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Abstract 

Two model problems are considered, illustrating the dynamics of quasihydrostatic flows of 

radiatively cooling, optically thin self-gravitating gas clouds. In the first problem, spherically 

symmetric flows in an unmagnetized plasma are considered. For a power-law dependence 

of the radiative loss function on the temperature, a oneparameter family of self-similar 

solutions is found. We concentrate on a constant-mass cloud, one of the cases, when the 

self-similarity indices axe uniquely selected. In this case, the self-similar flow problem can 

be formally reduced to the classical Lane-Emden equation and therefore solved analytically. 

The cloud is shown to undergo radiative condensation, if the gas specific heat ratio y > 4/3. 

The condensation proceeds either gradually, or in the form of (quasihydrostatic) collapse. For 

y < 4/3, the cloud is shown to expand. The second problem addresses a magnetized plasma 

slab that undergoes quasihydrostatic radiative cooling and condensation. The problem is 

solved analytically, employing the Lagrangian mass coordinate. 
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I. INTRODUCTION 

At the initial stage of star formation in self-gravitating interstellar gas clouds, the clouds, 

or cloud fragments are too hot and rarefied to become gravitationally unstable (Shu et al. 

1987, Lada et al. 1992, Bodenheimer 1992). Under these conditions, the cloud is normally in 

(approximate) hydrostatic equilibrium. In many cases, a cloud reaches such an equilibrium 

through evolution. Indeed, if the cloud mass initially exceeds the Jeans mass, the cloud will 

contract rapidly, on the free-fall time scale. If the cloud is magnetized, the magnetic buoy- 

ancy (or Parker) instability (e.g. Shu 1992) can expel the magnetic field from the cloud and 

lead to a rapid reconstruction of the density distribution and possibly to gravitational con- 

traction. However, if the heat removal from the system is not efficient enough, the (thermal 

plus magnetic) pressure buildup can arrest the contraction, so that, after some oscillations, 

the system will reach a hydrostatic equilibrium. In the opposite case, when the cloud mass 

is smaller than the Jeans mass, rapid expansion starts, which, after dynamic saturation, can 

also be followed by a hydrostatic equilibrium. In the both cases, after a few dynamic times, 

the gas cloud becomes marginally stable from the viewpoint of the (simplified) Jeans insta- 

bility criterion: the cloud mass is equal to the Jeans mass. Similar physical problems arise in 

the galaxy formation (Larson 1990, Schweizer 1990, Efstathiou 1990). It is important that 

such marginally stable regimes are in fact quasi hydrostatic, as they can evolve significantly 

on a longer time scale. For example, relatively slow radiative cooling of the cloud is always 

accompanied by the gas flow, necessary to maintain the hydrostatics. One such a flow is 

inflow, when cooler and denser clouds (or cloud cores) develop. Similar radiative condensa- 

tion flows have been encountered in many applications (probably, the most famous of them 

are cooling flows in the intra- cluster medium of the galactic clusters, see, e.g., Fabian et al. 

(1991)). If the cooling is slow on the dynamic time scale, this flow proceeds quasihydrostat- 
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ically. At a later stage, a contracting‘ cloud can undergo much faster gravitational collapse. 

However) as we shall show in this paper, there exists another possibility: the cloud remains 

quasihydrostatic, but still develops density collapse. Such a “slow” collapse can provide an 

alternative (nonJeans) scenario for star formation. (Another example of a slow, nonJeans 

condensation involves the ambipolar diffusion in a self-gravitating magnetized cloud, and it 

was suggested by Shu et al. (1987) as a mechanism for the low-mass star formation.) An 

alternative radiative cooling-induced flow in a self-gravitating cloud represents outflow, or 

expansion, and we shall address it as well. To the best of our knowledge, no analytic models 

of “marginally stable” quasihydrostatic radiatively cooling flows of self-gravitating gas clouds 

are available. It is our aim to develop such a model by looking at two simple problems, which 

can be studied analytically. 

In the first problem, we investigate spherically symmetric quasihydrostatic flows in self- 

gravitating gas clouds without magnetic fields. We formulate this problem in Sec. 11. As- 

suming a power-law dependence of the radiative loss function on the temperature, we find 

a one-parameter family of self-similar solutions, describing different flow regimes. Among 

them, there are quasihydrostatic flows developing singularities in a finite time. These are 

collapse and “explosive expansion)” when the gas density goes to infinity or to zero in a finite 

time. In Sec. 111 we concentrate on the dynamics of a radiatively cooling cloud with fixed 

mass. We show that the dynamics crucially depends on the specific heat ratio of the gas y. 

For y > 4/3, the cloud undergoes condensation (either gradual, or collapse-like, depending 

on the exponent of the power-law radiative loss function). For y < 4/3, the cloud always ex- 

pands. We show that these time-dependent problems can formally be reduced to the classical 

Lane-Emden equation and solved analytically in terms of the Lane-Emden functions. 

