKDOWN STRUCTURE

1.0 ENGINEERING
 1.1 Definitive Design (Engineer/Constructor Contractor)
 1.2 Engineering and Inspection (Engineer/Constructor Contractor)
 1.3 Safety Analysis Support (Operating Contractor)

2.0 PROCUREMENT (Engineer/Constructor Contractor)

3.0 CONSTRUCTION
 3.1 Force Account Construction (Engineer/Constructor Contractor)
 3.3 Plant Forces Construction (Operating Contractor)

4.0 PROJECT INTEGRATION (Operating Contractor)

5.0 OTHER PROJECT COSTS
APPENDIX B

Budget Authorized/Budget Outlay Schedule
KAIser EngineerS
Hanford

Project W-259
Solid Waste T-Plant Facilities

BA/BO Schedule

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>($000) Total Cost</th>
<th>Calender 95</th>
<th>96</th>
<th>97</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Prior Year</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Definitive Design</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 E/I During Constr.</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 Procurement</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 CF Construction</td>
<td>6300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Unit Price Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 OC Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 WHC Safety Support</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 OC Project Mgt</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Estimated Cost	9600				
Other Project Costs	2600				
Total Project Cost	12200				

Dates:
- Date: 10/17/95
- KEH PM: GL Koci
- WHC PE: TA Carlson
APPENDIX C

Cost Estimate Summary
THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>COST CODE</th>
<th>DESCRIPTION</th>
<th>ESCALATED TOTAL COST</th>
<th>CONTINGENCY %</th>
<th>TOTAL DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>TITLE II ENGINEERING</td>
<td>1,110,000</td>
<td>10</td>
<td>1,220,000</td>
</tr>
<tr>
<td>030</td>
<td>TITLE III ENGINEERING</td>
<td>510,000</td>
<td>15</td>
<td>590,000</td>
</tr>
<tr>
<td>060</td>
<td>PROJECT MANAGEMENT (ADJUSTED TO MEET DOE 5100.4)</td>
<td>610,000</td>
<td>19</td>
<td>730,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30,000</td>
<td>-10</td>
<td>-40,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL DESIGN & MANAGEMENT</td>
<td>2,200,000</td>
<td>14</td>
<td>2,500,000</td>
</tr>
<tr>
<td>460</td>
<td>IMPROVEMENTS TO LAND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>BUILDINGS</td>
<td>2,210,000</td>
<td>22</td>
<td>2,700,000</td>
</tr>
<tr>
<td>600</td>
<td>UTILITIES</td>
<td>220,000</td>
<td>18</td>
<td>260,000</td>
</tr>
<tr>
<td>700</td>
<td>SPECIAL EQUIP/PROCESS SYSTEMS</td>
<td>3,000,000</td>
<td>22</td>
<td>3,600,000</td>
</tr>
<tr>
<td>810</td>
<td>DEMOLITION (ADJUSTED TO MEET DOE 5100.4)</td>
<td>320,000</td>
<td>25</td>
<td>410,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40,000</td>
<td>30</td>
<td>70,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL CONSTRUCTION</td>
<td>5,800,000</td>
<td>22</td>
<td>7,100,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL ESTIMATED CONSTRUCTION COST (TECC)</td>
<td>8,000,000</td>
<td>20</td>
<td>9,600,000</td>
</tr>
<tr>
<td>900</td>
<td>OTHER PROJECT COSTS (ADJUSTED TO MEET DOE 5100.4)</td>
<td>2,570,000</td>
<td>0</td>
<td>2,570,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,000</td>
<td></td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL PROJECT COST (TPC)</td>
<td>2,600,000</td>
<td>0</td>
<td>2,600,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,600,000</td>
<td>15</td>
<td>12,200,000</td>
</tr>
</tbody>
</table>

Remarks:

(Rounded/adjusted to the nearest "10,000 / 100,000" - percentages not recalculated to reflect rounding)
<table>
<thead>
<tr>
<th>WBS</th>
<th>Description</th>
<th>Estimate Subtotal</th>
<th>ONSITE Indirects</th>
<th>ONSITE Total</th>
<th>Escalation % Total</th>
<th>Sub Total</th>
<th>Contingency Total</th>
<th>% Total</th>
<th>Total Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>110000</td>
<td>DEFINITIVE DESIGN-ONSITE E/C</td>
<td>1095998</td>
<td>0</td>
<td>1095998</td>
<td>1.59</td>
<td>17428</td>
<td>1113426</td>
<td>10</td>
<td>111341</td>
</tr>
<tr>
<td>120000</td>
<td>ENGINEERING/INSPECTION-ONSITE E/C</td>
<td>489000</td>
<td>0</td>
<td>489000</td>
<td>4.91</td>
<td>24010</td>
<td>513010</td>
<td>15</td>
<td>76951</td>
</tr>
<tr>
<td></td>
<td>** SUBTOTAL 12 ENGINEERING/INSPECTION</td>
<td>489000</td>
<td>0</td>
<td>489000</td>
<td>4.91</td>
<td>24010</td>
<td>513010</td>
<td>15</td>
<td>76951</td>
</tr>
<tr>
<td>130000</td>
<td>WNC SAFETY SUPPORT (96)</td>
<td>260000</td>
<td>0</td>
<td>260000</td>
<td>1.49</td>
<td>3874</td>
<td>263874</td>
<td>15</td>
<td>39581</td>
</tr>
<tr>
<td>131000</td>
<td>WNC SAFETY SUPPORT (97)</td>
<td>100000</td>
<td>0</td>
<td>100000</td>
<td>4.53</td>
<td>4530</td>
<td>105360</td>
<td>15</td>
<td>15850</td>
</tr>
<tr>
<td></td>
<td>** SUBTOTAL 1 ENGINEERING</td>
<td>1944998</td>
<td>0</td>
<td>1944998</td>
<td>2.56</td>
<td>49842</td>
<td>1994840</td>
<td>12</td>
<td>243553</td>
</tr>
<tr>
<td>311000</td>
<td>2706-1 DECAY BUILDING</td>
<td>1613578</td>
<td>0</td>
<td>1613578</td>
<td>4.91</td>
<td>79227</td>
<td>1692805</td>
<td>25</td>
<td>423202</td>
</tr>
<tr>
<td>312000</td>
<td>2706-T/A RECEIVING BUILDING</td>
<td>2061000</td>
<td>0</td>
<td>2061000</td>
<td>4.91</td>
<td>101195</td>
<td>2162055</td>
<td>25</td>
<td>540551</td>
</tr>
<tr>
<td>313000</td>
<td>2706-T/A TANK STORAGE BUILDING</td>
<td>1014770</td>
<td>0</td>
<td>1014770</td>
<td>4.91</td>
<td>49824</td>
<td>1064594</td>
<td>15</td>
<td>159669</td>
</tr>
<tr>
<td>314000</td>
<td>2706-T BREEZEWAY BTW DECON/REC</td>
<td>52458</td>
<td>0</td>
<td>52458</td>
<td>4.91</td>
<td>2576</td>
<td>55034</td>
<td>15</td>
<td>8256</td>
</tr>
<tr>
<td>315000</td>
<td>ELECTRIC UTILITIES TO SITE</td>
<td>142927</td>
<td>0</td>
<td>142927</td>
<td>4.91</td>
<td>7018</td>
<td>149945</td>
<td>15</td>
<td>22491</td>
</tr>
<tr>
<td>315002</td>
<td>RELOCATE HAZMAT CONNEX BOXES</td>
<td>74481</td>
<td>0</td>
<td>74481</td>
<td>4.91</td>
<td>3657</td>
<td>78138</td>
<td>20</td>
<td>15627</td>
</tr>
<tr>
<td>316000</td>
<td>NEW LINE FROM TANK 5-7 TO 2706-1</td>
<td>3225290</td>
<td>0</td>
<td>3225290</td>
<td>4.91</td>
<td>15972</td>
<td>341262</td>
<td>15</td>
<td>51189</td>
</tr>
<tr>
<td></td>
<td>** SUBTOTAL 31 FA CONST-ONSITE E/C</td>
<td>5284505</td>
<td>0</td>
<td>5284505</td>
<td>4.91</td>
<td>259469</td>
<td>5543974</td>
<td>22</td>
<td>1221005</td>
</tr>
<tr>
<td>330000</td>
<td>BURIAL FEE - O/C</td>
<td>209341</td>
<td>0</td>
<td>209341</td>
<td>4.91</td>
<td>10279</td>
<td>219620</td>
<td>25</td>
<td>54050</td>
</tr>
<tr>
<td>331000</td>
<td>CONSTRUCTION - O/C</td>
<td>1959</td>
<td>0</td>
<td>1959</td>
<td>4.91</td>
<td>96</td>
<td>2055</td>
<td>25</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>** SUBTOTAL 33 CONSTRUCTION - O/C</td>
<td>211300</td>
<td>0</td>
<td>211300</td>
<td>4.91</td>
<td>10375</td>
<td>221675</td>
<td>25</td>
<td>55419</td>
</tr>
<tr>
<td>400000</td>
<td>PROJECT INTEGRATION</td>
<td>5495805</td>
<td>0</td>
<td>5495805</td>
<td>4.91</td>
<td>269844</td>
<td>5765469</td>
<td>22</td>
<td>1276424</td>
</tr>
<tr>
<td></td>
<td>** SUBTOTAL 4 PROJECT INTEGRATION</td>
<td>233000</td>
<td>0</td>
<td>233000</td>
<td>3.42</td>
<td>7969</td>
<td>240669</td>
<td>25</td>
<td>60242</td>
</tr>
<tr>
<td>500004</td>
<td>OPC PRIOR YEARS</td>
<td>1000900</td>
<td>0</td>
<td>1000900</td>
<td>0.00</td>
<td>0</td>
<td>1000900</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500096</td>
<td>OPC FY 1996</td>
<td>520000</td>
<td>0</td>
<td>520000</td>
<td>4.69</td>
<td>7778</td>
<td>527778</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>500097</td>
<td>OPC FY 1997</td>
<td>580000</td>
<td>0</td>
<td>580000</td>
<td>4.33</td>
<td>26274</td>
<td>606274</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>500098</td>
<td>OPC FY 1998</td>
<td>400000</td>
<td>0</td>
<td>400000</td>
<td>7.67</td>
<td>30680</td>
<td>430680</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>** SUBTOTAL 5 OTHER PROJECT COST</td>
<td>2500900</td>
<td>0</td>
<td>2500900</td>
<td>2.59</td>
<td>64702</td>
<td>2585602</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
** IEST - INTERACTIVE ESTIMATING **
T-PLANT SECONDARY CONTAINMENT & LEAK DETECTION
CURRENT WORKING ESTIMATE
DOE_R02 - WORK BREAKDOWN STRUCTURE SUMMARY

