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ABSTRACT: We are evaluating artificial neural networks (ANNs) as tools for 
assessing changes in soil microbial communities following exposure to metals. 
We analyzed signature lipid biomarker data collected from two soil microcosm 
experiments using an autoassociative ANN. In one experiment, the microcosms 
were exposed to 0, 100, or 250 ppm of metals, and in the other experiment thie 
microcosms were exposed to 0 or 500 ppm of metals. The ANNs were, able to 
distinguish between microcosms exposed and not exposed to metals in both 
experiments. . 

INTRODUCTION 
A major challenge in the implementation of in situ bioremediatialn 

technologies is understanding the indigenous microbial community structure and 
how this structure is affected by environmEnta1 conditions. Understanding the 
microbial community structure and the environmental factors that control it woulld 
assist in optimizing those factors that offer the best opportunity for control of 
bioremediation. For example, assessing the changes in the community structure 
following the addition of nutrient amendments is critical in monitoring the 
effectiveness of bioremediation. 

Microbial communities in soils have often been characterized by the 
analysis of signature lipid biomarkers (SLBs) (e.g., Tunlid and White, 1992). 
SLBs are known to respond to changes in environment conditions such as 
temperature and nutrients. However, these changes are often complex, nonlinear, 
and not readily amenable to traditional statistical analyses. 

We are using artificial neural networks (ANNs) to investigate the comp1e:x 
relationships among SLBs. ANNs are nonlinear, nonparametric analysis methods 
that can learn from experience to improve their performance. These methods are 
tolerant of missing or noisy data and can be used for rapid analysis of new data 
sets. 

An ANN consists of a large number of simple processing elements called 
nodes. Nodes are connected to other nodes by means of directed communicatioln 
links, each with an associated weight. Each node has an internal state, called its 
activation level, which is a function of the inputs it receives. A node sends its 
activation as a signal to the other nodes with which it is connected (Fausett, 
1994). Figure 1 illustrates the architecture of a simple ANN consisting of five 
input parameters, eight nodes, and five output parameters. 
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FIGURE 1. Example of a simple autoassociative ANN consisting of five input 
parameters, three mapping nodes, two feature nodes, three demapping 

nodes, and five output parameters. Solid lines represent directed 
communication links between components of the ANN. 

The weights associated with the links in an ANN represent information 
used by the net to solve a problem. An ANN is trained by presenting it with a 
paired set of input and output patterns. The ANN adjusts its weights in order to 
minimize the difference between the output parameters calculated by the net and 
the actual output pattern. 

MATERIAL AND METHODS 
For this study, we analyzed SLB data obtained from two soil microcosm 

experiments that were designed to determine the effects of metal concentration of 
the microbial community structure. In one experiment, the microcosms were 
exposed to 0 and 500 ppm of a metal mixture that contained cadmium, strontium, 
cobalt, and cesium (Hemming et al., 1998). The other experiment used 0, 1 0 ,  
and 250 ppm concentrations of the same metal mixture that was used in the fust 
experiment (Macnaughton et al., 1998). Triplicate microcosms from each metal 
treatment were sacrificed at 0,7, 14,28, and 56 days. 

The sacrificed microcosms were analyzed for SLBs. A modified 
chloroform and methanol extraction, silicic acid column chromatography lipid 
class separation, alkaline methanolysis derivatization, and gas 
chromatography/mass spectrometry identification were used (White and 
Ringelberg, 1998). The resulting profiles contained 43 SLBs. 

These SLBs from the second experiment were used to train an 
autoassociative ANN using the Stuttgart Neural Network Simulator ( a l l  et a.l., 
1994). The architecture used to analyze the microcosm SLB data consisted of 43 
input SLBs, four mapping nodes, two feature nodes, four demapping nodes, and 
43 SLBs. To test for robustness the trained ANN was validated using the lipid 
parameters generated from the first experiment. The coordinates of the ANN'S 
feature nodes were plotted and analyzed by hierarchical cluster analysis. 
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RESULTS 
The ANN explained 85.7% of the variance in the data from the second 

microcosm experiment (Figure 2). The SLB profiles at day 7 (group 2) appear to 
be distinctly different fiom those at day 0 (group 1) regardless of the metal 
concentration in the microcosm. After day 7, the microcosms separated into two 
groups based on whether the microcosm was exposed (group 4) or not exposed 
(group 3) to metals. Within group 4, it appears that microcosms exposed to 250 
ppm of metals are beginning to diverge from the microcosms treated 
ppm of metals. 
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FIGURE 2. Plot of feature node coordinates from an autoassociative ANN 
analysis of the second (0,100, and 250 ppm metal) microcosm experiment. 
Groupings were determined by a hierarchical cluster analysis of the node 

coordinates. 

The SLB data from the fust (0 and 500 ppm) experiment was used to test 
how well the ANN developed from the second (0, 100, and 250 ppm) experiment 
generalized. Figure 3 shows the results of the ANN analysis of SLB data from the 
first experiment using the network developed for the second experiment. The 
SLB profrles for the microcosms exposed to 500 ppm of metals are generally 
distinct from the SLB profiles for the unexposed (0 ppm) microcosms (group 1 
versus group 2). Thus, the feature node plot from the f i s t  experiment WiiS 
consistent with the feature plot from the second experiment. 
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FIGURE 3. Plot of feature node coordinates from an autoassociative ANN 
analysis of the first (0 and 500 ppm metal) microcosm experiment using the 

ANN developed for the second (0,100, and 250 ppm metal) experiment. 
Groupings were determined by a hierarchical cluster analysis of the node 

coordinates. - 
DISCUSSION 

The microbial SLB profiles from the second experiment (0, 100, and 250 
ppm metals) changed with time and exposure to metals. The differences found 
between the microcosms sacrificed at 0 and 7 days may be due to the microbial 
communities equilibrating to the experimental conditions. This effect, known as 
the disturbance artifact has been documented in other studies (Findlay et aiL, 
1985). After 7 days, the ANN distinguished other temporal changes in the 
microbial community that appear to be related to metal exposure. 

The ANN developed for the second experiment generalized well when 
applied to the data from the first experiment (0 and 500 ppm metals). There dales 
not appear to be a disturbance artifact in this experiment. The ANN generally 
separated the microcosms exposed to metal from those that were not exposed. 
This corresponds to the trend seen in the second experiment. 

We believe that A N N s  offer a more robust approach for analyzing and 
interpreting complex data sets, and generalizing to new data sets. ANNs can be 
used as a tool for assessing microbial community structure changes as a result of 
pollution and is expected to be of particular relevance to the assessment of natural 
and accelerated bioremediation in s o l  
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