The second model problem, presented in Sec. IV, addresses a quasihydrostatically con- 

tracting plasma slab, with or without magnetic field. This time we account for the cutoff 

in the radiative loss function at low temperatures and show that the condensation process 
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involves two stages. At the first stage, there is a (nonuniform) “volume” cooling of the slab, 

accompanied by plasma inflow (significant for small and insignificant for large magnetic 

fields). As the denser central regions cool faster, they reach the radiation cutoff temperature 

first. Then a traveling cooling front develops, which propagates from the mid plane outward, 

until all the slab cools down to the cutoff temperature, plasma flow terminates, and true 

hydrostatic equilibrium is achieved. Tkansforming to the Lagrangian mass variable, we shall 

be able to solve the problem analytically. Sec. V contains a brief summary and discussion 

of the results. 

11. SPHERICALLY SYMMETRIC HYDROSTATIC FLOWS AND 
SELF-SIMILAR SOLUTIONS 

We start with simple hydrodynamic equations for spherically symmetric self-gravity flows: 

( r ’p)  = 0. a p  1 d - + -- 
dt r2dr 

dm 
dr - = 4qn-2 ,  (3) 

where p, p and v are the gas density, pressure and velocity, respectively, m is the mass inside 

radius r ,  G is the gravitational constant, and d /d t  = d/dt  + vd/dr. To close the set, we 

need an equation of state and energy equation. Consider a perfect gas with constant specific 

heats: 

where Rg is the gas constant and pg is the effective molar mass. Neglecting any external 

heating processes, we assume that the (optically thin) gas is cooling by its own radiation, and 

we approximate the radiative loss function L(p, T )  by a power law L = F,p2Tu, where, for a 

selected interval of the temperature T ,  the parameters v and F, are constants. The quadratic 
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dependence of L on the density results from the binary character of radiation collisions, while 

the temperature dependence is determined by many types of radiation collisions (see, e.g. 

Spitzer 1978, Kaplan and Pikel'ner 1979). Note, that the index u can be both positive, and 

negative. 

The energy equation takes the following form: 

1 dp y 1 8  -- + - p - - (.".> + F,~~T, = 0. y - 1  dt 7 - 1  7-28?. (5) 

We shall be interested in flows with a negligible inertia. This implies, in particular, that 

the characteristic time scale of the flow (determined by the radiative cooling) is much longer 

than the dynamical time scale. Neglecting the inertial term in the left-hand side of Eq. (2) 

(the corresponding criteria will be checked a posteriori), we arrive at the approximate quasi- 

hydrostatic relation 

which replaces the complete Euler equation (2). [A different quasihydrostatic flow was con- 

sidered by Shu (1983) in the context of ambipolar diffusion in a magnetized self-gravitating 

plasma slab.] 

Let us introduce the characteristic time, length and mass scales of the problem, 

and rescale the independent and dependent variables: 

Note, that the characteristic length I J  and mass MJ represent characteristic (initial) Jeans 

length and mass of the problem, while TO is the characteristic radiative cooling time. In the 

scaled variables, the continuity equation (1) does not change, while the rest of equations can 

be rewritten as 
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-+v-++--(r2v)+p dm d p  p d 2-Y p Y - -0, 
dt dr f2 dr 

where we have omitted the tildes. 

It can be easily checked that Eqs. (1) and (7)-(9) admit a one-parmeter family of self- 

similar solutions: 

where the similarity variable is p = ./(to - t)“, t < to, and indices ui are the following: 

2 4 1  - u)  - 1 2 4 2  - u) - 2 4 2  + u) - 1 
u1 = , u 2 = 0 - 1 ,  u3= , V4 = 

U U U 

The form of the self-similar substitution (10) assumes that the flow develops a singularity in 

a finite time to. We shall call such flows singular. Alternatively, the same equations admit 

nonsingular self-similar substitution, which is obtained if we replace to - t by t - t o  and take 

t > t o  in Ea. (10) and in the similarity variable p. The corresponding self-similar solution 

for the temperature is given by the ratio of the solutions for the pressure and density. 

As it stands, the self-similarity index 0 is an arbitraxy parameter, as the governing 

equations alone are not sufficient to select it. Therefore, some additional information, such 

as an initial or boundary condition or conservation law (Barenblatt, 1979), should be invoked 

to select a (see below). 

In the similarity variable, Eqs. (1) and (7)-(9) become a set of ordinary differential 

equations: 

(p2RV) = 0, d R  u d f [1+ 2 4  1 - u)] R f uap- + - - 
d f i  P2 db 

1 d  - - (M)  = R, 
P2 dP 
d P  RM - + t = o ,  
dP 
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(15) 
[2 - 2 4 2  - d 

P + ( fap + V )  + 2 P - (p2V)  + R2-”P” = 0, 
U dP P2 dP 

f 

where the upper and lower signs stand for the singular and nonsingular flows, respectively. 

Eq. (15) is formally inapplicable in the case of v = 0 (the radiative loss function independent 

of the temperature). However, a separate analysis shows that this case is in fact describable 

by the general formulae, obtained below, therefore we shall not rule out this case. 