<table>
<thead>
<tr>
<th>WBS</th>
<th>DESCRIPTION</th>
<th>ESTIMATE</th>
<th>ONSITE INDIRECTS</th>
<th>SUB TOTAL</th>
<th>ESCALATION</th>
<th>SUB TOTAL</th>
<th>CONTINGENCY</th>
<th>TOTAL DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROJECT TOTAL</td>
<td>10,174,703</td>
<td>0</td>
<td>10,174,703</td>
<td>3.86</td>
<td>10,567,060</td>
<td>15</td>
<td>12,147,277</td>
</tr>
</tbody>
</table>

PAGE 3 OF 28
DATE 09/29/95 05:45:42
BY JPM/LGH/JJM/RDP
1. DOCUMENTS AND DRAWINGS

DOCUMENTS: DRAFT W259EE ENGINEERING EVALUATION AUG. 1995

DRAWINGS: ES-W259-11A,12A,13A,C1,C2,C3,C4,C5,C6,C7,H01,H02,S1,S2,S3

2. MATERIAL PRICES

UNIT COSTS REPRESENT CURRENT PRICES FOR SPECIFIED MATERIAL.

3. LABOR RATES

4. GENERAL REQUIREMENTS/TECHNICAL SERVICES/OVERHEADS

(UHC FUNDED EXPENSE)

A.) ONSITE CONSTRUCTION FORCES GENERAL REQUIREMENTS, TECHNICAL SERVICES AND CRAFT OVERHEAD COSTS ARE INCLUDED AS A COMPOSITE PERCENTAGE BASED ON THE ICF-KH ESTIMATING FACTOR, REVISION 1, FY95, DATED 1/10/94. THE TOTAL COMPOSITE PERCENTAGE APPLIED TO ONSITE CONSTRUCTION FORCES LABOR, FOR THIS PROJECT, IS 111% FOR FIELD WORK, WHICH IS REFLECTED IN THE "OH&P/B&I" COLUMN OF THE ESTIMATE DETAIL.

5. ESCALATION

6. ROUNDOFF

U.S. DEPARTMENT OF ENERGY - DOE ORDER 5100.4 PAGE 1-32 SUBPARAGRAPH (M), REQUIRES ROUNDING OF ALL GENERAL PLANT PROJECTS (GPP'S) AND LINE ITEM (LI) COST ESTIMATES. REFERENCE: DOE 5100.4, FIGURE 1-11, DATED 10-31-84.

