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Abstract 

A reliable and consistent scheme to study phase equilibria in ternary substitu- 

rional a!loys based ori the tight-binding approsimation is presented. With the 

electronic parameters obtained from linear muffin-tin orbital calculations, we 

show that the computed density of states and band structures compare well 

with those obtained from more accurate ab initio calculations. Disordered 
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alloys are studied within the t.ight.-binding coherent-potential approsimation 

formalism estended to multi-component alloys. The energetics of ordered 

systems is obtained through effective pair interactions computed with tlie 

general perturbation method. Finally, partially ordered alloys are studied 

with a novel simplification of the molecular coherent-potential approsimation 

combined with the general perturbation method. 

The formalism is applied to the study of bcc-based ternar? Zr-Ru-Pd 

alloys which are promising candidates for medikal implant device applica- 

tions. Using the enersetics obtained with the aforementioned scheme, we 

apply the  cluster-variation method to study phase equilibria for particular 

pseudo-binary alloys, and show that the results are consistent with the ob- 

served behavior of tlie electronic specific heat coefficient with composition for 

the Zro.5(Ru,Pd)0.5 system. 

G4.G0.Cn, 71.20.Cf, S1.30.B~ 
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I. INTRODUCTION 

Solid solutions with ordered phases ( “interniet.allic compounds”) that exhibit desirable 

mechanical properties such as ducti1it.y and high st.reiigtl.1 are proiiiisiiig candidates for spe- 

cial applications. Possible uses range from the high-teniperat.ure alloys for gas turbines 

to bearing surfaces and meclianical joints. Because niateria.ls designed for optimum perfor- 

mance rarely consist of binary systems, the ability to model higher-order systems is especially 

needed. In order to develop these materials, the fundamental physical issues must be un- 

derstood. Theories capable of predicting the type of ordering, the existence of structural 

transformations, and the phase equilibria are fundamental tools in this endeavor. In the 

last decade, there has been considerable improvement in the calculation of both energies 

of formation of disordered and ordered alloys, and multisite effective interactions based on 

band structure calculations. Such energetic quantities can be used to obtain fairly accurate 

predictions of phase stability, or ground-states, at 2’ = 0 I<. The effective interactions may 

then be used in combination with statistical models for phase diagram determination. 

..- 

-4ny theoretical study of ordering and phase stability in substitutional alloys, and ul- 

timately of their phase diagrams, must begin with reliable and accurate expressions for 

the energy and entropy as functions of alloy composition and temperature. Over the last 

few years it has been possible to combine “first-principles” electronic structure calculations 

for alloy energetics with statistical mechanics-methods for the entropy. These statistical 

mechanics-methods are based on the so-called generalized Ising model within various ap- 

proximations. They range from the simpler Bragg-Williams (BW) approximation1 to the 

more sophisticated cluster-variation method ( CVh4)2 and htonte Carlo simulations3. In these 

models it is assumed that the internal energy can be written as a rapidly conv&gent sum of 

pair and multisite interactions. Several approaches have been developed to provide the link 

between electronic structure calculations and statistical models, among them the embedded- 

cluster method (ECII~)~,  the generalized perturbation method (GPhf)’, the concentration 

wave approach6, the Connolly-Williams method ( C147h4)7, and the direct configurational 
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averaging method (DC-4)'. 

To date, applications of these electronic structure and statistical mechanics methods have 

been mostly confined to binary alloys. Ternary and higher-order alloys: by contrast, remain 

relatively unexplored. The BW method has been used to study ordering in bcc ternary 

with special emphasis on the Heusler s t ru~ture '~- '~ .  and in fcc lattices". In these 

examples, "canonical" EPI's were used to study general trends, or were inferred experimen- 

tally for more quantitative studies. IGkuchi et  ai." studied the fcc Cu-Ag-Au phase diagram 

using the CVhl method in the tetrahedron approximation. Colinet et  n1.l' reported a similar 

study on phase equilibriain bcc Fe-Co-A1 alloys using the irregular tetrahedron. Examples of 

Monte Carlo simulations can be found in a review by Inden and Pisch2O, and Traiber", who 

studied phase equilibria in the bcc Ni-AI-Ti alloys. In all cases, concentration-independent 

interactions estimated from experimental results were used. hlore recently. the DCA method 

has been used to compute interactions to study site substitutions in fcc Ni-A1-X alloys22, 

where X=Co, Cu, Zn, Pd, Si, and effective interactions and formation energies for fcc-based 

Rh-V-Ti, Pd-Rh-V and Ag-Pd-Rh alloys23. 

This work will focus on one particular alloy theory to study multi-component alloys, 

namely the GPM implemented within the tight-binding (TB) approximation. In the GPM, 

a perturbation treatment is applied to a reference medium which is close to any particular 

configuration of the alloy. Hence, intuitively, the appropriate reference medium to use is the 

completely disordered state, as the one described by the coherent-potential approximation 

(CPA: see section IIIA)5*24*25. This TB-CPA-GPh4 scheme combined with the CVhl has 

been successfully applied to binary alloys. For instance, Sluiter et  aZ.26 used this approach 

to study phase equilibria in Ti-Rh and Ti-Ir alloys with only d-orbitals. Sluiter and T u r ~ h i ~ ~  

carried out an investigation of phase equilibria in Ti-V and Ti-Cr alloys. Their study 

accurately reproduces the energetic properties of Ti-V alloys and provides insight in the 

possible metastables phases in the Ti-& system. Colinet and Pasture12* presented a phase 

diagram for Ni-Ti in good agreement with the experimental one (they used the Cluster 

Bethe Lattice Method for the liquid phases). Rubin and Fine12' reported phase diagram 
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calculations for three ternary syst.ems (Ti-Al-hiol Ti--41-Nb and Ti-.41-11-) using the CPA- 

GPM-C1'h.I approach to write the free energy. but all the parameters (disordered energies 

and effective interactions) were obtained by a fitting procedure applied to binary phase 

diagrams. with the assumption that the energetic parameters do not change significantly 

with the ternary addition. This rough approximation led to a tern=)- phase diagram in 

poor agreement with the assessed one. To our knowledge, no study of ternary systems have 

been carried out using the method to the full extent that is now possible. 