Using l3q. (13), we can immediately integrate Q. (12) to obtain 

a(v + 2)  - 1 M = const, 
U 

p2RV f ap3R F 

with the same sign rule as before. The constant should be taken zero, if we require a well- 

behaved density (see below) and zero velocity at the cloud center p = 0. 

Further analysis requires selection of the parameter cr. One can think about two alterna- 

tive additional constraints, which would select it. The first is a constant, prescribed value of 

the gas pressure at infinity, while the second is mass conservation of the cloud. The first case 

corresponds to the cloud core being surrounded by a very large amount of “passive” ambient 

gas, which dictates the constant external pressure. Obviously, in this case, the mass of the 

core is not preserved, as inflow/outflow of the gas is allowed. The second case corresponds 

to the cooling of an isolated massive cloud, confined only by its self-gravity. 

In the case of a constant external pressure, p ( r  -+ 00) = p ,  = const, we must require 

v3 = 0, which gives Q = (2 - v)-’. Then, the remaining vi-indices are immediately selected: 

VI = (U - 2)-’, ~2 (V - 1)/(2 - U )  and ~4 = 2(2 - u)-’. 

Alternatively, the constraint of a constant total mass can be written as 

where M, is the cloud mass, expressed in the units of the initial Jeans mass MJ.  Eq. (17) 

immediately yields a = (2 + v)”’. In this case the vi-indices are v1 = -3(v + 2 ) - l ,  v2 = 
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-(u + l)/(u + 2) ,  u3 = -4(u + 2)-l, and u4 = 0. The same indices are obtained also for the 

mass-conserving nonsingular flows. 

111. CLOUD WITH A CONSTANT MASS 

Once u is selected, one should solve the set of three ordinary differential equations (13)- 

(15) and the integral (16). In the following we shall concentrate on the constant mass case, 

as we found this case to be integrable analytically. Before we solve these equations, let us 

give a preliminary classification of possible flow regimes. We have already assumed that the 

density at the center is finite (until the time moment of singularity, if any). This implies 

that the similarity function R(p)  must be finite at p = 0. At large p, the function R must 

go to zero (faster than p-3, as we require normalization, see Eq. (17)). Consider the singular 

solutions with the selected vi. The form of solutions with u > -2 (see Eq. (10)) describes 

collapse: the gas density goes to infinity at a finite time to, while the cloud shrinks into the 

center r = 0. For u < -2 Eq. (10) describes “explosive expansion”: the density goes to zero 

everywhere at a finite time to .  On the contrary, for the nonsingular mass-preserving flows 

we can have expansion at u > -2, and condensation at u < -2, but no singularities develop 

in a finite time. 

As we see later, not all of these solutions actually exist. However, we can already notice 

that the character of the flow behavior can significantly depend on the form of the radiative 

loss function (that is, on the dominating mechanism of radiative cooling). 

Putting 0 = (2 + u)-’ in the integral (16), we immediately solve it for V ( p ) :  

with the same sign rule as before. Returning to Eqs. (10) and (ll),  we obtain the full solution 

for the gas velocity: 
m 

v(r,t) = 
I 

(2 + v>(t - to)  * 
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We see again that in the case of u < -2 there is a gas inflow from the periphery towards the 

center (for the singular flows), and outflow from the center (for the nonsingular flows), and 

vice versa for u < -2. 

Substituting Q. (18) in Eq. (15), we arrive at the following algebraic relation between 

the similarity functions of the pressure and density: 
1 

[ R ( p ) ] z  

(the same sign rule). Equation (20) reminds the usual gas polytrope. However, this equation 

holds only for the similarity functions P and R. Going back to Eqs. (4) and (10) with 

= (2 + u)-l ,  we see that the full pressure p and density p of the gas are in fact not related 

by any polytrope. 

The right-hand side of the relation (20) is not always well-defined. For the singular flows, 

it is well-defined either for y > 4/3 and u > -2 (collapse), or for y < 4/3 and u < -2 

(explosive expansion). For the nonsingular flows, it is well-defined either for y < 4/3 and 

u > -2 (gradual condensation), or for y > 4/3 and u < -2 (gradual expansion). Also, 

Eq. (20) is not defined for u = 1. Going back to Eq. (15) and putting 0 = (2 + u)-l = 1/3, 

we would arrive at either a nonphysical, or a trivial solution. Similarly, we have only a trivial 

solution in the special case of y = 4/3. The case of u = 2 Eq. (20) must be also ruled out, as 

it predicts a constant pressure, which, in view of Eq. (14), implies a zero density. Therefore, 

we arrive at the following list of “bad,’ values of parameters: u = 1 and 2, and y = 4/3. 