7. REMARKS

A.) ASSUME REWRITE MODIFICATIONS WILL BE MADE TO ENG EVALUATION REGARDING RELOCATION OF TANK STORAGE BUILDING.
B.) ASSUME THIS PROJECT WILL BE CAPITAL FUNDED BY ON SITE OPERATING CONTRACTOR.
C.) ASBESTOS REMOVAL HAS NOT BEEN ADDRESSED IN ESTIMATE.
D.) ASSUME BUILDINGS 2766Y AND 2766T/A WILL BE VACATED DURING CONSTRUCTION.
E.) BURNOUT WAS NOT ANTICIPATED. THEREFORE COSTS FOR BURNOUT HAVE NOT BEEN INCLUDED IN ESTIMATE
F.) ASSUME EXISTING FIRE PROTECTION, AIR, CHEMICAL & HIGH PRESSURE WATER PIPING ARE IN CLOSE PROXIMITY AND OF ADEQUATE SIZE.
G.) E & I IS A PERCENTAGE (9.3%) OF CONSTRUCTION
H.) CAP & ABANDON LINES FROM 211 T. INCLUDE SHORT LINE AT I FOR THE TRANSFER (VALVE, CONNECTION, AND PIPE)LINE.
I.) SEPERATE THE TANK BUILDING AND THE EXISTING BUILDING WITH A CONNECTED SPACE FOR PIPES & COVERED PARKING FOR THE FORK LIFT.
<table>
<thead>
<tr>
<th>COST CODE/WBS</th>
<th>DESCRIPTION</th>
<th>ESTIMATE SUBTOTAL</th>
<th>ONSITE INDIRECTS</th>
<th>SUB TOTAL</th>
<th>ESCALATION % TOTAL</th>
<th>SUB TOTAL</th>
<th>CONTINGENCY % TOTAL</th>
<th>TOTAL DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>020 020</td>
<td>TITLE II ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110000</td>
<td>DEFINITIVE DESIGN-O NSITE E/C</td>
<td>1095998</td>
<td>0</td>
<td>1095998</td>
<td>1.59</td>
<td>17428</td>
<td>1113426</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL 020</td>
<td>TITLE II ENGINEERING</td>
<td>1095998</td>
<td>0</td>
<td>1095998</td>
<td>1.59</td>
<td>17428</td>
<td>1113426</td>
<td>10</td>
</tr>
<tr>
<td>030 030</td>
<td>TITLE III ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120000</td>
<td>ENGINEERING/INSPECTION-O NSITE E/C</td>
<td>489000</td>
<td>0</td>
<td>489000</td>
<td>4.91</td>
<td>24010</td>
<td>513010</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL 030</td>
<td>TITLE III ENGINEERING</td>
<td>489000</td>
<td>0</td>
<td>489000</td>
<td>4.91</td>
<td>24010</td>
<td>513010</td>
<td>15</td>
</tr>
<tr>
<td>060 060</td>
<td>PROJECT MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130000</td>
<td>VMC SAFETY SUPPORT (96)</td>
<td>260000</td>
<td>0</td>
<td>260000</td>
<td>4.49</td>
<td>3874</td>
<td>243874</td>
<td>15</td>
</tr>
<tr>
<td>131000</td>
<td>VMC SAFETY SUPPORT (97)</td>
<td>100000</td>
<td>0</td>
<td>100000</td>
<td>4.53</td>
<td>4530</td>
<td>104530</td>
<td>15</td>
</tr>
<tr>
<td>400000</td>
<td>PROJECT INTEGRATION</td>
<td>233000</td>
<td>0</td>
<td>233000</td>
<td>3.42</td>
<td>7969</td>
<td>240969</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL 060</td>
<td>PROJECT MANAGEMENT</td>
<td>593000</td>
<td>0</td>
<td>593000</td>
<td>2.76</td>
<td>16373</td>
<td>609373</td>
<td>19</td>
</tr>
<tr>
<td>460 460</td>
<td>IMPROVEMENTS TO LAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311000</td>
<td>2706-1 DECON BUILDING</td>
<td>1200</td>
<td>0</td>
<td>1200</td>
<td>4.92</td>
<td>59</td>
<td>1259</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL 460</td>
<td>IMPROVEMENTS TO LAND</td>
<td>1200</td>
<td>0</td>
<td>1200</td>
<td>4.92</td>
<td>59</td>
<td>1259</td>
<td>25</td>
</tr>
<tr>
<td>501 501</td>
<td>BUILDINGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311000</td>
<td>2706-1 DECON BUILDING</td>
<td>1505</td>
<td>0</td>
<td>1505</td>
<td>4.92</td>
<td>74</td>
<td>1579</td>
<td>25</td>
</tr>
<tr>
<td>312000</td>
<td>2706-1/T A RECEIVING BUILDING</td>
<td>1297185</td>
<td>0</td>
<td>1297185</td>
<td>4.91</td>
<td>63692</td>
<td>1360877</td>
<td>25</td>
</tr>
<tr>
<td>313000</td>
<td>2706-1/T A TANK STORAGE BUILDING</td>
<td>600661</td>
<td>0</td>
<td>600661</td>
<td>4.91</td>
<td>25942</td>
<td>626603</td>
<td>15</td>
</tr>
<tr>
<td>314000</td>
<td>2706-1 BREEZEWAY BTWN DECON/REC</td>
<td>2149</td>
<td>0</td>
<td>2149</td>
<td>4.93</td>
<td>106</td>
<td>2255</td>
<td>15</td>
</tr>
<tr>
<td>330000</td>
<td>BURIAL FEE - O/C</td>
<td>206650</td>
<td>0</td>
<td>206650</td>
<td>4.91</td>
<td>10147</td>
<td>216797</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL 501</td>
<td>BUILDINGS</td>
<td>2108150</td>
<td>0</td>
<td>2108150</td>
<td>4.91</td>
<td>103511</td>
<td>2211661</td>
<td>22</td>
</tr>
<tr>
<td>COST CODE/WBS</td>
<td>DESCRIPTION</td>
<td>ESTIMATE TOTAL</td>
<td>SUBTOTAL</td>
<td>INDIRECTS</td>
<td>ESCALATION</td>
<td>TOTAL</td>
<td>CONTINGENCY</td>
<td>% TOTAL</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>600 UTILITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311000 2706-T DECOM BUILDING</td>
<td>68850</td>
<td>0</td>
<td>68850</td>
<td>4.91</td>
<td>3381</td>
<td>72231</td>
<td>25</td>
<td>18058</td>
</tr>
<tr>
<td>315001 ELECTRIC UTILITIES TO SITE</td>
<td>142927</td>
<td>0</td>
<td>142927</td>
<td>4.91</td>
<td>7018</td>
<td>149945</td>
<td>15</td>
<td>22491</td>
</tr>
<tr>
<td>TOTAL 600 UTILITIES</td>
<td></td>
<td></td>
<td>211777</td>
<td>4.91</td>
<td>10399</td>
<td>222176</td>
<td>18</td>
<td>40549</td>
</tr>
<tr>
<td>700 SPECIAL EQUIP/PROCESS SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311000 2706-T DECOM BUILDING</td>
<td>1342224</td>
<td>0</td>
<td>1342224</td>
<td>4.91</td>
<td>65903</td>
<td>1408127</td>
<td>25</td>
<td>352032</td>
</tr>
<tr>
<td>312000 2706-T/A RECEIVING BUILDING</td>
<td>653197</td>
<td>0</td>
<td>653197</td>
<td>4.91</td>
<td>32072</td>
<td>685269</td>
<td>25</td>
<td>171318</td>
</tr>
<tr>
<td>315001 2706-T/A TANK STORAGE BUILDING</td>
<td>416109</td>
<td>0</td>
<td>416109</td>
<td>4.91</td>
<td>20332</td>
<td>434441</td>
<td>15</td>
<td>65166</td>
</tr>
<tr>
<td>314000 2706-T BREEZEWAY BTWN DECON/REC</td>
<td>50309</td>
<td>0</td>
<td>50309</td>
<td>4.91</td>
<td>2470</td>
<td>52779</td>
<td>15</td>
<td>7918</td>
</tr>
<tr>
<td>315002 RELOCATE HAZMAT CONNEX BOXES</td>
<td>74481</td>
<td>0</td>
<td>74481</td>
<td>4.91</td>
<td>3657</td>
<td>78138</td>
<td>20</td>
<td>15627</td>
</tr>
<tr>
<td>316000 REMOVAL OF TANK 5-7 TO 2706-T</td>
<td>325290</td>
<td>0</td>
<td>325290</td>
<td>4.91</td>
<td>15972</td>
<td>341262</td>
<td>15</td>
<td>51189</td>
</tr>
<tr>
<td>330000 BURIAL FEE - O/C</td>
<td>2691</td>
<td>0</td>
<td>2691</td>
<td>4.91</td>
<td>132</td>
<td>2823</td>
<td>25</td>
<td>706</td>
</tr>
<tr>
<td>331000 CONSTRUCTION - O/C</td>
<td>1959</td>
<td>0</td>
<td>1959</td>
<td>4.91</td>
<td>96</td>
<td>2055</td>
<td>25</td>
<td>514</td>
</tr>
<tr>
<td>TOTAL 700 SPECIAL EQUIP/PROCESS SYSTEM</td>
<td>2864260</td>
<td>0</td>
<td>2864260</td>
<td>4.91</td>
<td>140634</td>
<td>3004894</td>
<td>22</td>
<td>664470</td>
</tr>
<tr>
<td>810 DEMOLITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311000 2706-T DECOM BUILDING</td>
<td>199799</td>
<td>0</td>
<td>199799</td>
<td>4.91</td>
<td>9810</td>
<td>209609</td>
<td>25</td>
<td>52402</td>
</tr>
<tr>
<td>312000 2706-T/A RECEIVING BUILDING</td>
<td>110619</td>
<td>0</td>
<td>110619</td>
<td>4.91</td>
<td>5431</td>
<td>116050</td>
<td>25</td>
<td>29014</td>
</tr>
<tr>
<td>TOTAL 810 DEMOLITION</td>
<td></td>
<td></td>
<td>310418</td>
<td>4.91</td>
<td>15241</td>
<td>325659</td>
<td>25</td>
<td>81416</td>
</tr>
<tr>
<td>900 OTHER PROJECT COSTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500094 OPC PRIOR YEARS</td>
<td>1000000</td>
<td>0</td>
<td>1000000</td>
<td>0.00</td>
<td>0</td>
<td>1000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500096 OPC FY 1996</td>
<td>520000</td>
<td>0</td>
<td>520000</td>
<td>1.69</td>
<td>7748</td>
<td>527748</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500097 OPC FY 1997</td>
<td>580000</td>
<td>0</td>
<td>580000</td>
<td>4.53</td>
<td>26274</td>
<td>606274</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500098 OPC FY 1998</td>
<td>400000</td>
<td>0</td>
<td>400000</td>
<td>7.67</td>
<td>30680</td>
<td>430680</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL 900 OTHER PROJECT COSTS</td>
<td>2500900</td>
<td>0</td>
<td>2500900</td>
<td>2.59</td>
<td>64702</td>
<td>2565602</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PROJECT TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,174,703</td>
<td>3.86</td>
<td>10,567,060</td>
<td>15</td>
<td>12,147,277</td>
<td></td>
</tr>
</tbody>
</table>
** T-Plant Secondary Containment & Leak Detection
** Current Working Estimate

** Estimate Summary by CSI Division

<table>
<thead>
<tr>
<th>CSI</th>
<th>Description</th>
<th>ONSITE</th>
<th>SUBTOTAL</th>
<th>ESCALATION</th>
<th>SUBTOTAL</th>
<th>CONTINGENCY</th>
<th>TOTAL DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INDIRECTS</td>
<td></td>
<td>% TOTAL</td>
<td></td>
<td>% TOTAL</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>Technical Services</td>
<td>489000</td>
<td>234126</td>
<td>4.91</td>
<td>11495</td>
<td>15</td>
<td>513010</td>
</tr>
<tr>
<td>01</td>
<td>General Requirements</td>
<td>234126</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>234126</td>
</tr>
<tr>
<td>02</td>
<td>Site Work</td>
<td>754595</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>754595</td>
</tr>
<tr>
<td>03</td>
<td>Concrete</td>
<td>201923</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>201923</td>
</tr>
<tr>
<td>05</td>
<td>Metals</td>
<td>155984</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>155984</td>
</tr>
<tr>
<td>07</td>
<td>Moisture and Thermal</td>
<td>45202</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>45202</td>
</tr>
<tr>
<td>08</td>
<td>Doors, Windows and G</td>
<td>20317</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>20317</td>
</tr>
<tr>
<td>09</td>
<td>Finishes</td>
<td>85194</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>85194</td>
</tr>
<tr>
<td>10</td>
<td>Specialties</td>
<td>1894</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>1894</td>
</tr>
<tr>
<td>11</td>
<td>Special Construction</td>
<td>225199</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>225199</td>
</tr>
<tr>
<td>15</td>
<td>Mechanical</td>
<td>2844570</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>2844570</td>
</tr>
<tr>
<td>16</td>
<td>Electrical</td>
<td>926501</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>926501</td>
</tr>
<tr>
<td>19</td>
<td>Project Management</td>
<td>233000</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>233000</td>
</tr>
<tr>
<td>22</td>
<td>Enviro Engrrg</td>
<td>17374</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>17374</td>
</tr>
<tr>
<td>23</td>
<td>Architectural</td>
<td>5212</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>5212</td>
</tr>
<tr>
<td>24</td>
<td>Structural</td>
<td>156370</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>156370</td>
</tr>
<tr>
<td>26</td>
<td>Fire Prot/Safety</td>
<td>43735</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>43735</td>
</tr>
<tr>
<td>27</td>
<td>Piping/Vessel</td>
<td>186717</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>186717</td>
</tr>
<tr>
<td>28</td>
<td>HVAC</td>
<td>38281</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>38281</td>
</tr>
<tr>
<td>29</td>
<td>Instrument</td>
<td>132967</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>132967</td>
</tr>
<tr>
<td>30</td>
<td>Electrical</td>
<td>111753</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>111753</td>
</tr>
<tr>
<td>32</td>
<td>Specif</td>
<td>17520</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>17520</td>
</tr>
<tr>
<td>35</td>
<td>Design Admin</td>
<td>65700</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>65700</td>
</tr>
<tr>
<td>40</td>
<td>Project Manager</td>
<td>76500</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>76500</td>
</tr>
<tr>
<td>41</td>
<td>Word Processing</td>
<td>44000</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>44000</td>
</tr>
<tr>
<td>42</td>
<td>Quality Engineering</td>
<td>4550</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>4550</td>
</tr>
<tr>
<td>44</td>
<td>Acceptance Inspection</td>
<td>7524</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>7524</td>
</tr>
<tr>
<td>45</td>
<td>Project Planning</td>
<td>16500</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>16500</td>
</tr>
<tr>
<td>46</td>
<td>Estimates</td>
<td>21420</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>21420</td>
</tr>
<tr>
<td>49</td>
<td>Sub/Proc</td>
<td>3240</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>3240</td>
</tr>
<tr>
<td>50</td>
<td>CF Administration</td>
<td>2560</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>2560</td>
</tr>
<tr>
<td>51</td>
<td>CM Administration</td>
<td>2560</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>2560</td>
</tr>
<tr>
<td>62</td>
<td>Survey</td>
<td>5100</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>5100</td>
</tr>
<tr>
<td>63</td>
<td>Constr Engrrg</td>
<td>4104</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>4104</td>
</tr>
<tr>
<td>65</td>
<td>Records Mgmt/Turnover</td>
<td>8300</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>8300</td>
</tr>
<tr>
<td>70</td>
<td>Work Order</td>
<td>5955</td>
<td>0</td>
<td>4.91</td>
<td>0</td>
<td>0</td>
<td>5955</td>
</tr>
<tr>
<td>90</td>
<td>Other Project Costs</td>
<td>2860900</td>
<td>0</td>
<td>2.56</td>
<td>0</td>
<td>0</td>
<td>2860900</td>
</tr>
<tr>
<td>99</td>
<td>Misc/Superiv/Ovrnr</td>
<td>110586</td>
<td>0</td>
<td>1.59</td>
<td>0</td>
<td>0</td>
<td>110586</td>
</tr>
<tr>
<td>CSI</td>
<td>DESCRIPTION</td>
<td>ESTIMATE SUBTOTAL</td>
<td>ONSITE INDIRECTS</td>
<td>SUB TOTAL</td>
<td>ESCALATION % TOTAL</td>
<td>SUB TOTAL</td>
<td>CONTINGENCY TOTAL</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TOTAL CONSTRUCTION</td>
<td>10,174,703</td>
<td>0</td>
<td>10,174,703</td>
<td>3.86</td>
<td>392,357</td>
<td>10,567,060</td>
</tr>
<tr>
<td></td>
<td>PROJECT TOTAL</td>
<td>10,174,703</td>
<td>0</td>
<td>10,174,703</td>
<td>3.86</td>
<td>392,357</td>
<td>10,567,060</td>
</tr>
</tbody>
</table>
THE U.S. DEPARTMENT OF ENERGY - RICHLAND ORDER 5700.3 "COST ESTIMATING, ANALYSIS AND STANDARDIZATION" DATED 3-27-85, PROVIDES GUIDELINES FOR ESTIMATE CONTINGENCIES. THE GUIDELINE FOR A CURRENT WORKING ESTIMATE SHOULD HAVE AN OVERALL RANGE OF 15 TO 25 %.