\Ye present in this paper a reliable and consistent formalism, based on the TB approxi- 

mation, to study the electronic structure and phase stability of multi-component transition- 

metal alloys. We show how this simple scheme can be used to guide the design of materials 

with specific electronic properties. First, we characterize the TB parameters computed with 

the linear muffin-tin orbital method, with direct application to the Zr-Ru-Pd alloy. The 

CPA and the GPM which are used to study disordered alloys and ordering phenomena, re- 

spectively, are theE briefly presented. We then describe an approximation to study partially 

ordered systems. Results for the ternary Zr-Ru-Pd and its binary subsystems will illustrate 

the methodology. 

.. 

The energetic parameters obtained with this methodology will be used in combination 

with the CVM to study phase equilibria in pseudo-binary alloys. The formalism will be 

illustrated with the Zro.s(Ru.Pd)o.5 alloy. From these results, we propose an explanation for 

the observed behavior of the electronic specific heat coefficient y. 

As we mentioned before, we will illustrate the formalism presented in this paper with the 

ternary Zr-Ru-Pd alloy. This system is one of a family of alloys under study with possible 

applications as medical implant devices. For example there are alread? surgical implants 

which are made in part of Co-Cr-Mo alloys. The Zr-Ru-Pd alloys have a.ttracted interest 

because of potentially good biocompatibility. In addition, preliminary experimental 1vir3rk30i31 

has shown that Zro.s(Ru,Pd)o.s alloys are extremely tough and wear resistant, properties 

which are highly desirable for implant device applications. The Zr-Pd alloy crystallizes at 

intermediate compositions with a &brass (or B2-type) structure but undergoes a martensitic 
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t.ransformation at 620°C; this biliary alloy lacks ductility at room temperature, The addition 

of Ru  seems to stabilize the high-temperature B2 phase at room temperature and significant 

ductility has been recently reported in these ternary alloys30. The equiatomic Ru-Zr a.lloy 

also forms a B2-type structure which is stable up to its melting point. Ruthenium seems 

likely to substitute for palladium-atoms in the ternary B2 alloy. 

From the experimental work reported OR the pseudo-binary Zro.s(Ru:Pd)o.5 alloy3', a 

significant extension of the B2 binary phase was found up to about 70 at.% Pd before a 

niartensit.ic transformation takes place, with a sharp minimum of hardness just prior to the 

onset of the transformation at  room temperature. The structure of the martensite was found 

to be of BI or B33-type, and experimental observations suggest a structural relationship 

between matrix and martensite which involves two kinds of shuffle-type displacive operations 

that take the B2 structure into B19 and finally into B3331. 

The rest of this paper is organized as follows. In section 11, we describe in detail the 

scaling of the tight-binding parameters obtained from the ab initio calculations. To assess 

the reliability of these parameters we compare the density of states and the band structures 

which are obtained with them, to the ones given by the first-principles computations. Section 

I11 is concerned with a brief review of the formalism of the electronic structure methods, 

CPA and GPh4, including their extension to study partially ordered alloys. In section IV we 

present and discuss the results for the binary Zr-Ru, Ru-Pd, and Zr-Pd alloys, and for the 

ternary Zr-Ru-Pd alloys. In section V, the energetic parameters are used in combination 

with the CVM to study phase equilibria in pseudo-binary alloys. Finally, from these results, 

we propose in section VI an explanation for the observed variation of the electronic specific 

heat coefficient with composition €or the Zro.5(Ru,Pd)o.s pseudo-binary alloy, before adding 

some concluding remarks. 
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11. THE TIGHT BINDING PARAMETERS 

A. Background 

Until the seminal paper by Slater and Koster3', transfer integrals were computed analyt- 

ically involving cumbersome integrals that included the atomic orbitals and p ~ t e n t i a l s ~ ~ v ~ ~ .  

Slater and Koster derived a method where the TB parameters were to be regarded as ad- 

justable parameters determined by a fit to calculated energy-eigenvalues at various points 

in the Brillouin zone. These energy \dues are now computed with more a.ccurate density- 

functional methods like the augmented plane-wave method or APW (see for example3'). 

Other approaches, mostly used in conjunction with realistic computer simulations, rely 

on alternative semi-empirical TB-models. These models include a number of parameters 

which are obtained by fitting to some experimental values such as cohesive energies, lattice 

constants and independent elastic constants. These models range from the simple sechd-  

moment approximation to more sophisticated multi-parameter exponential and polynomial 

f u n c t i o n a l ~ ~ - ~ ~ .  