Substituting.Eq. (20) into Eqs. (13) and (14)) we arrive at a single, second-order differ- 

ential equation for the density: 
1 - 

= -R(p) ,  where cu = (-) 2 -  u [ * ( 2 + u )  

1 - u  3 y - 4  ] 
(the same sign rule). Introduce a new independent variable, 

9 



where n = 1 - u. Then Eq. (21) becomes 

For n > -1 (that is, u < 2), this equation represents the celebrated La .Emden equation of 

index n (Chandrasekhar, 1939), while for n < -1 (that is, u > 2) we have an “anomalous” 

version of that equation. The Lane-Emden equation appears in the simplest formal model 

of stellar structure (reproduced in almost every textbook on stellar astrophysics), which 

considers equilibrium of a polytropic self-gravitating gas cloud. In particular, polytropic 

relations arise, if one adopts a nonrelativistic or ultra-relativistic completely degenerate 

electron gas as a star material (Landau and Lifshitz 1987; Shu 1992). The “normal” Lane- 

Emden equation (the minus sign at the right hand side of (24)) has been extensively studied 

and tabulated (Chandrasekhar, 1939). In our case, Q. (24) arises in the problem of a 

time-dependent self-similar flow. 

We have to solve Eq. (241 subject to two constraints. The first is the usual boundary 

condition 
d 8  - (t = 0) = 0, 
ds 

that immediately follows from the assumed boundedness of the gas density at the center. 

This condition defines a one-parametric family of the so called “E-solutions” to the Lane- 

Emden equation (Chandrasekhar, 1939). The admissible self-similar flows , that we are 

looking for, must belong to this family. The second constraint is the already assumed mass 

conservation, which gives a normalization condition, 
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where 
1 1 

f ( 2 + v )  - 
f ( 3 - n )  an [ 3 7 - 4 1  * 

a = I n + 1  11/2 [ 37-4  ] =I (2 - v) 

In general, a normalization condition is much less convenient for a nonlinear equation, than, 

say, an additional boundary condition at < = 0. (In the special case n = 1, that is v = 0, 

the Lane-Emden equation becomes linear and its solution elementary, see below.) However, 

we can employ the well-known fact that the Lane-Emden equation remains invariant under 

a homology transformation. Indeed, if en(t) is a solution of the Lane-Emden equation 

for a fixed n # 1, and a is an arbitrary constant, then u ~ / ( ” - ~ ) ~ ~ ( u S )  is also a solution. 

This invariance enables us to find the solution, subject to the boundary condition (25), and 

another boundary condition, say 6(s = 0) = 1, and then rescale it, using the normalization 

constraint (26). Specifically, we do the following. We find the solution to the Cauchy problem 

with 0(< = 0) = 1 and (de/@)(< = 0) = 0 (let us call this solution en(<; 1)). According to 

the homology theorem, the function a2/(”-’)en(e; 1) is also a solution, where a is arbitrary 

constant. Using Eq. (26), we determine this constant: 

where 

Therefore, for any admissible n (correspondingly, for any admissible v), we can express the 

solution of our problem in terms of the Lane-Emden functions, satisfymg the “standard” 

boundary conditions 0 = 1 and d 0 / d <  = 0 at < = 0. 

It is well known that the “normal” Lane-Emden equation has E-solutions, normalizable 

according to Ea. (26), only for 0 5 n 5 5 (Chandrasekhar, 1939), that is -4 5 v 5 1. 

E-solutions with -1 < n < 0 (that is, 1 < v < 2) have received much less attention, because 

in the equilibrium problem of they correspond to an “exotic’y polytrope p - pk with IC < 1. 

They are unacceptable in our problem too, because the gas density would go to infinity at 
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t + 00. Findly, the “anomalous” Lane-Emden equation with n < -1 (that is, u > 2) also 

has E-solutions, but we checked that they must be ruled out as nonnormalizable. 

Let us summaze our results on the possible character of the spherically symmetric 

radiatively cooling flows. If the specific heat ratio of the gas y > 4/3, the mass-preserving 

self-similar flow is possible for -4 5 u < 1, except for u = -2. This flows represents an 

idow (condensation). For -4 _< u < -2, the condensation is gradual. For -2 < u e 1 the 

flow develops singularity (collapse): the gas density goes to infinity in a finite time. 

If y < 4/3, the mass-preserving self-similar flow are possible for the same values of 

u. However, the character of the flow is now entirely different. Indeed, this flows always 

represents an outflow (expansion). When -2 < u < 1, the expansion is gradual. When 

-4 5 u < -2, the flow develops singularity (explosive expansion), when the gas density goes 

to zero in a finite time. Therefore, radiative cooling is unable to compress a constant mass 

cloud quasihydrostatically, if y < 4/3 (at least, in the regime of a self-similar flow). 

The “normal” Lane-Emden equation has well-known E-type solutions in elementary func- 

tions for n = 0 , l  and 5 (Chandrasekhar, 1939). Among these, only n = 1 (that is, u = 0) 

and n = 5 (that is, u = -4) are permitted in our problem. In the case of n = 5 we have 

This solution is nonlocalized (extends to infinity), but normalizable. For n < 5 (that is, in 

all other cases) the solutions are localized, that is defined on a finite interval 0 < E < t-, 
and vanish at 5 = &-. &,ax increases with n, but remains finite for n < 5. This means 

that, at every time moment, the cloud radius r, is uniquely determined, and it changes with 

time like 
r, = a(t0 - t ) 1 ’ ( 3 - 4 t m x  = CY(h - t )  l l ( v+2 ) tmx 

for the singular flows, and according to the same expression, but with t o  - t replaced by t - t o  

for the nonsingular flows. For n = 5 the cloud radius goes to infinity. 
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In the special w e  n = 1, the Lane-Emden equation becomes linear, and its solution 

el(<; 1) is localized on the interval (0, T): 

e,(<; 1) = (sinE)/( if 0 < 5 < T, and 0 otherwise. 