CONTINGENCY IS EVALUATED AT THE THIRD COST CODE LEVEL AND SUMMARIZED AT THE PRIMARY AND SECONDARY COST CODE LEVEL OF THE DETAILED COST ESTIMATE.

CONTINGENCY IS EVALUATED AT THE THIRD COST CODE LEVEL AND SUMMARIZED AT THE PRIMARY AND SECONDARY COST CODE LEVEL OF THE DETAILED COST ESTIMATE.

COST CODE
020 A 10% CONTINGENCY WAS APPLIED TO ALLOW FOR POSSIBILITY OF SCOPE CHANGES.

030 A 15% CONTINGENCY WAS APPLIED DUE TO PERCENTAGE METHOD USED TO DETERMINE ENGINEERING COSTS.

AVERAGE ENGINEERING CONTINGENCY 12%

COST CODE
460 A CONTINGENCY OF 25% HAS BEEN APPLIED DUE TO THE PRESENCE OF CONTAMINATED SOIL AND PRELIMINARY SITE INFORMATION.

501 A 22% CONTINGENCY HAS BEEN APPLIED DUE TO THE PRELIMINARY ELECTRICAL INFORMATION SITE INFORMATION.

600 A CONTINGENCY OF 18% HAS BEEN INCORPORATED INTO UTILITY CONSTRUCTION DUE TO UNKNOWN AMOUNT OF CONTAMINATION THAT MIGHT BE ENCOUNTERED DURING EXCAVATIONS.

700 A 22% CONTINGENCY HAS BEEN APPLIED DUE TO WORKING IN AN OPERATING CONTAMINATED FACILITY.

810 A 25% CONTINGENCY HAS BEEN APPLIED DUE TO ASSUMPTIONS FOR BUILDING STRUCTURAL COMPONENTS AND PIPING SYSTEMS.

AVERAGE CONSTRUCTION CONTINGENCY 22 %

AVERAGE PROJECT CONTINGENCY 15 %
<table>
<thead>
<tr>
<th>WBS</th>
<th>DESCRIPTION</th>
<th>ESTIMATE TOTAL</th>
<th>CONTRACT ADMINISTRATION %</th>
<th>TOTAL</th>
<th>BID PACK PREP.</th>
<th>OTHER INDIRECTS</th>
<th>TOTAL INDIRECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>110000</td>
<td>DEFINITIVE DESIGN-ONSITE E/C</td>
<td>1095998</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120000</td>
<td>ENGINEERING/INSPECTION-ONSITE E/C</td>
<td>489000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>130000</td>
<td>WMC SAFETY SUPPORT (96)</td>
<td>260000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>131000</td>
<td>WMC SAFETY SUPPORT (97)</td>
<td>100000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>311000</td>
<td>2706-T DECON BUILDING</td>
<td>1613578</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>312000</td>
<td>2706-T/A RECEIVING BUILDING</td>
<td>2061001</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>313000</td>
<td>2706-T/A TANK STORAGE BUILDING</td>
<td>1014770</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>314000</td>
<td>2706-T BREEZEWAY BTWN DECON/REC</td>
<td>52458</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>315000</td>
<td>ELECTRIC UTILITIES TO SITE</td>
<td>142927</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>315002</td>
<td>RELOCATE HAZMAT CONNEX BOXES</td>
<td>74481</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>316000</td>
<td>NEW LINE FROM TANK S-7 TO 2706-1</td>
<td>325290</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330000</td>
<td>BURIAL FEE - O/C</td>
<td>209341</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>331000</td>
<td>CONSTRUCTION - O/C</td>
<td>1959</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400000</td>
<td>PROJECT INTEGRATION</td>
<td>233000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500094</td>
<td>OPE PRIOR YEARS</td>
<td>1000000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500096</td>
<td>OPE FY 1996</td>
<td>520000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500097</td>
<td>OPE FY 1997</td>
<td>580000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500098</td>
<td>OPE FY 1998</td>
<td>460000</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Project Total

| | | | | | | | 10,174,703 |

0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ENGINEERING STATEMENT OF WORK

PROJECT W-259

T Plant Secondary Containment and Leak Detection Upgrades

Client: Westinghouse Hanford Company W.O. No.: E41044
Prepared by: G. L. Koci Date: September 25, 1995

PROJECT SCOPE

Project W-259 will provide upgrades necessary to allow the T Plant facilities to perform decontamination activities in support of Waste Management and Environmental Restoration Programs on the Hanford Site. The T Plant facilities must be upgraded to meet the State of Washington Department of Ecology and United States Environmental Protection Agency requirements for the treatment of hazardous liquid wastes to provide these decontamination services. In particular, the facility must conform to the secondary containment and leak detection requirements.

The upgrade to be provided by this project is installation of a liquid waste collection, containment, leak detection, and transfer system for handling decontamination solutions in the 2706-T/TA facility.

All work will be within radiation zones. Construction will be by onsite construction forces.

REFERENCES

DETAILED SCOPE

DESIGN SUPPORT SERVICES

Environmental Engineering (22)

- Provide environmental regulations input as they affect design.
- Provide calculations to support material selection for primary and secondary containment.
- Review design documents to ensure compliance with environmental regulations.
Input to air permitting/design support for filter stack.

Architectural (23)

- Provide one (1) Plan drawing for HVAC addition.
- Provide three (3) Elevation, Section, and Detail drawings for HVAC addition.
- Provide one (1) Plan drawing for tank enclosure building.
- Provide three (3) Elevation, Section, Detail, and Schedule drawings for tank enclosure building.
- Provide input to Civil/Structural for development of 2706-T storage tank location.
- Provide input to the Construction Specification (17 sections).

Civil/Structural

- One (1) Drawing List.
- One (1) Plot Plan for locating storage tank at Building 2706-T.
- Provide three (3) Site Plan drawings.
- Provide three (3) tank building structural drawings.
- Provide two (2) HVAC building structural drawings.
- Provide four (4) detail drawings of pits and liner installation.
- Provide two (2) drawings of floors and floor drains.
- Provide input to the Construction Specification (14 sections).
- Prepare calculations as required for building storage tank and transformer foundations.
- Prepare calculations for HVAC/Electrical/Fire Protection supports.
- Prepare calculations as required for 221-T storage tank supports.

Fire Protection (26.3)

- Provide input for Safety to review drawings, specifications, and Acceptance Test Procedures (ATP).
- Provide three (3) sprinkler modification drawing(s).
- Provide three (3) fire detection/alartern drawings.
- Update and revise existing fire protection drawings.
- Provide input to the construction specification (2 sections).
- Provide fire protection ATP input.
- Prepare calculations for fire protection upgrades.
- Provide safety reviews.