-. - 

The approach we propose for obtaining the TB parameters uses the TB formulation of 

the LMTO Hamiltonizn, in the atomic sphere approximation (ASA), developed by Anderson 

et aL4'. The ab initio nature of the TB-LMTO approach makes empirical fitting unnecessary 

for obtaining the Slater-Koster (SI<) or fundamental transfer integrals. Also, unlike the fitted 

SI< parameters, the TB-LMTO SI< parameters a.re defined with reference to the Coulomb 

potential so that no arbitrary rigid shift of the on-site energies is needed when alloys are 

considered. 

..a 

B. Parameters for metals and alloys 

?Ve have mentioned that the hopping integrals can be written in terms of SI< parameters 

which depend on the occupation of sites n and m and the distance joining the two sites. 

This relation can be written as32 



(2.1) 

where u1ij(rnSm) h are the SI< parameters, the coefficients ckm depend on the direction cosines of 

vect.ors Rn.m and i(n) and j ( m )  show the esplicit dependence on the species at sites 12 and m 

(i, j = A ,  B or Cin a ternary alloy). The superscript h runs over the ten possible fundamental 

SI< parameters since spd-electrons are considered, Le., h = ssa, p p a ,  . . . , ddo, ddsr,. . . , etc. 

It is well known that the SIC para.nieters depend on interatomic distance. Our approach 

is to fit exponential curves to the SIC parameters obtained from TB-LAtTO calculations for 

the pure elements at different volumes and lattice structures (bcc and fcc). It has been 

shown that atomic environment has little influence on the potential parameters4'. Figure 1 

shows the fit in the case of Zr. The fitting curves are of the form 

where d is the interatomic distance in a.u., d: and Pt  are the fitting parameters, and i 

refers to the species (Zr in this case). Similar results were obta.ined for Ru axd Pd. In 

Fig. 1, the interatomic distance was normalized to a reference distance, do, in this case, the 

equilibrium nearest-neighbor distance in the ordered B2 RuZr structure as computed with 

the LMTO-ASA method: d, = (JS/'rZ) ciiYzr = 5.3503 a.u.. Table I gkes the parameters 

computed for the three 

The SI< parameters 

elements. 

for a particular alloy were approximated according to 

where c; is the concentration of species i in the alloy. (We have changed the notation of SI< 

parameters to p as it is customary.) This equation is arrived at when averaging the hopping 

integrals for all ij bonds in random alloys, assuming that the hopping between unlike atoms is 

given by the geometric mean of the appropriate integrals for the pure elements, /3& = dpm 
(the so-called Shiba appro~imat ion~~) .  The equilibrium interatomic distance for the alloy 

case is obtained from the concentration-average of the atomic volumes for the pure species 

(also known as Zen's law): 



This is a reasonable approximation for the present case. Indeed, the equilibrium atomic 

volume for the (ordered) ZrRu alloy, t.aken as an esaniple, computed with the LMTO-ASA 

met.hod is about 2% lower than the ideal value given by Eq. 2.4. In the present case the 

equilibrium lattice constants for bcc-based ZrJ Ru, and Pd take the d u e s  G.712G7, 5.801941, 

and 5.Si0511 a.u., respectively, as obtained from LhlTO-ASA. These d u e s  will be used to 

define the lattice constant of alloys based on these three elements at any composition. 

C. On-site energies 

Usually the variation of the on-site energies with atomic volume is ignored in electronic 

structure calculations. Our LMTO calculations clearly showed a significant variation that 

should be taken into account. In this work, the on-site energies were extracted from a 

polynomial fit to first-principles data at different atomic volumes. X common energy shift 

to all on-site energies associated with the four orbital symmetries, and for each species, was 

added to obtain local neutrality for the bcc-based ZrPd and ZrRu disordered alloys using 

the CPA approximation (described in the next section). Thus, the on-site energies are given 

by 

where the index 0 denotes the on-site energy associated with X = s , p ,  t2g, eg for the pure 

element i: and Si is the energy-shift. In our particular case, the shifts used were dz, = 0.0 

Ry, 6 ~ "  = 0.3130 Ry and 6pd = 0 3 7 3  Ry. When using these values in the computation of 

the RuPd random alloy, the resulted charge transfer is about 0.1 electron/atom. Figure 2 

shows the fitting for the on-site energies corresponding to Zr. Similar results were obtained 

for Ru and Pd. We used a second-order polynomial of the form 

9 



where a is the lattice constant expressed in atomic units, and calculated from Eq. 2.4, with 

fi = a 3 / 2 .  for bcc-based alloys. Table I1 gives the polynomial coefficients for the three 

elenien ts, 

D. Discussion on the tight-binding approximation 

Before embarking on the study of the chemically disordered alloys it is important to 

analyze the approximation we have introduced and how the results would differ from the 

ones obtained from the more accurate first-principles LMTO calcuhtions. To illustrate this 

point we will compare the band structures and DOS's for an ordered B.1 ZrRu alloy. Our 

"exact" results correspond to the LMTO calculation of the B2-type structure. We will call 

it case (a). Our approxima.tion, case (b), uses the tight-binding parameters for the pure 

elements . .  using the TB-LMTO scheme, and leads to the definition of an average alloy with 

the SI< parameters given by Eq. 3.3 with no off-diagonal disorder. 
,: -- 

Figures 3 shows the band structure for both cases. Note that the main features of the 

band structure are well reprcduced by the approsimate scheme, especially below the Fermi 

energy. Figure 4 compares the total DOS for the B2 ZrRu alloy computed with the LMTO 

scheme with no off-diagonal disorder to the DOS that corresponds to case (b) in Fig. 3. 