In this case, directly calculating the normalization integral (26), we obtain the normalization 

coefficient a = MC/(7ra3), so that the function a01(5; 1) yields the required solution. 

Figures 1-3 show the spatial profiles (similarity functions) for the density, pressure and 

temperature for different values of the index n, that is for different exponents u of the power- 

like radiative loss function. All the profiles can be easily calculated, once the corresponding 

Lane-Emden function is known. Recall that the velocity profile is linear, see Eq. (18). 

Figure 4 shows an example of the self-similar time evolution of the density for y = 5/3 and 

n = 1.5 (that is, v = -0.5) in the “physical” coordinates r and t. For the chosen parameters, 

this flow develops collapse. The gas density at the center ultimately goes to infinity, and the 

cloud shrinks to the center. 

Now let us discuss the validity of the quasihydrostatic approximation. Technically, one 

arrives at the hydrostatic relation (11) neglecting the inertial term p(dv/dt) in the Euler 

equation (2). Therefore, the necessary criteria for the validity of this approximation represent 

smallness of the terms pdv/& and pvdv/dr, evaluated on the quasihydrostatic solution that 

we have found, compared to any of the two terms entering Eq. (11). Let us first check these 

criteria for the singular flows. The inequality 

au a p  
p- << - at ar 

can be rewritten as 

We assumed that this inequality holds at t = 0. It is seen that if -2 < u < -1/2) the in- 

equality will persist until the time moment of singularity. Otherwise, the inequality becomes 
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weaker with time, and finally is violated. One can check that the second inequality, 

dv a p  
pv- << -, dr dr 

leads to exactly the same criterion -2 < u < -1/2, if we want the quasihydrostatic solution 

to be applicable up to the time moment of singularity. 

For the nonsingular solutions, the corresponding criterion is the opposite: u < -2 or 

u > -1/2 for the “eternal” validity of the quasihydrostatic solution. 

Combining these criteria with the intervals of existence of different types of solutions, we 

can summarize the results in the following way. Start with y > 4/3. We have found that 

the flow develops collapse if -2 < u < 1. If -2 < u < -1/2, the inertial term remains 

small until the time moment of the collapse. In the case of -1/2 < u < 1, the inertial 

term will grow and ultimately become large, so that the character of the flow will change. 

Gradual condensation occurs for -4 5 u < -2. In this case the inertial term will remain 

small “forever.” 

Now let us go to the case of y < 4/3. We have seen that explosive expansion occurs for 

-4 5 u < -2. The aforementioned estimates of the inertial term show that this regime will 

finally cease to exist, and the character of the flow will change. Gradual expansion occurs 

for -2 < u < 1. When -1/2 < u < 1, the flow remains quasihydrostatic “forever.” When 

-2 < u < -1/2, the inertial term grows, and the character of the flow will finally change. 

We clearly see that the character of the flow depends crucially on the details of the 

temperature dependence of the radiative loss function. 

IV. RADIATIVE COOLING OF A MAGNETIZED PLASMA 
SLAB 

If the plasma cloud is magnetized, the radiative cooling flow can be modified significantly. 

In order to solve the corresponding problem analytically, we consider the slab geometry. Let 
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the magnetic field be in the x direction, and all physical quantities be functions of z only. 

Now, the magnetohydrodynamic equations can be written as 

a P  a - + - (p.) = 0, at az 

37 - = -4./rGp, 
82 

bz ( P +  g) - pg = 0, 

a~ a - + -(wB) = 0) at az 

where g is the self-gravity acceleration. We have already assumed that the process is quasi- 

magnetohydrostatic and neglected the inertial term in Eq. (31). The resulting equation 

describes an (approximate) quasistatic balance between the total (thermal + magnetic) 

pressure gradient and the self-gravity force. Also, we have neglected the ambipolar magnetic 

diffusion in the induction equation (32), which is legitimate if the characteristic time of the 

radiative cooling is much shorter than the characteristic ambipolar diffusion time. 

Using the continuity equation (29) and the induction equation (32), we arrive at the 

well-known equation -(-)+$ d B  (w;)=o, 
& P  

(34) 

implying that the magnetic field lines are “frozen” into the plasma, and that during the 

cloud condensation, the field lines get “compressed,” so that the magnetic field increases. 