Piping (27)

- Two (2) Piping Plan and Elevations for 2706-T/TA.
- Three (3) Pipe Support drawings for 2706-T/TA.
- Two (2) drawings for fabrication and installation of 15,000 and 6,000 gallon tanks (to be included in the Procurement Specification).
- Two (2) General Arrangement drawings.
- One (1) Plan/Sections drawing.
- Two (2) Control drawings (Procurement).
- Two (2) drawings for installation of pump and agitator.
Two (2) Demolition Plans to outline removal of equipment/piping within existing automotive and railroad pits and pipe trenches within 2706-T.
- One (1) Procurement Specification for pumps
- One (1) Procurement Specification for agitators.
- One (1) Procurement Specification for double walled tank
- Provide input into the Construction Specification (Section 15493).

HVAC (28)

- Provide input to the Construction Specification.
- Two (2) drawings of HVAC plans.
- Two (2) Sections and Details drawings.
- One (1) Control/Floor Diagram drawing.
- One (1) Duct Demolition/Rework drawing.
- Provide two (2) ATPs, one (1) each for the 2706-T/TA ventilation and 2706-T storage tank building ventilation.

Instrumentation (29)

- Provide five (5) Process and Instrumentation diagrams.
- Provide one (1) Instrumentation Plan View drawing.
- Provide four (4) Instrumentation Elevation/Detail drawings.
- Provide five (5) Interconnector drawings.
- Provide seven (7) Logic diagrams.
- Provide one (1) PLC Block diagram.
- Provide three (3) ATPs.
- Provide four (4) Procurement Specifications.
- Provide input to Wire Run list.
- Provide input to Construction Specification.

Electrical (31)

- One (1) Electrical Site Plan drawing.
- One (1) Electrical Building Plan drawing.
- Two (2) Power Plans.
- Two (2) Lighting Plans.
- One (1) one-line diagram.
- One (1) Elementary Diagram.
- One (1) Panelboard Schedule.
- One (1) Electrical Support Detail.
- Two (2) Wire Run lists.
- Four (4) Electrical Details.
- One (1) Poleline Plans and Profile.
- Three (3) Poleline Details.
- Provide input to the Construction Specification (3 sections).
- Provide five (5) sets of calculations.

Specifications (32)

- Construction Specification preparation (1).
- Procurement Specification preparation (8).
- ATP preparation.
Design Administration (35)
- Provide design supervision and interdisciplinary coordination.
- Coordinate design basis inputs with discipline lead engineers.
- Ensure that design tasks are completed in accordance with requirements and procedures.

Environmental/Safety/Quality Assurance
- Review design documents and provide input for Environmental, Safety, and Quality Assurance requirements.

Project Management (40.1)
- Provide overall management of project activities.
- Prepare monthly summary of project status, cost, and schedule.
- Provide single point of contact for interface with the customer.

Project Management (40.2)
- Provide secretarial services to project management.

Quality Engineering (42)
- Review drawings, documents, and specifications to assure compliance with appropriate criteria and procedures.

Acceptance Inspection (44)
- Prepare Construction Inspection Plan.
- Provide independent assessment overview plan (by third party) for satisfaction of Washington Administrative Codes.

Project Controls (45)
- Set up Chart of Accounts and budgets in KEMS.
- Prepare the project schedule.
- Provide weekly update of cost and schedule.
- Provide Monthly Reports, Progress Schedule, EACs, and Bar Chart "S" Curve.
- Track changes to the work plan basis.

Estimating (46)
- Prepare a Construction Cost Estimate upon completion of Definitive Design.

Procurement (49.1)
- Provide input during design for Procurement Specification.
- Prepare one (1) bid package.
• Provide input into procurement schedule.

Submittal Document Control (49.4)

• Review Procurement Specifications (4).
• Prepare a Master Submittal List.

Construction Services (67)

• Provide constructibility review during the design process.
• Provide input into construction schedule.
• Perform review/comment on cost estimate.

ENGINEERING/INSPECTION DURING CONSTRUCTION

During construction, Engineering will provide the following support services:

• Acceptance inspection of construction activity as required by the Inspection Plan.
• Review and approval of submittals as required by the specifications.
• Preparation, review, and approval of Engineering Change Notices (ECN) required during construction.
• Review, disposition, and approval of Nonconformance Reports (NCR) generated during construction.
• Prepare and witness an ATP for HVAC controls and Instrumentation.
• Safety, Environmental, and Quality Assurance support of engineering activities.
• Instrumentation to provide technical support to an offsite vendor. This vendor will supply the Programmable Logic Controller (PLC) programming (based on ICF KH supplied ladder logic) and a related ATP for field testing of equipment. Instrumentation will also provide support during execution of the ATP at T Plant.
• As-building of project drawings at completion of construction.
• Direct ATPs developed during Definitive Design.

CONSTRUCTION

Construction Forces

• Prepare Project Control Package (PCP).
• Provide daily supervision of construction labor.
• Provide craft labor for performance of work.
• Provide Construction Engineering support for coordination of materials, drawings, and labor.
• Closeout and turnover of project files.

Project Management (40)
• Provide overall management of project activities.
• Prepare monthly summary of project status, cost, and schedule.
• Provide single point of contact for interface with the customer.

Project Controls (45)
• Set up Chart of Accounts and budgets in KEMS.
• Prepare the project schedule.
• Provide weekly update of cost and schedule.

Estimating (46)
• Provide estimating support as required for ECNs.

Procurement (49.1)
• Perform advance procurement.
• Perform expediting.
• Procure all construction materials.
STATEMENT OF WORK

OPERATING CONTRACTOR - PROJECT MANAGEMENT

PROJECT W-259

W.O. NO.: ER4235

PREPARED BY: T. A. CARLSON DATE: August 1995

I. OBJECTIVES

The Operating Contractor shall provide project management services to the U.S. Department of Energy-Richland Operation Office (DOE-RL) from definitive design through the completion of construction and project closeout. Project management will include, but is not limited to, overall planning, daily management and technical direction, coordination, control and status reporting for all phases of the project. Before the start of definitive design, the Operating Contractor responsibility and authority will be formally documented in a DOE-RL approved Project Management Plan.

II. TASKS

A. General

Provide liaison with the cognizant RL office during the life of the project. Furnish the project information necessary to facilitate surveillance and evaluation of project execution.

1. Provide copies of all project associated correspondence, reports, design drawings, Nonconformance Reports (NCRs), plans and schedules, cost estimates, Quality Assurance (QA) programs and related audits, Engineering Change Notices (ECNs), subcontracts, work orders and supplements, minutes of meetings, test procedures, photographs, etc. All items shall be identified with the project number (W-259).

2. Provide timely notification of meetings, acceptance tests, and final inspections (with agenda when applicable).

3. Provide immediate notification of accidents, incidents, significant problems, work stoppages, etc.

5. Provide responsibility and authority for daily management of the project as provided in the Project Management Plan (PMP).

B. Design

1. Establish project files responsibilities and requirements and disseminate these to project participants.
2. Provide technical direction and assistance for design accomplished by the Architect/Engineer (A/E).

3. The Project Engineer coordinates and takes the lead technical role in the design review process. Involves the user, site services, operations, maintenance engineering, and process engineering, as necessary, in design reviews. Approves Definitive Design for compliance with the Functional Design Criteria (FDC), project baseline, safety, operability, reliability, energy conservation, and cost effectiveness. Assure optimum design in terms of cost, safety, reliability, maintainability, accuracy, and compliance with applicable codes, standards, criteria, regulations, and Department of Energy (DOE) Management Directives.

4. Approve design schedules consistent with project requirements.

5. Provide and/or concur with engineering reports as required.

6. Coordinate and integrate environmental, NEPA, permitting and safety assessment activities into the project.

7. Update all project documents, control media, reports, schedules, and cost summaries as new information becomes available.

8. Assure that cost effectiveness is stressed in the project design and construction, and that life cycle cost analysis (LCCA), as appropriate, is a basis for design selections and decisions.

9. Participates in the team effort of developing and implementing a comprehensive, integrated project QA and/or Quality control (QC) and/or inspection plan.

10. Provide information, data, records, and guidelines for the special conditions or requirements that may impact project cost, i.e., radiation levels, escort requirements, etc.

12. Coordinate with the Onsite Construction Contractor to assure constructibility.

C. Procurement (Long Lead and Engineered Equipment)

1. Assure procurement plans and schedules are consistent with project schedule requirements.
2. Initiate documentation to procure long lead and engineered equipment.

3. Provide liaison between A/E, program/project coordinators, buyers, and vendors during procurement.

4. Coordinate participation of Quality Assurance, program/project coordinators, and other cognizant personnel during procurement and in-factory acceptance testing activities.

5. Assure that comprehensive vendor surveys have been performed within procurement guidelines.

6. Provide overall management of procurement for engineered equipment.

D. Construction

1. Provide technical direction and assistance, as applicable, on construction accomplished by the Fixed Price Contractor and Onsite Construction Contractor.

2. Approve construction schedules consistent with project requirements.

3. Approve and/or concur with construction reports as required.

4. Assure industrial and nuclear safety at the construction site.

5. Update all project documents, control media, reports, schedules, and cost summaries as new information becomes available.