In the latter case, the detailed features of the DOS, which is computed with the recursion 

r n e t h ~ d ~ ~ . ~ ~  and 21 levels of continued fraction, are well reproduced. This shows that an 

accurate and consistent description of the electronic structure (in terms of band structure 

and DOS) can be achieved within the TB framework. Based on these results we will use 

this simpler approximation in the rest of this work. 

We have described the tight-binding approximation placing special emphasis on the TB 

parameters. The parameters are extracted form LhfTO-ASA calculations and scaled with a 

novel scheme. We found a good agreement between the TB and the a6 initio results of band 

structures and density of sates. The following sections deal with the energetics of binary 

and ternary alloys within this TB framework. 



111. ELECTRONIC STRUCTURE METHODS 

The total energy of an alloy characterized by some ordered structure can be decomposed 

as follows: 

where Ei and A" are the energy and the number of valence electrons per atom of the pure 

element i, respectively. 1Tre) is the energy of the totally disordered state, 

also known as the energy of mixing, and A E o r d ( R e )  is the ordering energy 

Notice that ne is the average number of electrons, ne = C s  A;: and that the energy of 

each element is computed with its own Fermi energy E& (associated with N , ) .  Finally the 

formation energy is defined as: 

The following sub-sections deal with the computation of the disordered and ordering 

energies introduced in Eq. 3.1. 

A. Disordered Alloys and the Coherent-Potential Approximation 

The coherent-potential approximation (CPA)45 is a mean-field theory that describes the 

average electronic structure of the completely disordered state of an alloy. It is considered 

as the best single-site approximation for treating random a.lloys. in the absence of short- 

range order, the constituents of the alloy are placed randomly on the periodic underlying 

lattice, thus Bloch's theorem does not apply. The CPA restores the translational invariance 

by defining an average medium, represented by a self-energy (or coherent potential) 0. For 
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each orbital A. the potential 0.' is 1ocat.d at all sites escept the central one, which is occupied 

bv an on-site energy associatd with species 1: and orbital A. Thus, this fixed atom is assumed 

to be embedded in the uniform mediuin of the disordered state, and as such the CPA is a 

single-site approsimat.ion. This central atom causes scattering of ele.ctrons by the potential 

difference Ae$O)(z) = - &(z )  between the potent.ia1 at site 0 occupied with atom i 

and that of the uniform medium. Here, z is the energy plus an infinitesimal imaginary part. 

We aiso assume that the alloy is homogeneous, ie., that all the sites are equivalent and CT 

does not depend on the site n. but we a.llow for multiple orbitals A. The scattering can be 

described by the t-matrix element 

where Gg is the diagonal matrix element of the Green's function for the random medium, c. 
The coherent potential CY' can be obtained self-consistently if we require that the scattering 

. -  
'on average' vanishes. For a ternary alloy we have: 

The notation (- - -) is taken to be the so-called configurational average which is the average 

over all possible a.tomic configurations on the lattice sites at the average concentration of 

the alloy. Since t; is a function of z,  ex and c, the self-energy oA must be found iteratively. 

The first guess for the coherent potential is given by the Virtual Crystal Approximation (or 

VCA) value, 02 = C e e;. To formally describe the coherent potential and G(z ) ,  we start 

with the Hamiltonian of the alloy written as follows, 

11; = 1 In,A)p;: (m,pI ( 3 4  

1; = In, A) e; (n, A[. (3.9) 
mn,p\ 

n.X 

The hopping integrals ,B:& are assumed to be independent of the nature of the atoms located 

at sites n and m, and r e t '  is then the translationally invariant part of the alloy Hamiltonian. 

The ei 's are distributed randoml!? on the lattice and are defined as 

12 
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' 

(3.10) 

wliere the occupation t ~ u r n b c r  p', = 1 if atom of type i occupies site 1 1 .  otherwise p i  = 0. 

The Green's function for a particular configuration is given by G(s) = (2 - H)-': and 

the self-energy C ( z )  is then defined for the average Green's function G as 

G(r)  = (G(z)) = ( z  - v - C(z))-l. (3.11) 

Within the CPA, the resulting self-energy is site-diagonal, ie., 

(3.12) 

Equation 3.6 actually represents nine equations that must be solved simultaneously. The 

average Green's function is given by an integration in reciprocal space over the first Brillioun 

zone (BZ) performed with a technique of special k-points", 

(3.13) 

where W ( b )  is the Fourier transform of TV and S2~z is the volume of the first BZ. Partial 

densities of states are obtained from the Green's function a.ccording to 

2 
ii q+o+ 

n t ( E )  = -- lim Im(OX]G(E + iq)JOX), (3.14) 

whereas band energies are given by 

EFPA = /" En(  E )  dE. (3.15) 

Here n ( E )  is the total density of states, n ( E )  = cin?(E) and E= is the Fermi energy 

associated with the CPA medium. The factor 2 in Eq. 3.14 accounts far the spin degeneracy. 

-co 

€3. Ordered Alloys 

Ordering processes in alloys are conveniently described by the use of an Ising model. 

