Comparison of Analytical and Experimental Effectiveness of Four-Row Plate-Fin-Tube Heat Exchangers with Water, R-22, and R-410A

T. D. Chen
J. C. Conklin
V. D. Baxter

to be presented at
ASME Winter Annual Meeting
Anaheim, California
November 15, 1998

Prepared for the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed and operated by
Lockheed Martin Energy Research Corporation
for the
U.S. Department of Energy
under Contract DE-AC05-96OR22464

"This submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes."
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
COMPARISON OF ANALYTICAL AND EXPERIMENTAL EFFECTIVENESS OF
FOUR-ROW PLATE-FIN-TUBE HEAT EXCHANGERS WITH
WATER, R-22 AND R-410A

Tony D. Chen, James C. Conklin and Van D. Baxter

Oak Ridge National Laboratory
MS 6070, Building 3147
Oak Ridge, TN 37831-2008
U. S. A.

ABSTRACT

The analytical solutions of heat exchanger effectiveness for four-row crossflow, cross-counterflow and cross-parallelflow have been derived in the recent study. The main objective of this study is to investigate the effect of heat exchanger flow configuration on thermal performance with refrigerant mixtures. Difference of heat exchanger effectiveness for all flow arrangements relative to an analytical many-row solution has been analyzed. A comparison of four-row cross counterflow heat exchanger effectiveness between analytical solutions and experimental data with water, R-22, and R-410A is presented.

NOMENCLATURE

\(A \) : Heat transfer surface area, (m²)
\(C \) : Capacity rate, (kW/°C)
\(k \) : Quantity defined in Equation (3)
\(\text{LMTD} \) : Log Mean Temperature Difference, (°C)
\(\text{NTU} \) : Number of Transfer Units
\(Q \) : Heat transfer rate, (kW)
\(t \) : Temperature of fluid flow \(R \), (°C)
\(T \) : Temperature of fluid flow \(A \), (°C)
\(U \) : Overall heat transfer coefficient of heat exchanger, (kW/m².°C)
\(x \) : Coordinate in the fluid flow \(A \) direction
\(y \) : Coordinate in the fluid flow \(R \) direction
\(\dot{C}_p \) : Effective specific heat in two-phase region, (kJ/kg.°C)
\(C^* \) : Ratio of minimum capacity rate to maximum capacity rate

Greek Letters
\(\Delta \) : Difference between two temperatures

\(\varepsilon \) : Heat exchanger effectiveness
\(\eta \) : Overall heat exchanger surface effectiveness
\(\theta \) : Dimensionless temperature defined in Equation (2)
\(\tau \) : Dimensionless temperature defined in Equation (2)

Subscripts
0 : Flow condition at the air or refrigerant inlet
1 : State at end of Row 1
2 : State at end of Row 2
3 : State at end of Row 3
4 : State at end of Row 4
\(A \) : Fluid flow \(A \)
\(\text{ana} \) : Analytical solutions
\(\text{cc} \) : Cross counterflow
\(\text{cf} \) : Counterflow
\(\text{cp} \) : Cross parallel flow
\(\text{cs} \) : Crossflow
\(\text{exit} \) : Heat exchanger exit
\(\text{exp} \) : Based on experimental data
\(\text{min} \) : Minimum
\(\text{max} \) : Maximum
\(R \) : Fluid flow \(R \)

INTRODUCTION

The Log Mean Temperature Difference (LMTD) approach to heat exchanger analysis is useful when the inlet and outlet temperatures are known or are easily determined. The LMTD is readily calculated, and heat flow, surface area, or overall heat transfer coefficient may then be determined. When the inlet or exit temperatures are to be determined for a given heat exchanger, the analysis frequently involves an iterative procedure. In these cases the analysis is performed more easily by utilizing a method based on the effectiveness of the heat exchanger in transferring a given amount of heat.
The effectiveness method also offers many advantages for analysis of problems in which a comparison between various types of heat exchangers must be made for selecting the type best suited to accomplish a particular heat transfer objective.