6. Provide coordination between operational user and construction forces to minimize interference and facilitate the construction work. Assure user submittal review as appropriate.

7. Issue excavation and/or drilling and/or tie-in- permits and welding and/or cutting permits to the Onsite Construction Contractor. Approve radiation work procedures, if required, initiated by Onsite Construction Contractor.

8. Review vendor submittal as required and provide comments to the A/E or buyers.

9. Participate and concur in final inspection, testing and acceptance of completed facilities for operation.
10. Support project startup readiness review as required.

11. Assure accurate completion of as-built drawings.

12. Prepare the project close-out documents, and obtain the required approvals.

13. Arrange for disposition and/or storage of project records.

E. Decontamination and Decommissioning (D&D)

1. Provide design and technical services for D&D work associated with the 2706-T/TA Facilities, including relocation/removal of existing utilities.

2. Provide labor and materials for all D&D activities.

3. Coordinate D&D activities with Operating Contractor personnel, including plant operation, engineering, safety, and environmental organizations.
PROJECT MANAGEMENT COST ESTIMATE SUMMARY

<table>
<thead>
<tr>
<th>PHASE</th>
<th>MANHOURS</th>
<th>RATES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Engineer</td>
<td>1100</td>
<td>$62.50</td>
<td>$68,750</td>
</tr>
<tr>
<td>Project Manager</td>
<td>110</td>
<td>62.50</td>
<td>6,875</td>
</tr>
<tr>
<td>Clerical Support</td>
<td>40</td>
<td>32.40</td>
<td>1,296</td>
</tr>
<tr>
<td>Procurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Engineer</td>
<td>550</td>
<td>$62.50</td>
<td>$34,375</td>
</tr>
<tr>
<td>Project Manager</td>
<td>55</td>
<td>62.50</td>
<td>3,438</td>
</tr>
<tr>
<td>Clerical Support</td>
<td>20</td>
<td>32.40</td>
<td>648</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Engineer</td>
<td>1000</td>
<td>$62.50</td>
<td>$62,500</td>
</tr>
<tr>
<td>Project Manager</td>
<td>1000</td>
<td>62.50</td>
<td>6,250</td>
</tr>
<tr>
<td>Clerical Support</td>
<td>30</td>
<td>32.40</td>
<td>972</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>3005</td>
<td></td>
<td>$185,104</td>
</tr>
<tr>
<td>GA\CSP at 25.5%</td>
<td></td>
<td></td>
<td>$47,202</td>
</tr>
<tr>
<td>TOTAL PROJECT MANAGEMENT</td>
<td></td>
<td></td>
<td>$232,306</td>
</tr>
<tr>
<td>ROUNDED</td>
<td></td>
<td></td>
<td>$233,000</td>
</tr>
</tbody>
</table>
I. PROJECT SCOPE

Project W-259 will provide upgrades to the liquid waste collection and transfer systems for handling decontamination liquid waste solutions at the T Plant facility. In particular, the upgrades will be performed at and adjacent to the 2706-T/TA Facility.

Upgrades provided by this project are installation of a liquid waste collection, containment, leak detection, and transfer system for handling decontamination solutions in the 2706-T/TA Facility.

II. STATEMENT OF WORK

This statement of work (SOW) identifies expense funded activities that will be incurred and/or managed under the direction of the Operating Contractor (OC). These type of expense activities are identified as Other Project Costs (OPC). These expense funded activities are directly associated with the implementation of Project W-259 that are not capital costs included in the Total Estimated Construction Cost (TECC). This SOW is broken out by the performing organization.

III. DELIVERABLES - OTHER PROJECT COSTS

The deliverables for this section are identified by the performing organizations. Many of the items listed deal with the client review associated with design. These reviews are necessary to assure that the design properly interfaces with existing plant equipment, operating contractor procedures, and to assure that the user will be satisfied with the end product.

A. Westinghouse Hanford Company (WHC) - Programs

1. Prepare functional design criteria and revisions
2. Prepare program/budget plans
3. Participate in value engineering sessions
4. Support document review of conceptual and definitive design media
B. Westinghouse Hanford Company (WHC) - Projects

1. Review functional design criteria
2. Manage conceptual design report preparation
3. Prepare construction project data sheet
4. Participate in value engineering sessions
5. Prepare letters of instruction
6. Coordinate site preparation, site planning
7. Contribute text and appendices as required
8. Coordinate review and approval of project document
9. Prepare project plan, project management plan and request for project authorization
10. Provide project management and other project costs statement of work for estimate
11. Support for project validation
 a. Validation reports
 b. Validation package preparation
 c. Presentations
12. Coordinate activities prior to authorization
 a. Deviation/Waiver request
 b. Soil characterizations
 c. Plant maintenance activities

C. Westinghouse Hanford Company (WHC) - Operations

1. Provide input for document review
 a. Conceptual design report
 b. Value engineering sessions
 c. Definitive design
 d. Operational test procedures
2. Support project activities
 a. Design/Construction job walks
 b. Equipment tagouts
 c. Support/Witness acceptance test procedures
 d. Perform operational test procedures
3. Revise operations procedures
4. Operator training for new waste collection systems
5. Provide initial chemical inventories for new waste collection systems
D. Westinghouse Hanford Company (WHC) - Maintenance

1. Provide input for document review
 a. Conceptual design report
 b. Value engineering sessions
 c. Definitive design
2. Provide general support of the project
3. Provide recommended spare parts list
4. Provide training for new waste collection systems
5. Development/Revise preventative maintenance procedures for equipment
6. Provide craft support for the operational test procedures

E. Westinghouse Hanford Company (WHC) - Environmental

1. Provide input for document review
 a. Functional design criteria
 b. Conceptual design report
 c. Value engineering sessions
 d. Definitive design
2. Perform regulatory analysis
3. Develop permitting plan
4. Coordinate permitting activities
5. Support development and approval of the national environmental policy act (NEPA) documentation

F. Westinghouse Hanford Company (WHC) - Quality Assurance

1. Provide input for document review
 a. Functional design criteria
 b. Conceptual design report
 c. Value engineering sessions
 d. Definitive design
 e. Letters of instruction and work orders
 f. Procurement specifications/requirement
 g. Project management plan
 h. Engineering change notices
 i. Acceptance test procedures, operation test procedures, and official acceptance of construction
2. Generate the quality assurance project plan (QAPP)
3. Participate in closeout of nonconformance and surveillance reports
G. Westinghouse Hanford Company (WHC) - Plant Engineering

1. Provide input for document review
 a. Functional design criteria
 b. Conceptual design report
 c. Value engineering sessions
 d. Definitive design
 e. Engineering change notice submittal
 f. Acceptance test procedures
 g. Maintenance and operations procedures
2. Support acceptance testing/operational testing
3. Prepare new preventative maintenance procedures

H. Kaiser Engineers Hanford (KEH) - On Site Engineer/Constructor

1. Prepare conceptual design report
2. Support validation process
3. Participate in value engineering sessions

I. Westinghouse Hanford Company (WHC) - Safety Organizations

1. Provide input for document review
 a. Functional design criteria
 b. Conceptual design report
 c. Value engineering sessions
 d. Definitive design
 e. Engineering change notices
 f. Acceptance and operational test procedures
 g. Deviations and waivers
2. Conduct safety meetings and job walks
3. Prepare construction site surveillance
4. Prepare safety analysis documentation

J. Westinghouse Hanford Company (WHC) - Health Physics Technicians

1. Support soil characterization prior to construction
2. Provide surveillance activities during construction
 a. Digging operations
 b. Equipment release
 c. Radiological surveys
 d. Demolition activities
TABLE 1 - PROJECT W-259 ACTIVITY FUNDING

<table>
<thead>
<tr>
<th>ACTIVITY DESCRIPTION</th>
<th>FUNDING SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TECC</td>
</tr>
<tr>
<td>PROJECT DEFINITION</td>
<td></td>
</tr>
<tr>
<td>Engineering Study</td>
<td></td>
</tr>
<tr>
<td>Functional Design Criteria</td>
<td></td>
</tr>
<tr>
<td>Site Evaluation Report</td>
<td></td>
</tr>
<tr>
<td>CONCEPTUAL DESIGN</td>
<td></td>
</tr>
<tr>
<td>Conceptual Design Report</td>
<td></td>
</tr>
<tr>
<td>Permitting Plan</td>
<td></td>
</tr>
<tr>
<td>Environmental Documentation - (KEPA-EX, EA)</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance Project Plan</td>
<td></td>
</tr>
<tr>
<td>Statement of Work</td>
<td></td>
</tr>
<tr>
<td>Project Management Plan</td>
<td></td>
</tr>
<tr>
<td>Advance Conceptual Design</td>
<td></td>
</tr>
<tr>
<td>PROCUREMENT/CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Definitive Design</td>
<td></td>
</tr>
<tr>
<td>Inspection</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>As Built Drawings</td>
<td></td>
</tr>
<tr>
<td>Acceptance Testing/Procedures</td>
<td></td>
</tr>
<tr>
<td>Preliminary Safety Analysis Report (PSAR)</td>
<td></td>
</tr>
<tr>
<td>OPERATIONAL PREPAREDNESS & START-UP</td>
<td></td>
</tr>
<tr>
<td>Inventories to Support ATP/OTP Activities</td>
<td></td>
</tr>
<tr>
<td>Spare Parts to Support ATP/OTP Activities</td>
<td></td>
</tr>
<tr>
<td>Training to Support ATP/OTP Activities</td>
<td></td>
</tr>
<tr>
<td>Operational Readiness Review</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1 - PROJECT W-259 ACTIVITY FUNDING (CONT)