Equations (29)-(33), supplemented by the perfect gas equation of state (4), represent 

a closed set. Let us transform to the Lagrangian mass coordinate (e.9. Shu, 1992). It is 

defined as 
2 

m = 1 p(z‘,t)dz‘, 
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that is, m is the mass of a column of a unit area and height x .  In the planar problem we are 

interested in, this quantity has the dimension of the surface mass density. Also, introduce 

the specific volume of the plasma, u(m, t )  = p-'(m, t). In the new variables, Eqs. (29)-(33) 

become 
au a' 
dt am 
-=-  

d p+B2 -- 
am(  87r ) - g = o  

a 
at  - (Bu) = 0 (39) 

where L'(u, T )  L(u-l, 7'). The Poisson equation (37) is immediately integrated: 

(the integration constant must be taken zero because of the symmetry of the problem with 

respect to the mid plane). The frozen-in magnetic field can be expressed, in view of Eq. (39), 

as a function of the specific volume and initial conditions: 

B(m, t )  = f(m)u-'(m, t )  , f (m)  = B(m, t = O)u(m, t = 0). (42) 

Using Eqs. (41) and (42), we integrate Eq. (38) and arrive at the following force balance 

relation: 

(43) 
1 
87r 

p + - f2(m)u-2 + 27rGm2 = F ( t ) ,  

where F( t )  is an arbitrary function of time. Let us assume, like in Sec. 111, that the cloud 

mass is preserved, and that B,p and p = u-l vanish at z 4 00. Then we find 

F( t )  = 27rGM2 = const, 
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where M is the total mass (more precisely, the half-sided surface density) of the plasma slab. 

Therefore, the total (thermal + magnetic) plasma pressure is 

1 
87r 

p + - f2(m)ue2 = 27rG(M2 - m2), (44) 

which simply means that the total pressure at any “level” rn is equal to the weight of the 

material “above” (that is, outside) this level. Substituting Eqs. (36) and (44) into Eq. (40), 

we obtain a simple first order partial differential equation for the plasma density: 

f2(rn) + 27ryG(M2 - m2)] (2) = -uL’[u, T(u, m)]. 
7 - 1  (45) 

T(u,rn) in the second argument of the radiative loss function is given by the following 

expression: 

- m2) - - 
8TU 

obtained from the EQs. (4) and (44). Since the Lagrangian coordinate m enters Eq. (45) 

only as a parameter, this equation is essentially an ordinary differential equation. More- 

over, it is separable and can be integrated in quadrature for any prescribed radiative loss 

function. Having found the specific volume u(rn,t), we can easily determine the rest of 

variables. Indeed, the pressure, temperature and magnetic field can be found from algebraic 

relations (44), (4), and (42), respectively. Using Eq. (36), we find the plasma velocity in the 

Lagrangian mass variable: 

Finally, the relationship between Lagrangian and Eulerian coordinates, necessary for a trans- 

formation back to Eulerian coordinates z and t ,  is given by 
m 

z(m, t )  = 1 u(m‘, t)dm’. 

Therefore, we can concentrate on Eq. (45). Consider the simplest example, when the radia- 

tive loss function is zero at T < 7’1 and independent of the temperature for T > Tl: 

FO L(u,T) = +(T - TI), 
U (47) 
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where 6(w) is the Heaviside step-function. We can say that the simple function (47) is 

an alternative to the power law used in the previous section, as it takes into account the 

radiation cutoff, but ignores any “smooth” temperature dependence. [Stress again that 

Eq. (45) admits, in principle, analytical solution for any L’(u, T) . ]  Let the initial temperature 

of the cloud be constant and equal to TO > TI.  ?f-ansfonn to the scaled time r = t / t o  and 

Lagrangian coordinate C = m / M M ,  and introduce scaled variables = T/To, 6 = U / Q ,  5 = 

W / V O  and fi = B/Bo, where wo = M/(poto) and 

YTORg 
(Y - 1)PgPcPoFo - to= 

Also, define f =  f/fo,  where fo = Bow, and introduce two dimensionless parameters 

Parameters ,& and / 3 ~  represent the ratio of the thermal and magnetic pressure, respectively, 

to the total (thermal + magnetic) pressure. The magnetic field can be neglected (at least, 

at the initial stage of the condensation), if P = << 1. In the scaled variables, Eq. (45) 

becomes 

where we have omitted tildes. The initial condition for the specific volume is uniquely 

determined by the assumed constant temperature at r = 0: 

Integrating Eq. (48), we obtain the following implicit expression for the time evolution of 

the specific density : 

At fixed C, this relation holds until the temperature drops to the cutoff value TI (that is, to 

the value Tl/TO in the scaled variables). After that moment, the solution does not change 
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in time: 

Using Eq. (50) and (44) and equation of state, we can easily find the corresponding temper- 

ature. 