The governing equation for the crossflow heat exchangers with both fluids unmixed was first obtained by Nusselt (1911) and Mason (1955). Nusselt used an infinite series and Mason used the Laplace transform. Baclic (1978) gave an approximate solution for crossflow heat exchangers with two unmixed fluids based on modified Bessel functions of the first kind. Stevens (1956) and Fernandez (1956) contributed substantially to the theory of the multipass cross-counterflow and cross-parallel flow heat exchangers. They derived the temperature distributions for one-, two-, and three-row cross-counterflow and cross-parallel flow heat exchangers with refrigerant-side mixed and air-side unmixed. Nicole (1972) studied the mean temperature difference in crossflow heat exchangers applied to multipass air-cooled fin-and-tube units with a finite number of rows. He listed the temperature distribution for cross-counterflow heat exchangers up to six rows. However, due to some typing errors on the effectiveness formulas, and unavailability of any further publications of his work, results could not be compared. Domingos (1969) presented a general method to calculate the total effectiveness and intermediate temperatures of assemblies of heat exchangers. His equations for predicting the effectiveness of multi-row crossflow heat exchangers were unnecessarily complex for the simpler geometries considered here.

In this work, an extended derivation of heat exchanger effectiveness for four-row configuration based on Stevens (1956), and Stevens et al. (1957) is presented. The temperature distribution at the exit of each row on the refrigerant-side is derived, for crossflow, cross-counterflow and cross-parallel flow heat exchanger configurations. The loss of effectiveness relative to the counterflow has been analyzed for the three heat exchanger configurations.

MATHEMATICAL MODELS

Effectiveness of Four-Row Crossflow Heat Exchangers.

Expanding the Stevens et al. (1957) derivation for one-pass, three-row case, one can write, for Row 4 (as shown in Figure 1):

\[
\theta_4 = k \tau_4 \cdot (1-k) \theta_3
\]

(1)

where, \(\theta\) and \(\tau\) are dimensionless temperatures defined as

\[
\theta = \frac{T - T_o}{t_s - T_o}, \quad \tau = \frac{t - T_o}{t_s - T_o}
\]

(2)

and

\[
k = 1 - e^{-\frac{NTU_A}{C_A}}
\]

(3)

with

\[
NTU_A = \frac{(U\eta A)\eta}{C_A}
\]

(4)

Here, NTU\(_A\) is the Number of Transfer Units, and \(C_A\) is the heat capacity rate (the product of mass flow rate and specific heat) of flow \(A\), \(\eta\) is the surface effectiveness (for finned-tube heat exchangers), defined as \(\eta = Q/(UA \cdot \Delta T_{m})\), where \(Q\) is the total heat exchange rate, \(U\) is the overall heat transfer coefficient, and \(A\) is the total heat transfer area of the heat exchanger.

Since the local energy balance equation can be written as

\[
C_A \cdot \frac{dy}{y} = (\theta_e - \theta_s) - C_R \cdot dx_4
\]

(5)

and \(\theta_s\) (Stevens et al., 1957) can be expressed as

\[
\theta_s = \frac{T_s - T_o}{t_s - T_o}
\]
The analytical solution of this ε_4, designated as ε_{ext}, is shown in Table 1.

Correlations for calculating the approximate effectiveness of crossflow heat exchanger with both fluids

unmixed include:

Hiller and Glicksman (1976),

$$
\varepsilon_{\text{ext}} = \left(1 - 0.047C^* \right) NTU^{0.36C^*},
$$

and Holman (1986),

$$
\varepsilon_{\text{ext}} = 1 - \exp \left(- \frac{1 - \exp \left(- \frac{C^* NTU^{0.78}}{C^* NTU^{0.22}} \right)}{C^* NTU^{0.22}} \right).
$$

Effectiveness of Four-Row Cross-Parallelflow Heat Exchangers.

![Flow configuration of a four-row cross-parallelflow heat exchanger.](image)

Figure 2. Flow configuration of a four-row cross-parallelflow heat exchanger.

The technique used for solving the temperature of fluid R leaving row 4 can be applied to four-row cross-parallelflow (as shown in Figure 2) configurations. The temperature distribution of fluid R leaving row 4 can be obtained as

$$
\tau_4 = \left[1 - \frac{k}{2} \right] e^{-4C^*} \cdot 2k^2 \left(1 - \frac{k}{2} \right) C^* \cdot k \left(1 - \frac{k}{2} \right) e^{-2C^*}
$$

By the definition of heat exchanger effectiveness and τ, one can write the effectiveness of a four-row cross-parallelflow (or called cocrossflow) heat exchanger in the following form,
Table 1. Summary of heat exchanger effectiveness of four-row crossflow, cross-parallelflow, and cross-counterflow heat exchangers.