<table>
<thead>
<tr>
<th>ACTIVITY DESCRIPTION</th>
<th>FUNDING SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TECC</td>
</tr>
<tr>
<td>MULTI-PHASE ACTIVITIES Note 3</td>
<td></td>
</tr>
<tr>
<td>Document Control</td>
<td></td>
</tr>
<tr>
<td>Records Management</td>
<td></td>
</tr>
<tr>
<td>OA/Environmental/Safety Audits & Assessment</td>
<td></td>
</tr>
<tr>
<td>Permitting Support Document (Construction & Operations)</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance Reviews</td>
<td>X</td>
</tr>
<tr>
<td>Design Reviews</td>
<td>X</td>
</tr>
<tr>
<td>Value Engineering</td>
<td></td>
</tr>
<tr>
<td>NPT's/Operators (Non dedicated personnel)</td>
<td></td>
</tr>
<tr>
<td>Project Management Note 1</td>
<td></td>
</tr>
<tr>
<td>Project Administrative Support Note 2</td>
<td></td>
</tr>
</tbody>
</table>

Note 1. Project Management activities include, but are not limited to:
- Writing of LOEs, preparation of Statement of Work (SOW), preparation of PMP, participation in constructibility reviews, support for validation and project data sheets, A/E selection, preparation of Project Authorization and file lists, Participation in Value Engineering studies, establish funding for A/E design, PMP revision, request for Project Authorization Modifications, lesson learned DAC/De's, etc.

Note 2. Project Administrative Support activities include, but are not limited to:
- Administrative Support for preparation of validation package & Project data sheets, cost estimate reviews, status reporting to RL, EIC work forecast document preparation, project data sheet revision, re-validation, etc.

Note 3. When two funding sources are shown, activities performed prior to project authorization are expense funded and part of OPC. After project authorization these activities are part of TECC, except when performed by non-dedicated personnel. Non dedicated personnel activities after authorization are part of OPC.
APPENDIX D

Revised/Proposed Project Schedule
APPENDIX E

Outline Specification
OUTLINE SPECIFICATION

DIVISION 2 – SITWORK

Section 02200 Earthwork

1. Loadbearing backfill, compacted.
3. Crushed gravel stabilization.

Section 02512 Hot-Laid Asphalitic Concrete Paving

1. Base course (ballast), leveling course, asphalt material, aggregates and mineral fiber, Class B proportioning, WSDOT M41-10.

DIVISION 3 – CONCRETE

Section 03300 Cast-In-Place Concrete

1. Minimum strength: 3000 lb/in² at 28 days.
2. Reinforcing steel bars: ASTM A 615, deformed, Grade 60.
4. Nonshrink grout, nonmetallic type.
5. Concrete forms: Wood, steel, plywood, or pressed fiberboard.

DIVISION 5 – METALS

Section 05500 Metal Fabrications

2. Steel plate: ASTM A 36 or A 283.
4. Bolts: ASTM A 307, Type A.
5. Steel grating: Hot-dip galvanized, FS RR-G-661, Type 1, pressure locked with end bars.
DIVISION 9 - FINISHES

Section 09805 Special Protective Coating

DIVISION 13 - SPECIAL CONSTRUCTION

Section 13440 Instrumentation

1. Microprocessor-based system
 a. Programmable controller; Modicon 984-A120.
 b. Industrial PC: 486 with 16 MB RAM minimum, 1 GB hard drive.
 c. Video display terminal: 20" with touchscreen.
 d. MMI software: Wonderwave Intouch.
 e. Input/output modules.
 1) Discrete input; Modicon AS-BDEP-216.
 2) Discrete output; Modicon AS-EDAP-203.
 3) Analog input; Modicon AS-BADU-205.

2. Exhaust monitoring system: Isokinetic probe, vacuum pump system with flow control, beta gamma monitor, record surplus air system control, air monitor.

3. Leak detection/location: Control unit, UL listed as intrinsically safe for Class 1, Groups C and D hazardous locations; Permalert Environmental Specialty Products, Inc. PAL-AT Model AT40K. Quick drying, chemical resistant, coaxial sensor cable; Permalert Environmental Specialty Products, Inc. type AGW Gold.

4. Level indicating transmitter: RF Admittance technology, Kynar insulated probe, flange-mounted probe, range 0 to 20 ft, electronics remote mount from sensor, 4-20 mA output, explosionproof housing; Drexelbrook Model 508-45-6. Power supply for transmitter; 120 V ac input, 24 V dc output; Drexelbrook Model 401-13-24.
DIVISION 15 – MECHANICAL

Section 15493 Chemical Process Piping Systems

1. Primary piping

a. Pipe: Stainless steel, seamless, ASTM A 312, Grade TP304L, Schedule 40S.

b. Fittings: Stainless steel, ASTM A 403, Grade WP304L; buttwelding, ASME B16.9; wall thickness to match pipe.

c. Flanges: Class 150, forged stainless steel, ASTM A 182, Grade F 304L, raised face; weld neck, ASME B16.5. Bore to match pipe ID.

d. Bolting: Alloy steel studs, ASTM A 193, Grade B7, and heavy hex nuts, ASTM A 194, Grade 7.

e. Gaskets: Spiral wound gasket 1/8-inch thick, Type 304 or 316 stainless steel with graphite filler material, ASME B16.5, Appendix E; Flexitallic RC or Garlock Guardian, or compressed carbon fiber gasket 1/16 to 1/8 inch thick; Anchor Packing 15 or Garlock Graphlock.

f. Valves

1) Ball: 150 lb ASME flanged, stainless steel, with UHMW seals and packing.

2) Two-way actuator: High-torque, integral, single-phase, reversible, 120 V ac electric motor; NEMA ICS 6 Type 7 enclosure; 90 degree travel with limit switches; two SPDT position switches; visual shaft position indicator; motor brake; spring return on power failure; with manual override.

3) Three-way actuator: High-torque, integral, single-phase, reversible, 120 V ac electric motor; NEMA ICS 6 Type 7 enclosure; 180° travel with limit switches; three SPDT position switches; visual shaft position indicator; with manual override.

4) Check: Standard 150 lb ASME flanged, stainless steel, ball.

2. Secondary Encasement Piping

a. Pipe: Stainless steel, seamless, ASTM A 312, Grade TP304L, Schedule 40S.

b. Fittings: Stainless steel, ASTM A 403, Grade WP304L; buttwelding, ASME B16.9; wall thickness to match pipe.
3. Pipe Code M-2; Steam Piping
 c. Valves: Ball, carbon steel, NPT.

4. Pipe Code M-5; Service Water
 a. Pipe: Galvanized or plain carbon steel, ASTM A 53, Type S or ASTM A 106, Grade B, Schedule 80.
 c. Valves: Ball, brass, NPT.

5. Pipe Code M-7; Process Air Piping
 b. Fittings: 150 lb malleable iron, ASTM A 197; screw connections, ASME B16.3.
 c. Valves: Ball, brass, NPT.

6. 2706-T Facility
 a. Sump pump: Submersible stainless steel, for transferring tank basin sump pit water to 15,500 gallon tank.
 c. Agitator: Top entering, bladed, axial flow, blade speed 100 rpm, stainless steel.
 d. Storage tanks: Vertical, stainless steel, ASME Section VIII, Division 1.
 e. Filtration: Two-stage filtration system - 1st stage contain multi-bag filter to remove larger than 200 micron particles, 2nd stage filter to remove larger than 50 micron particles.
 f. Electric operated diaphragm pump: Stainless steel, for transferring automotive and railroad pit sump water to storage tanks.
 g. Air compressor: Air cooled rotary screw type, capable of delivering 100 scfm at 100 psig.
Section 15500 Heating, Ventilating, and Air Conditioning

1. Duct: Stainless steel sheet, ASTM A 240, Type 304 or 304L, minimum of 18 ga., built to SMACNA pressure rating of 2 in. water.

2. Duct Reinforcement
 a. Stainless steel sheet: ASTM A 240, Type 304 or 304L.
 b. Stainless steel shapes: ASTM A 276, Type 304 or 304L.

3. Duct Supports and Hangers: Stainless steel shapes, ASTM A 276, Type 304 or 304L.

4. HEPA filter train: Filter housing to consist of an inlet plenum, demister section, 100 kw heater section, flame arrester, plenum, Flanders model E-5 T-I 3x2 GG-F2 T-O (304L) L Type 1 and E-5 T-I 3x2 GG-F2 T-O (304L) R Type 1 filter sections placed back-to-back, and fan section. Filters to be rated at 99.97% DOP, self-contained, fire- and moisture-resistant, Type A fire resistive, and of size scheduled on the Drawing.