This model was first introduced to study magnetic systems in which each atom of the lattice 
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is supposed to have a magnetic moment (Ising spin) o , ~  which can take on one of two possible 

d u e s .  Then the Hamiltonian of the system takes the form: 

nm 
(3.16) 

where Jnm is an eschange integral between spins on sites 77 and 772 and the spin variable 

u,, is 1 (-1) if the spin at  site 77. points 'upward' ('downward'). The summation is over 

interacting neighbor pairs. The sanie concept to approxinnte random or partially ordered 

niulticomponent substitutional alloys can be used by writing the configurational energy (with 

only pair interactions) as 

(3.17) 

where is an effective real-space pair potential between species i and j at sites n and 

m, respectively. There are AT sites and Af chemical species. The factor 1/2 is required 

to avoid double counting. One major difference between the alloy and the Ising systems 

is that the magnetic interactions Jn, in the Ising model are postulated to be independent 

of both temperature and concentration (of spins in either direction). On physical grounds, 

there is no compelling reason to assume that interatomic interactions in alloys possess these 

properties"', although the temperature dependence of the interactions seems to be most 

important for magnetic systems2'. An exhaustive analysis of the approximations involved 

in the use of this "generalizedyy Ising model when mapping the real free energy of an alloy 

is discussed in Ref. 48. 

The generalized perturbation method (GPM)5*25 attempts a direct determination of 

concentration-dependent multi-site interactions in real-space. The method is a perturba- 

tion treatment applied to a reference medium which is close to any pxticular configuration 

of the alloy, such as the complete disordered state described by the CPA. Any chemical con- 

figuration is completely specified by t.he set of occupation numbers { p i ) .  For a particular 

configuration { p i }  the GPM allows the band energy E({&)) to be expressed (see25*49 for a 

derivation of the equations) as: 

14 



(3.18) 

where the energy of the disordered st.ate &is is concentration-dependent but independent of 

the { p i }  (thus, configuratioii-independeIlt) as calculated with the CP-4 method, and A E o r d  

is the ordering energy which can be expanded as follows: 

(3.19) 

where Jch is the concentration deviation from the average composition at site n, bc; = 

pi-.‘ and V&::!*) are the concentration-dependent I-site effective cluster interactions between 

species i?j,. . . at sites n, m, . . .. Usually? higher-order terms (grea.ter than two) in Eq. 3.19 

are negligible. In the following we will only consider the second-order terms which comprise 

the effective pair interactions (EPI’s), redefined as \p where s is a shell index. In terms of 

Green’s function matrix elements, these interactions are given by 

(3.20) 

where EF is the Fermi energy of the CPA medium, Gt$ is the off-diagonal in site matrix 

element of the CPA Green’s function between sth-neighbors and 4t; = tp - t!. Notice 

that if > 0 then clustering of unlike sth-neighbor pairs is favored, Finally, the ordering 

energy for the ternary system can be expressed as 

(3.21) 

where zs is the coordination number, 

with the s th  shell, and the ~2 are the GPM expansiGn coefficients. 

is the number of ij pairs, per atom, associated 

C .  Partially Random Alloys 

As we mentioned in the Introduction, the stable phase along the tie-line describing the 

Zro.5( Ru.Pd)o.s pseudo-binary system has a B2 structure he_vond the martensitic region. We 

15 



(3.22) 

1iai.e studied the charact.eristics of partially random alloys where, for esaniple, Zr occupies 

one of tlie two simple cubic sublattices which constitute the bcc lattice. and Pd and Ru 

randomly occupy the other sublattice. -4lt.hough the present theory is applicable to  more 

coniiplicated compounds, we restrict tlie following arguments to those particular bcc-based 

internietallic compounds, represented by ( -41-cBc)o.5Co.5. They consist of two interpenetrat- 

ing priniit.ive sublattices, a where A and B atoms are distributed randomly, and p which 

is occupied by only C atoms. The d u e s  of the on-site energies are given by (we drop the 

orbital superscript for simplicity), 

En = { eAOrEB i fn  a 

EC if i i  E B 
A rigorous treatment of this system would require, for example, the use of the two-site cluster 

CPA (CCPA) (see, for instance, Ref. 50) where the disordered material is considered to be 

a collection of clusters chosen so that the entire lattice citn be generated by the translation 

of the points in a cluster through a set of translation vectors. Each cluster or cell contains 

several atoms (two in our case), znd we apply the CP-4 equation to the cell rather than 

to a single site. The cluster Green's function now becomes a matrix and the s d a z  CPA 

self-consistent condition given by Eq. 3.6, is generalized to a ma.trix self-consistent condition. 

The CPA self-energy 0 is replaced by a (18 x 1s) cluster diagonal matrix, E. 

:- 

We can rewrite the Hamiltonian matrix of the disordered material in terms of cluster 

quantities. Let e denote the cluster-diagonal part of H ,  where C = Q or p ,  and Wee, the 

cluster off-diagonal part. We have then (dropping orbital superscripts) 

and 

(3.23) 
i, j E C, 

(1yCcg)ij = P i j  i E C, j E C',C # C'. (3.24) 

To avoid the tedious calculations involved in the CCPA computations we applied the 

following approximation. The self-energy of the effective medium is required to be not only 
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cluster-diagonal but also site-diagonal, t.hat. is (E), = ad+ Furthermore, the coherent 

potential a is placed only on the random sub1a.ttice. This approach is similar to  the self- 

consistent boundary-site approximation of the cluster CP.4". 11-e impose the additional 

restriction of fixing the on-site energies in the fully ordered sublattice, and apply the CPA 

condition on the randoni sublattice, restoring the scalar nature of the single-site CPA. 