The solution becomes especially simple, if we can neglect the magnetic field. In this case, 

Correspondingly, the temperature, density and velocity are the following: 

v(C,7)= (-y21n 27 [( &$ 27 - 27 y 2 c +  ( g - 2 7 c 2 + 1  27 )"'I . (54) 

Equations (51)-(54) describe quasihydrostatic condensation (contraction) of the radiatively 

cooling plasma. These equations are valid on the whole interval 0 < < 1 up to the 

time moment, when the temperature drops to the cutoff temperature T = TI (that is, to 

the temperature Tl/To in the scaled variables). For the chosen initial condition, the cutoff 

temperature TI is reached first at the mid plane, so that further cooling and condensation 

there are arrested, while the flow velocity becomes zero. At the next time moment, 2'1 is 

reached at the Adjacent planes, etc. Therefore, a traveling cooling front develops, starting 

from the mid plane and moving outwards. From this time on, Eqs. (51)-(53) describe the 

pre-front solutions, valid for 151 > Cf(7) .  The pre-front gas velocity is the following: 
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The position Cf(r) and speed vfL of the cooling front in the Lagrangian coordinate are the 

following: 

where rf = (1/2)@ (1 - T;/T$) is the (scaled) time, when the temperature at the mid plane 

first reaches the cutoff value TI (that is, Tl/TO in the scaled variables). One can see that the 

cooling front is decelerating with time (its speed is formally infinitely large at r = rf and 

falls like r-2 for r >> r f ) .  The post-front density, temperature and velocity are the following: 

Tl T(<, 7) = - = const, 
TO v(C, r) = 0, I<I < PGTl 

To(l - 52)’ u(57r)  = 

Behind the front, where the temperature is constant, we can easily transform back to the 

Eulerian coordinate. We integrate equation (46) and obtain 

Now we express the scaled Lagrangian coordinate C through the Eulerian coordinate z,  

and rewrite the density profile in the dimensional variables as 

This post-front solution in the Eulerian coordinate represents, of course, the classical solution 

for the isothermal self-gravitating gas slab in equilibrium (Spitzer 1942). Now we can easily 

calculate the position zf ( t )  and speed v f ~ ( t )  of the cooling front in the Eulerian coordinate: 

so that the front speed goes down like r-3 at large times. 
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Figures 5-7 show the time evolution of the density, temperature and velocity profiles in 

the Lagrangian coordinate. 

If the magnetic field is significant, the solution (see Eqs. (49) and (50)) looks different. 

The condensation time becomes longer, and the condensation process is hindered because of 

the magnetic pressure buildup. An example of the density dynamics in this case is shown in 

Figures 8 and 9 for ,OB = 0.1 and 0.5, respectively. In this example, the initial condition for 

the plasma density corresponds to a finite-width plasma slab in the Eulerian coordinates. One 

can see that the larger the magnetic field, the less pronounced is the plasma condensation. 

V. DISCUSSION AND CONCLUSIONS 

The main aim of this work was to illustrate the general principle of marginal stability in 

the dynamics of self-gravitating gas clouds, relevant to the problem of star formation. We no- 

ticed that “fast” hydrodynamic or magnetohydrodynamic instabilities (like Jeans instability 

and Parker instability), or any other loss of hydrostatic equilibrium often resolve themselves, 

after several dynamic times, into marginally stable, quasihydrostatic configurations. These 

configurations can then evolve significantly on a longer time scale. We have solved analyti- 

cally two simple model problems, describing “marginally stable” quasihydrostatic radiatively 

cooling flows of constant-mass self-gravitating clouds. 

The first problem dealt with spherically-symmetric flows. Assuming a power-law depen- 

dence of the radiative loss function on the temperature with the power v (which, of course, 

is quite a restrictive assumption, if one uses it for a wide temperature range), we have found 

a self-similar solution to the problem. We have seen that, depending on the specific heat 

ratio of the gas and on the exponent of the temperature dependence of the radiative loss 

function, entirely different cooling flow regimes are possible. 

For y > 4/3 and -4 5 u < 1 (u # -2) the constant mass-cloud undergoes contraction. 
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This contraction is either gradual (for -4 5 u < -2)7 or collapse-like (for -2 < u < 1). In 

the latter case, the character of collapse is not changed by the flow inertia if 2 < u < -1/2. 

For y < 4/3, the constant-mass cloud is shown to expand. The expansion proceeds 

gradually for -2 < u < 1. If -1/2 < u < 1, the flow inertia remains insignificant up to 

the end of the expansion. For -4 5 u < -2 the quasihydrostatic model predicts explosive 

expansion, when the density goes to zero in a finite time. However, we have found that the 

flow inertia grows with time in this case, and can finally change the character of the flow. 

Therefore, this simple model gives very definite predictions of the character of the flow, 

depending on y and u. Interesting enough, it does not permit any self-similar solution for 

u > 1. It means that the character of the flow in the case of u > 1 must be very different. We 

can speculate that it is the constant external pressure regime (or, more generally, any regime, 

violating mass conservation) that will set it in this case. In a constant-mass cloud, this would 

mean development of an isolated core, which could exchange mass with the rest of the cloud, 

and where a quasihydrostatic self-similar flow with different self-similarity indices would 

be possible. Another unresolved issue concerns the dynamics of the same system under 

a realistic (nonpower-like) dependence of the radiative loss function on the temperature. 

Obviously, the simplicity of self-similarity will be lost, and the governing equations (1) and 

(7)-(9) will require numerical solution. Still, our self-similar solutions will be helpful both in 

search for “traces” of similarity in the numerical solution (“intermediate asymptotics,” see 

Barenblatt 1979), and in checking the numerical code in a wide range of parameters. 