5. Chevron-style Demisters: Koch Style #1 stainless steel.

7. Fan coil units: Carrier model 40BA009, two stages of electric resistance heat. Quantity of 4.

8. Unit heaters: Indeeco Triad with built-in thermostat or equal.

10. Balancing: Adjusting existing 2706-T pit exhaust fan after equipment installation to match original air flow.

11. Breather HEPA filter: Pall or equivalent.

Section 16300 Medium Voltage Distribution

1. Conduit
 a. Rigid steel.
 b. PVC, concrete encased.

2. Cable: 15 kV single conductor for both wet and dry conditions at normal operating temperature of 90°C maximum.
 a. Conductor: Copper, annealed, Class B concentric stranding.
c. Insulation: Ethylene-propylene-rubber, 220-mils minimum thickness.

d. Insulation shield: 30-mil minimum extruded nonmetallic covering over insulation with 5-mil minimum nonmagnetic metal component directly over or embedded in covering.

3. Wood poles: Western red cedar, cut from live timber, butt-treated, single top cut at 30 degree angle with normal to axis of pole and at right angles to sweep. Roofs and grains brush-treated with preservative.

4. Crossarms: Straight-grained douglas fir, free from twists to within 0.1 inch per foot of length, with bends and twists in only one direction. Apply preservative to crossarms.

5. Pole hardware: Hot-dipped galvanized after fabrication.

6. Fused cutout and lighting arrestor combination.

7. Fused cutout: 15 kV, 150 A, heavy-duty, 10,000 A symmetrical interrupting capacity. Fuses will be installed by Operating Contractor.

9. Equipment enclosures: NEMA ICS 6 Type 3R minimum.

10. Outdoor radial feed distribution transformers: 1000 KVA, 3-phase, padmounted, compartment type in accordance with ANSI C57 standards. The transformer shall be designed for 60 Hz, 95 kV BIL primary, 30 kV BIL secondary, OA cooling and 65°C temperature rise above 40°C ambient. The transformer shall be loop feed. The transformer shall be filled with RTE less flammable fluid (no substitutions) with voltage ratings shown on the drawings. Universal bushing wells for use with ANSI/IEEE 386 bushing inserts shall be provided for the transformer high voltage connections. The transformer shall have 2 full capacity 2-1/2% taps above and below 13.8 kV. Tap changing will be accomplished at no load. The tap changer external operating mechanism shall have provisions for padlocking. The transformer shall be equipped with the following accessories:

 a) External operable Kearney Bayonet fuse or approved substitute.

 b) Internal, back up Kearney current limiting fuse or approved substitute.

 c) One inch drain valve in secondary compartment.

 d) Dial type thermometer located in secondary compartment.

 e) Liquid level gauge.
f) Pressure/Vacuum gauge.
g) Three insulated grounded bushing caps.

11. Pole-top lightning arresters: Distribution valve type rated 18 kV, 15.3 kV MCOV, 95 BIL, for use on 13.8 kV electrical system. Porcelain bodies, wet porcelain with uniform color glaze. Galvanized cap and base hardware with bolted clamps for both line and ground connections. Galvanized mounting bolts.

Section 16400 Service and Distribution

1. Conduit: PVC coated rigid, galvanized steel rigid, EMT and PVC.
2. Connectors: Stranded copper with Type THWN/THHN or XHHW.
3. Equipment enclosures: NEMA ICS 6 Type 1 minimum (inside), Type 3R minimum outside or in wet locations.
4. Motor Control Centers (MCC): 20 inch deep enclosure for control equipment, assembled to provide dead-front unit, and meet the requirements of the drawings. Incoming feeders shall enter from bottom. Size feeder terminal lugs to accept conductors specified.
 a. Motor controllers: Horsepower rated with 2 NO and 2 NC auxiliary contacts.
 b. Locate master terminal boards in bottom of sections.
 c. Provide full rated neutral bus as shown on the Drawings.
 d. Feeder circuit breakers: Molded case, 3-phase, individually mounted in a drawout type cubicle, trip free, rated for use at 480 V ac minimum. Interrupting rating; minimum 25,000 A.I.C. symmetrical at 480 V ac. For ampere frame and trip ratings for the individual breaker see one-line diagram drawings.
5. Mini-power center panelboards: 480 V-240/120 V surface mounted and UL listed.
7. Safety switches: NEMA KS 1, nonfusable heavy duty Type HD, horsepower rated for 600 V ac.
8. Exterior lighting fixtures: Aluminum housing, UL listed for outdoor use, pole mounted, U.V. stabilized clear prismatic lens, low pressure sodium lamp, photocell integrally mounted and prewired for automatic "on-off" dusk to dawn operations. 480 V ac, high power factor ballast suitable for high and low ambient temperature operation.
9. Receptacles: NEMA WD 1 Designation 5-20R, duplex, ivory, specification grade, rated 20 A, 120 V, 3-wire, grounding type, with screw terminals arranged for side wiring. Self-grounding receptacles may be used instead of ground requirements specified.

10. General Purpose Transformers: NEMA ST 20, floor mounted, 60 Hz, of kVA rating shown on the drawings, with two 2-1/2% taps above and two 2-1/2% taps below normal rated primary voltage minimum. Insulation system shall be rated 220°C with 150°C winding temperature rise above ambient.

11. Heat Trace: Self-regulating heating cable for freeze protection, 15 watts per foot, 120 V.

13. Uninterruptible Power Source: A 5.0 kVA UPS that is UL listed to produce a no break power sine wave output voltage of 120 V ac ±3% with RF noise isolation and lighting and surge protection. The unit shall be able to operate in an environment of 95% relative humidity and have an efficiency of 90%. The output neutral is to be bonded to ground.
APPENDIX F

Energy Conservation Report and Analysis
(Not Applicable)
THIS PAGE INTENTIONALLY LEFT BLANK
APPENDIX G

Preliminary Safety Evaluation
(To be provided by Westinghouse Hanford Company
under separate cover)
APPENDIX H

Economic Analysis and Life Cycle Cost Analysis
(Not Applicable)
THIS PAGE INTENTIONALLY LEFT BLANK
APPENDIX I

Physically Handicapped Assessment
(Not Applicable)
APPENDIX J

Sketches

<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-W259-I1</td>
<td>P&ID Waste Collection Legend</td>
</tr>
<tr>
<td>ES-W259-I2</td>
<td>P&ID Waste Collection 2706-T Building</td>
</tr>
<tr>
<td>ES-W259-I3</td>
<td>P&ID Waste Collection 2706-T Building</td>
</tr>
<tr>
<td>ES-W259-C1</td>
<td>Civil/Electrical Site Plan Decon Collection</td>
</tr>
<tr>
<td>ES-W259-C2</td>
<td>Civil/Electrical Decon Collection Plan</td>
</tr>
<tr>
<td>ES-W259-C3</td>
<td>Structural Decon Collection Tank Section</td>
</tr>
<tr>
<td>ES-W259-C4</td>
<td>Structural Decon Collection Plan and Elevations</td>
</tr>
<tr>
<td>ES-W259-C5</td>
<td>Civil Decon Collection Drainage Plan</td>
</tr>
<tr>
<td>ES-W259-C6</td>
<td>HVAC Pad Cover Plan and Elevation</td>
</tr>
<tr>
<td>ES-W259-C7</td>
<td>Civil Decon Collection Section</td>
</tr>
<tr>
<td>ES-W259-M1</td>
<td>Piping Decon Collection Tank Site Plan</td>
</tr>
<tr>
<td>ES-W259-M2</td>
<td>Piping Decon Collection Tank Section Views</td>
</tr>
<tr>
<td>ES-W259-M3</td>
<td>Piping Demolition Details Sludge Sump Lines</td>
</tr>
<tr>
<td>ES-W259-N1</td>
<td>Electrical 2706-T Building One-Line Diagram</td>
</tr>
<tr>
<td>ES-W259-S1</td>
<td>Structural RR Pit Sump Liner Assembly</td>
</tr>
<tr>
<td>ES-W259-S2</td>
<td>Structural RR Pit Sump Liner Sections and Details</td>
</tr>
<tr>
<td>ES-W259-S3</td>
<td>Structural Automotive Pit Sump Liner Sections and Details</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
ICF KAISER ENGINEERS HANFORD

T PLANT CONTAINMENT / LEAK DETECTION

W-259 PROJECT SCHEDULE

Timeline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>FEB</td>
<td>MAR</td>
</tr>
<tr>
<td>APR</td>
<td>MAY</td>
<td>JUN</td>
</tr>
<tr>
<td>JUL</td>
<td>AUG</td>
<td>SEP</td>
</tr>
<tr>
<td>OCT</td>
<td>Nov</td>
<td>DEC</td>
</tr>
</tbody>
</table>

Milestones

- **Start Definitive Design**
- **Project Funding**
- **State Env./VAC Approval**
- **AAR Permit Concurrency**
- **AEC Complete Pre Review**
- **AEC QD Review**
- **STA QD**
- **Start Procurement**
- **Start Constr. Planing**
- **Release Drawings**
- **Complete SA**
- **Start Construction**
- **AAR Permit Approval**
- **Start Unit Price Consdr.**
- **Start Closeout**
- **DAC 1.0 2.0**
- **VAC ISO Approval**
- **Owner's**

Engineering

1. **Pre Definitive/ Functional & Safety Inputs**
 - **Definitive Design**
 - **Engineering/Inspection**
 - **AEC Safety Analysis Support**

Procurement

2. ***offsite procurement***

Construction

3. **Construction - IF**

Project Integration

4. **IFC**
THIS PAGE INTENTIONALLY LEFT BLANK
THIS PAGE INTENTIONALLY LEFT BLANK
THIS PAGE INTENTIONALLY LEFT BLANK