For a full spd-electronic system, the C-matrix takes the form 

- .  

. .  - .  

(3.25) 

To test this approximation, which we call "partial CPA" (PCPA), we have compared results 

with the rigorous two-site cluster CPA treatment of the alloy. In Fig. 5, we can see that a 

good agreement exists between the total DOS's for the Zro.s( Ruo.sPd0.s)o.s alloy computed 

with both methods. Let us define ?ir as being the site-diagonal element of the effective 

Hamiltonian resulting from a self-consistent calculation performed within the CCPA, and 

projected on a site of the fully ordered sublattice occupied by Zr, and of orbital-symmetry 

t2g. Figure 6 shows both the pot.entiald29 and this on-site term 2;; as functions of energy, 

as computed with the CCP-I. Notice the different scaling factors applied to the vertical 

axis. M-e obtained similar behavior for the on-site energies associate& with s , p  and eg 

symmetries. This figure shows that the fluctuation of the on-site energy for the ordered 

sublattice is vanishing when compared with respect to the atomic (Zr) on-site energy value, 

which in rhe present case is equal to 0.39765 Ry. We can then consider a fixed on-site energy 

on this ordered sublattice, and apply the partial CP.4 to the fully random sublattice only. 
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The GPM, discussed in the sub-sect.ion III.B, can also be applied to partially random 

alloys. \\’hen this is done. the computed int.eractions are associated with the random simple 

cubic sublattice. The energy for a part.icular ternary configuration may then be obtained 

with two different expansions (see Eq. 3.21): 

.. Eord = ECPA + 4i;’I.F = E p c p ~  + &I/:’ , (3.26) 

where the & and f< are respectively the expansion coefficients and EPI’s associated with 

the specific sublattice (cy) where ordering takes place (here the simple cubic sublattice), and 

Bcp-4 is the energy of the partially random alloy. We have then two different approaches 

to study stability and order in iimlti-c.omponent alloys. The first one has the fully random 

alloy as the starting point, while the second one starts by considering a partially ordered 

system. These two approaches can be used advantageously to study preferential substitution 

in rnulti-component alloys, since the energetics computed in both approaches, depending on 

the assumption made on preferential substitution, should give compatible results. 

ifk i, jE0.s  

IV. RESULTS 

A. Binary Alloys 

?Ve studied the electronic structure of bcc-based Ru-Zr, Pd-Zr and Ru-Pd alloys at 

different compositions using the TB-CPA-GPM formalism. For example, Fig. 7 shows the 

CPA-DOS’s for the three alloys at equiconcentration. They all exhibit a pseudo-gap around 

the half-filled band with two peaks of strong d-character. This is typical for DOS of bcc 

metals aad alloys where the lower half region is related to bonding states and the upper 

half region, to  antibonding statess2. According to Friedel’s theory of cohesive energy for 

transition metals (TM’s), the essential co&ribution to cohesion in TM-compounds is the 

broadening of the Th.i d-band; and the occupation of the bonding or antibonding states 

increases or reduces the cohesion (or stability). In the case of Ru-Pd the Fermi energy falls 

far from the pseudo-gap, lying on a peak of antibonding nature. This may be associated 



to the instability of the bcc R.u-Pd solution (see, e.g., Ref. 53 for similar analysis of TM 

DOS's). Furthermore Table 111 shows t.hat the first four nearest neighbor EPI's between Ru 

and Pd are negative and, as shown in  Fig. Sa, the mixing energy is positive suggesting a clear 

tendenq- towards phase separation. On the other hand we confirm a strong B2 ordering 

tendency in RuZr and a weaker B2 ordering tendency in PdZr. The B2 ordering is favored 

when 1; > 0 and < 2/354. As expected, the mixing energies for both systems are 

negative a s  shown in Fig. 8b. 

B. Ternary Alloys 

The tendency towards mixing of the ternary alloy was e d u a t e d  with AEmis, defined as 

aErnis({G), a )  = Edis({C;), a) - C G E i ( a i )  (4.1) 
I 

where Q and &;.represent, respectively, the lattice parameter of the random alloy and of the 

pure element i. This formula was used to map the energy of nixing on the Gibbs' triangle 

for the bcc-based Zr-Ru-Pd alloys. We found that the energy of mixing is negative except 

in a narrow range of concentration close to the Ru-Pd side, as expected. 

We were interested in the ternary alloy Zro.s(Rul-cPdc)o.s for which the bulk of exper- 

imental data are amailable. The first and second nearest-neighbor EPI's, 14 and 14, as 

obtained from the GPM applied to the fully r a n h m  alloys, are displayed in Figs. 9, as 

functions of concentration c. Notice that 15 is positive and similar in magnitude for Ru-Zr 

and Pd-Zr while the interaction between Pd and Ru remains negative and about one order 

of ma,p.itude smaller. .A ground-state znalysis performed with a cluster method55 and which 

included nearest and next-nearest neighbor interactions predicts a tendency towards phase 

separation in two BS phases. This is expected from the magnitude and the negative sign of 

the EPI's involved, particularly the next nearest-neighbor intera.ction, \<Rupd, between Ru 

and Pd. 