<table>
<thead>
<tr>
<th>Flow Configuration</th>
<th>Heat Exchanger Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossflow</td>
<td>(\varepsilon _c)</td>
</tr>
<tr>
<td>Cross-parallelflow</td>
<td>(\varepsilon _c)</td>
</tr>
<tr>
<td>Cross-Counterflow</td>
<td>(\varepsilon _c)</td>
</tr>
</tbody>
</table>

where,

\[
\varepsilon _c = \frac{C_R}{C_{min}} \left(1 - \frac{1}{2} k^2 e^{-4kC} \cdot \frac{k(1-k)}{4} \left(e^{3kC} - \frac{k(4-2k)}{8} \right) \right)
\]

Effectiveness of Four-Row Cross-Counterflow Heat Exchangers.

Similar to the crossflow and cross-parallelflow, the temperature of fluid R leaving row 1 for a four-row cross-counterflow (as shown in Figure 3) can be obtained as

\[
\Delta T \left(r \right) = \frac{1}{2} \left(1 - \frac{k}{2} \right) e^{-kC} \cdot k \left(1 - \frac{k}{2} \right) e^{3kC} \cdot \left(1 - \frac{k}{2} \right) e^{4kC}.
\]

Figure 3. Flow configuration of a four-row cross-counterflow heat exchanger.
and, by the definition of effectiveness and τ, we have

$$
effc = \frac{C_i \Delta T_i}{C_{\text{min}} \Delta T_{\text{max}}} = \frac{C_i (\tau_1 - \tau_0)}{C_{\text{min}} (\tau_1 - \tau_0)}
$$

(16)

The heat exchanger effectiveness for the counterflow heat exchanger configuration given by Kays and London (1984) is

$$
effc' = \frac{1 - \exp [- NTU (1 - C')]}{1 - C' \exp [- NTU (1 - C')]} \quad (17)
$$

RESULTS AND DISCUSSION

Four-Row Crossflow Heat Exchangers.

Table 1 shows the comparison of heat exchanger effectiveness of four-row crossflow, cross-parallelflow, and cross-counterflow heat exchangers. Figure 4(a) shows the comparison of heat exchanger effectiveness for a one-pass, four-row unmixed/unmixed calculated from Equation (9) relative to an approximate solution (Baclic, 1978). The comparison of effectiveness for four-row crossflow is about 1.0% for the case of $C_A/C_R=1.0$ for Number of Transfer Units (NTU) of 5.0. The same trend can be seen in Figure 4(b) in the case of $C_A/C_R=0.5$. Notice that Equation (11) for crossflow with both fluids unmixed has maximums 4% and 2% less than that of the solution in the low NTU range for the cases of $C_A/C_R=1.0$ and $C_A/C_R=0.5$, respectively. Figure 5(a) shows the comparison of the heat exchanger effectiveness among Hiller (Equation (10)), Holman (Equation (11)) and Baclie approximate solution (with Bessel function). Figure 5(b) shows the departure of effectiveness relative to the Baclie approximate solution. The effectiveness calculated by Hiller has about 1.0% difference compared to the Baclie approximate many-row solution for values of NTU from 2.0 to 4.0. Holman correlation has a better (less than 1.0%) agreement with the Baclie approximate solution for NTU greater than 1.0. The analytic solution for the heat exchanger effectiveness of crossflow, both fluids unmixed flow arrangement cannot be expressed in closed form (Kays and London, 1984). However, the Baclie approximate solutions are very close to the original work of Mason (1955) for this heat exchanger flow arrangement, according to the current study. Therefore, the Baclie approximate solution will be used as the reference for comparison.

Figure 4(a). Comparison of heat exchanger effectiveness for four-row crossflow heat exchanger relative to approximate many-row solution (Baclic, 1978) for $C_A/C_R=1.0$ case.

Figure 4(b). Comparison of heat exchanger effectiveness for four-row crossflow heat exchanger relative to approximate many-row solution (Baclic, 1978) for $C_A/C_R=0.5$ case.

Four-Row Cross-Parallelflow Heat Exchangers.

Figures 6(a) and 6(b) show the decrease of cross-parallelflow heat exchanger effectiveness relative to counterflow heat exchanger for the cases of $C_A/C_R=1.0$ and $C_A/C_R=0.5$, respectively. Unlike crossflow and cross-counterflow, the effectiveness of cross-parallelflow heat exchanger weakly decreases as the number of row increases for both $C_A/C_R=1.0$ and 0.5 cases. This is
because as the number of rows increase, the cross-parallelflow more approximates parallelflow always has less effectiveness than counterflow or crossflow for the same NTU.

Four-Row Cross-Counterflow Heat Exchangers.