The second problem dealt with a quasihydrostatic self-gravitating plasma slab, either 

magnetized or not. We considered radiative cooling of the slab, accompanied by the plasma 

i d o w  and contraction. Employing Lagrangian mass coordinate, we have been able to solve 

the problem analytically. We accounted for the low-temperature “cutoff’ in the radiative 

loss function. This feature manifests itself in the existence of two distinct stages in the 

slab dynamics. At the first stage, there is a (nonuniform) ( c ~ ~ l ~ e J 7  cooling of the slab, 

22 



accompanied by plasma inflow and condensation (significant for small and insignificant for 

large magnetic fields). As the denser central regions cool faster, they reach the radiation 

cutoff temperature first. Then the second stage starts, when a traveling cooling front develops 

at the center and propagates outward. The process proceeds until all the slab cools down to 

the cutoff temperature, plasma flow terminates, and true hydrostatic equilibrium, described 

by Spitzer (1942) , is achieved. 

Considering the second problem, we disregarded the ambipolar diffusion. This is justified, 

if the characteristic cooling time is less than the characteristic time of the ambipolar diffusion 

(Shu 1983, 1992). If this criterion is violated, one should include the ambipolar diffusion 

term in the induction equation, still using the quasihydrostatic approximation. 

In this work, we concentrated on mass-preserving flows. Alternative constraints, like 

constant pressure density at infinity, must be considered separately, as well as a realistic, 

nonpower-like radiative loss function in the first problem. Other possible extensions include 

the question of stability. In the first problem, one should check, whether, starting from some 

“reasonable” initial conditions, the solution will finally approach the self-similar solution 

that we have found. Also, one should perturb the one-dimensional flows in a generic way 

(that is, three-dimensionally in the first problem, and two-dimensionally in the second one) 

and investigate their stability. In general, we should address the three following well-known 

instabilities (modified by the radiative-cooling induced flows). First, in the cases of inflow, 

the quasihydrostatically contracting cloud can ultimately become gravitationally unstable. 

The frequently used simplistic approach to the Jeans instability deals with an inequality 

between the mass of the cloud and Jeans mass, as an instability criterion. The marginal sta- 

bility requires, in this approach, that the self-gravity force be equal to the pressure gradient 

force. Our work shows that this condition can be in fact satisfied all the time, without any 

significant flow acceleration. A proper (three-dimensional) analysis of the Jeans instability 

of a slowly cooling flow should address, as the background state, the quasihydrostatic density 
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and pressure profiles that we have found. Second, possibility of the convective instability 

and its nonlinear consequences should be considered. Third, in the case of a magnetized 

slab, the magnetic buoyancy instability can develop. All these problems seem relevant in 

view of possible applications of the quasihydrostatic theory to the star formation. Now, that 

the basic physical insight into the nature of quasihydrostatic radiatively cooling flows has 

been achieved, these problems are worth investigating. 
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FIGURE CAPTIONS 

FIG. 1. Similarity profiles for the spherically symmetric quasihydrostatic flows. Shown are 

the normalized gas density profiles R(p)  for different values of n = 1 - u. The 

similarity variable p = r / (h  - t)'/(2+Y) for the singular flows, and r / ( t  - 

for the nonsingular flows. 

FIG. 2. Similarity profiles for the spherically symmetric quasihydrostatic flows. Shown are 

the normalized gas pressure profiles P ( p )  for different dues of n = 1 - u. 

FIG. 3. Similarity profiles for the spherically symmetric quasihydrostatic flows. Shown are 

the normalized gas temperature profiles T ( p )  for different values of n = 1 - u. 

FIG. 4. An example of self-similar spherically symmetric quasihydrostatic flow, developing 

collapse. Shown is the time evolution of the gas density profile for y = 5/3 and 

n = 1.5. The initial density at the center po = 10-20g/cm3, the initial temperature 

TO = 104K. For these parameters the characteristic time of the collapse is t o  = 2 - lo6 
years. 

FIG. 5. Time evolution of a planar flow (no magnetic field). Shown are the gas density 

profiles p(C, t )  in the scaled Lagrangian mass coordinate C at different time moments 

for / 3 ~  = 1 and scaled radiation cutoff temperature 0.1. 

FIG. 6.  Same as in Fig. 5, but shown are the gas temperature profiles T(C, t ) .  

FIG. 7. Same as in Fig. 5, but shown are the gas velocity profiles v(5,t). 

FIG. 8. Planar flow of a magnetized plasma. Shown are the gas density (a) and temperature 

(b )  profiles in the scaled Lagrangian mass coordinate C at different time moments. 
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The scaled radiation cutoff temperature is 0.1, PG = 1, and , f3~ = 0.1. The initial 

magnetic field is equal to unity for ( < 0.94 and zero elsewhere. 

FIG. 9. Same as in Fig. 8, but = 0.5, and the initial magnetic field is equal to unity for 

5 < 0.7 and zero elsewhere. 
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