Fi,me 10 shows rhe variation of this interaction with the filling of the band (or the 

average number of valence electrons for the alloy). This figure tell us an important result. 
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Simple band-filling arguments show t.hat replacing one element like Ru by a metal with 

a lower number of valence electrons could turn t.his interaction positive wi tliout altering 

the other ones significant.ly. In this way we may be able t.0 st.abilize an ordered structure 

like the ,521 of Heusler's type. That is possible for an Ao.5BC alloy since the ordering 

energy difference between a Heusler phase, L21(ASBC), and a. mixture of two 0 phases, 

B2( AB)/B2( AC),  is controlled mainly by IGBC. Our preliminary calculations agree with 

this analysis if Ru is replaced, for instance, by Mo. 

These results motivated the study of partial order in the Zro.5(RulPd)o.s system with 

the formalism described in sub-section 1II.C. We applied the PCPA-GPM to a simple cubic 

sublattice occupied by Pd and Ru only. The interactions that we obtained are in agreement 

with those obtained using the full CPA, ie., they are all negative so that the elements 

tend to segregate on this sublattice, giving rise to a phase separation in two It2 phases, as 

concluded before. Furthermore, the disordered energy for this system is more negative than 

the disordered energy of the fully random alloy at all concentrations, as shown in Fig. 11. 

This indicates that  the partially random configuration should, in principle, be more stable 

than the totally random one, which is consistent with a preferential occupation of Zr on one 

sublattice, as observed in the B2 structures of ZrRu and ZrPd. 

The following section shows how the energetic parameters obtained within the TB-CPA- 

GPhll scheme are used to study phase equilibria in alloys. 

V. PHASE EQUILIBRIA IN PSEUDO-BINARY ALLOYS 

Up to this point, we were only concerned with the energetic properties a.t zero- 

temperature. Equilibrium states at finite temperature can be obtained by minimizing the 

Helmholtz free energy: F(.Ni, I/, T )  = U - T S at fixed number of particles A',., since the 

energetic parameters which enter this functional are, in OUT case, concentration-dependent. 

Here, U is the internal energy, T the temperature, 1' the volume and S the entropy of 

the system. In this studyj the energy of ordering and the configurational entropy are com- 
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puted at finite temperature with the Cl'hf, the derivation of which can be found in several 

publications (see for instance Ref. 56). 

The phase equilibria of the ternary Zr-Ru-Pd alloy were limited to the study of the 

equilibrium properties of the Zro.S(R.u.Pd)o.S system. From the ground-state analysis we 

espect this ternary system to phase separate in two B2 phases. Thus? we populated one 

sublattice fully with Zr and studied the stability of Ru-Pd in the second sublattice. We then 

applied the CVM -to this sublattice taking the simple cube as the maximal cluster. - -- Twenty- 

me correlation functions are necessary to describe the equilibriuni configuration for the phase 

separating system in this approximation. Figure 12 shows the results we obta.ined for this 

pseudebinary system using the EPI's vuPd calculated with the GPM a.pplied to the PCPA 

medium: as described in subsection IILC. The phase diagram displays a miscibility gap at 

low temperatures, that is a B2/B2 phase separation, which is consistent with interactions 

being all negative. Thus, according to this theoretical investigation, we show that the Zr 

species occupies preferentially one of the simple cubic sublattice (see Fig. 11) whereas Ru 

and Pd ehibi t ,  on the other sublattice, a strong tendency toward phase separation. On the 

experimental side, this ternary alloy: along the tie line ZrRu and ZrPcl has been characterized 

by x-ray d i f f r a ~ t i o n ~ ~ * ~ '  from 16 I< to room temperature, and a monotonic variation of the 

lattice parameter with alloy composition has been observed from 0 up to ahout 70 at.% 

Pd where the martensitic transformation takes place. This eqerimental Ending seems to 

indicate that a solid solution, Le., a chemically random alloy configuration, exists between 

ZrRu and ZrPd, with no existence of a two-phase field as predicted by theor?. This apparent 

contradicrion can be resolved if one assumes, starting from the. theory side, that because of 

the strong clustering tendency (see Fig. 12), any alloy derived from the melt will result, in 

the absence of a kinetic driving force, in a "quench-in" state which can only exhibit short- 

range order (SRO), and therefore a single-phase field. The SRO in this alloy case would 

be difficult to detect since the diffuse scattering associated with the tendency toward phase 

separation on one of the simple cubic sublattice is located at the B r a g  positions of the 

bcc lattice. In the following section we will see how this tendency toward clustering could 
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esplain the observed behavior of the electronic specific heat in t.liese alloys. 

VI. CALCULATION O F  THE ELECTRONIC SPECIFIC HEAT 

If there is one theine we want to emphasize in this paper, it is the close relationship 

between electronic structure and ordering phenomena in alloys. One goal is to predict the 

occurrence and the type of ordering from the knowledge of tlie electronic structure. At  the 

same time, we want to study how ordering can influence certain electronic properties. One 

possible macroscopic observable to consider is the linear coefficient of the lowtemperature 

specific heat, 7, which is related to the properties of the electrons at  tlie Fermi energy. 