Figures 6(a) and 6(b) also show the decrease of cross-counterflow heat exchanger effectiveness relative to counterflow heat exchanger for the cases of \(C_A/C_R = 1.0 \) and 0.5, respectively. The departure of effectiveness of four-row cross-counterflow to the many-row counterflow is 3% and 1%, in the case of \(C_A/C_R = 1.0 \) and 0.5, respectively. Results indicate that the effectiveness of four-row cross-counterflow heat exchanger is very close to the counterflow heat exchanger configuration over a wide range of capacity ratios \(C_A/C_R \).

Figure 5(a). Comparison of many-row crossflow heat exchanger effectiveness among correlations.

Figure 5(b). Departure of many-row crossflow heat exchanger effectiveness relative to approximate solution (Babic, 1978).

Figure 6(a). Decrease of heat exchanger effectiveness for four-row crossflow, cross-parallelflow and cross-counterflow heat exchangers for \(C_A/C_R = 1.0 \) case.

Figure 6(b). Decrease of heat exchanger effectiveness for four-row crossflow, cross-parallelflow and cross-counterflow heat exchangers for \(C_A/C_R = 0.5 \) case.
Experimental Data of a Four-Row Cross-Counterflow Heat Exchanger.

Table 2 shows the experimental data of a four-row, 15-fpi (fins per inch) fin-and-tube heat exchanger with water, R-22, and R-410A, including capacity rates, measured inlet and outlet temperatures of both fluids, and the effectiveness based on measured temperatures and analytical expression. Air inlet temperature was set to 26.7°C for all tests. For air-water tests, two sets (water inlet temperature at 10°C and 18°C) of experiments have been conducted, and ϵ_{exp} was maintained around 2.32 LWPC. For R-22 and R-410A tests, the air-range (temperature difference between the air inlet and outlet) was set to 12.5°C (22.5°F). Calculation of ϵ_{exp} was based on Table 1, ϵ_{exp} was based on equation (16), and ϵ_{ef} was based on Equation (17).

Figure 7 shows the experimentally determined effectiveness of this four-row inverted-order cross-counterflow heat exchanger with water, R-22 and R-410A. The effective specific heat in the two-phase region, C_p, for refrigerant R-22 and mixture R-410A is defined as $C_p = \Delta h / \Delta T$. The quality of vapor entering the evaporator is about 20%, and the superheat leaving the evaporator is about 3.0 K for all the R-22 and R-410A tests. The cooling capacity of the tests ranges from 1.5 to 10.0 kW (5.12 to 34.13 kBtu/hr), and the average effectiveness of this evaporator is about 0.7 for all tested media, and could be as low as 0.4 when capacity ratio approaches 1.0 with low NTU around 0.5.

Figure 8 shows a comparison of experimental and analytical heat exchanger effectiveness of this four-row, 15-fpi, inverted-order cross-counterflow evaporator. The uncertainty of ϵ_{exp} is 0.01 as calculated by the propagation error method proposed by Kline and McClintock (1953). The differences between them range from -3.3% to +3.0% in the tested capacity range. Thus, the analytical predictions of effectiveness are in excellent agreement with the experimental values.

CONCLUSIONS

The analytical heat exchanger effectiveness for four-row crossflow, cross-parallelflow, and cross-counterflow configurations have been derived in the recent study and compared with existing approximate solutions in the literature. The two approximate solutions of Holman (1986) and Hiller (1976) were within 2% for physically interesting values of NTU greater than 0.5.

The calculated four-row heat exchanger effectiveness for cross-counterflow is very close to the approximate many-row solution, indicating that the four-row cross-counterflow heat exchanger is approximately counterflow.

The experimental and analytical heat exchanger effectiveness of a four-row, 15-fpi, inverted-order cross-counterflow evaporator agreed very well with each other. The difference between them ranges from -3.3% to +3.0% for the tested cooling capacity range of 1.5 kW to 10.0 kW (5.12 to 34.13 kBtu/hr) and over a wide range of capacity flow rate ratios and NTU values from 0.5 to 2.0.
Table 2. Comparison of analytical and experimental effectiveness of a fin-and-tube cross-counterflow heat exchanger with water, R-22 and R-410A.

<table>
<thead>
<tr>
<th>Cₜₐ (kW/°C)</th>
<th>Cₐₐ (kW/°C)</th>
<th>UA (kW/°C)</th>
<th>Tₓₐₐ (°C)</th>
<th>Tₓₑₐ (°C)</th>
<th>tᵣ₁ (°C)</th>
<th>tᵣ₄ (°C)</th>
<th>εₑₑ</th>
<th>εₑₓ</th>
<th>εₓₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.213</td>
<td>2.320</td>
<td>0.336</td>
<td>26.7</td>
<td>13.9</td>
<td>11.5</td>
<td>10.4</td>
<td>0.79</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>0.387</td>
<td>2.332</td>
<td>0.506</td>
<td>26.6</td>
<td>14.9</td>
<td>12.2</td>
<td>10.4</td>
<td>0.72</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>0.545</td>
<td>2.323</td>
<td>0.639</td>
<td>26.5</td>
<td>15.8</td>
<td>12.9</td>
<td>10.6</td>
<td>0.67</td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td>0.807</td>
<td>2.325</td>
<td>0.766</td>
<td>26.9</td>
<td>17.6</td>
<td>13.8</td>
<td>10.7</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>1.061</td>
<td>2.322</td>
<td>0.843</td>
<td>26.6</td>
<td>18.6</td>
<td>14.2</td>
<td>10.5</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>1.296</td>
<td>2.316</td>
<td>0.900</td>
<td>26.6</td>
<td>19.4</td>
<td>14.6</td>
<td>10.6</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1.554</td>
<td>2.329</td>
<td>0.959</td>
<td>26.7</td>
<td>20.3</td>
<td>15.2</td>
<td>10.8</td>
<td>0.40</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1.787</td>
<td>2.326</td>
<td>0.998</td>
<td>26.6</td>
<td>21.2</td>
<td>16.1</td>
<td>10.8</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>0.180</td>
<td>2.317</td>
<td>0.291</td>
<td>27.9</td>
<td>20.4</td>
<td>18.8</td>
<td>18.2</td>
<td>0.78</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>0.532</td>
<td>2.314</td>
<td>0.605</td>
<td>26.7</td>
<td>21.1</td>
<td>19.4</td>
<td>18.2</td>
<td>0.66</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>0.810</td>
<td>2.314</td>
<td>0.775</td>
<td>26.9</td>
<td>21.4</td>
<td>19.3</td>
<td>17.4</td>
<td>0.58</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>1.041</td>
<td>2.313</td>
<td>0.820</td>
<td>26.6</td>
<td>22.5</td>
<td>20.2</td>
<td>18.4</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>1.274</td>
<td>2.315</td>
<td>0.882</td>
<td>26.7</td>
<td>23.0</td>
<td>20.4</td>
<td>18.3</td>
<td>0.44</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1.525</td>
<td>2.317</td>
<td>0.928</td>
<td>26.7</td>
<td>23.3</td>
<td>20.6</td>
<td>18.4</td>
<td>0.41</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>1.777</td>
<td>2.316</td>
<td>0.975</td>
<td>26.9</td>
<td>23.7</td>
<td>20.7</td>
<td>18.3</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>R-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.353</td>
<td>3.265</td>
<td>0.530</td>
<td>26.7</td>
<td>14.2</td>
<td>11.5</td>
<td>10.1</td>
<td>0.75</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>0.388</td>
<td>5.687</td>
<td>0.593</td>
<td>26.7</td>
<td>14.1</td>
<td>11.4</td>
<td>10.6</td>
<td>0.78</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>0.554</td>
<td>34.24</td>
<td>0.717</td>
<td>26.7</td>
<td>14.1</td>
<td>9.6</td>
<td>9.8</td>
<td>0.73</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>0.532</td>
<td>11.20</td>
<td>0.736</td>
<td>26.7</td>
<td>14.1</td>
<td>10.2</td>
<td>9.6</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>0.670</td>
<td>6.522</td>
<td>0.876</td>
<td>26.7</td>
<td>14.1</td>
<td>8.6</td>
<td>9.9</td>
<td>0.70</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>R-410A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.365</td>
<td>1.612</td>
<td>0.569</td>
<td>26.7</td>
<td>14.1</td>
<td>12.7</td>
<td>10.0</td>
<td>0.76</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>0.501</td>
<td>4.754</td>
<td>0.691</td>
<td>26.7</td>
<td>14.0</td>
<td>10.7</td>
<td>9.4</td>
<td>0.74</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>0.638</td>
<td>26.71</td>
<td>0.822</td>
<td>26.6</td>
<td>14.3</td>
<td>9.7</td>
<td>9.4</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>0.791</td>
<td>6.260</td>
<td>0.992</td>
<td>26.7</td>
<td>14.4</td>
<td>10.5</td>
<td>9.0</td>
<td>0.69</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

REFERENCES