Usually the specific heat of a meta.1 or an alloy obeys the 1a.w: 

C ( T )  = 7 T  +PT3 + * * -, (6.1) 
r 

where the first term is the electronic contribution, and tlie second term is the lattice (phonon) 

contribution. The coefficient 7 turns out to be proportional to the DOS at the Fermi 

enera", n(BF): 

where I$, is the Boltzmann's constant. -4ctually, the electron-phonon 

(6.2) 

coupling ( A e - p )  and 

the spin fluctuations ( & I )  can increase the bare DOS, and 7 is more precisely given bysi 

Figure 13 shows the variation of the electronic specific heat coefficient 7 with composi- 

tion for the pseudo-binary Zr0.5( R~1-~Pd~)0 .5  as obtained from low-temperature calorime- 

try". It shows an approximately linear increase of 7 with composition until i t  drops around 

~ 0 . 6 8  where the martensitic transformation takes place. This behavior has been observed 

in similar B2-type pseudo-binaries. For instance, 3' for Tio.s(Ni,Fe)0.5 presents a rounded 

peak around the concentration where the martensitic transformation takes place, whereas 
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in Tio.s(Ni,Os)o.S and Tio.S(Ni.Ru)0.5 the rounded peak is larger and can be t.hought of as 

forming a “plateau” like in the 2r0.5( Ru,Pd)o.s case5’. 

Assuming that the  electron-phonon coupling and the spin Auct.uations are constant upon 

alloying, t.he va.riation of wit.11 composition is compatible with the results of our electronic 

structure model. First., let us assunie that the alloy exhibits a tendency toivard phase sepa- 

ration, as discussed in section V. With such assumption, 7 for the alloy is well approximated 

by the concentration-weighted average of r(R.uZr) and y(Pd2r). Figure 14a shows the ~ ( E F )  

that corresponds to a phase separating system for which the total DOS was computed as 

the concentration-weighted average of the DOS’s of the two Bz-type binary alloys RuZr 

and PdZr. Second, using the PCPA, we also calculated the DOS for the partially ordered 

alloy as a function of composition, and the results are shown in Fig. 14b. In that case, the 

DOS flattens out in the region of highly concentrated Pd-alloys, and this behavior is at- 

tributed to a virtual gap at the Fermi level in the MrRX plane of the simple cubic Brillouin 

zone. Besides this minor difference with the previous case, the behaviors of the two alloy 

configurations displayed in Fig. 14 are rather similar and therefore difficult to distinguish 

experimentally. However the approximately linear increase of ~ ( E F )  with composition is, to 

some extent, in better agreement with experiment in the case of the pseudo-binary alloy ex- 

hibiting a tendency toward phase separation. -4fter conversion to the appropriate units, the 

rate of increase (taking only the end points) of 7 agrees to within 15% of the experimentally 

.- 

determined one. 

VII. CONCLUSIONS 

We have described and analyzed an electronic structure method based on the TB ap- 

proximation to study the energetics of multicomponent alloys. First, a novel scaling scheme 

for the TB parameters was introduced. The CPA and GPM were then presented with their 

natural ex3ension for treating ternary systems. The method allows the study of partially 

ordered systems using a reliable approximation of the cluster CPA. The methodology was 
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then applied to the study of bcc-based Zr-R.u-Pd alloys. The effective interactions for the 

binary systems give rise to ground-states at e,quiatomic composition in agreement with the 

a.\ailable experimental data. The analysis of the second nearest neighbor EPI, I$RuPd, shows 

that our predictive capabilities ca.n be used to guide t.he design of new alloys with specific 

ordered configurations. 

tising the energetic parameters obtained with the TB-CPA-GPh$ model, we have applied 

the C \W to compute the bcc-based phase diagrams of the binary Ru-Zr, Pd-Zr, and Ru-Pd 

alloys. and of the pseudo-binary 2r0.5( R.u,Pd)o.S alloys. Qualitatively, the equilibrium phases 

that were obtained for the binary systems a.gree with the experimental phase diagrams. 

Based on the B2/B2 two-phase field predicted for the ternary alloy along this particular 

tie-line, we proposed an explanation for the observed varia.tion of the electronic specific heat 

coefficient, 7, with composition in Zro.s(Ru,Pd)o.5 alloys. 

\Ye believe that this TB-CPA approach, which includes the treatment of partially or- 

dered alloys, can be successfully applied to study the electronic origin of the martensitic 

transformation in Zro.5(Rul-,Pd,) alloys and similar systems, and details of this study will 

be reported in a forthcoming paper. 
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FIGURES 
FIG. 1. Hopping integrals (in Ry) for Zr as functions of the interatomic distance as computed 

with tlie exponential fit (dashed line) to tlie LMTO-,4S.4 results (square dots). 

FIG. 2. On-sit.e energies (in Ry) for Zr as a funct.ion of v1/3 (where v is tlie atomic volume) in 

a.u. The symbols represent. tlie LMTO result.s, and the broken lines are the polynomial fit. 

FIG. 3. Band structure for the B2 RuZr compound along special directions of the irreducible 

wedge of the primitive cubic Brillouin zone. (a) from LMTO calculation; (b) using the SI( pa- 

rameters estracted from TB-LMTO calculations performed for the pure elements, and with the 

definition of ‘‘average:: SI< parameters for the alloy case, as defined in the test. 

FIG. 4. Total DOS (in Ry/atom) of the B-2 RuZr compound as a function of energy (the 

Fermi energy is taken as zero of energy) computed with the recursion method: (a) LMTO with no 

off-diagonal disorder, and (b) same approsirnation as esplained in the caption of Fig. 3 (b). 
. .  

FIG. 5. Total DOS (in Ry/atoni) for a bcc Z ~ O . ~ R U O . ~ ~ P ~ O . ; ? ~  pseudo-binary alloy vs. energy 

(in Ry) as computed with the CCPA (soIid line) and the  PCPA (dashed line). 

FIG. G. On the left: real part of tile self energy uf2g corresponding to the random sublattice for 

the Zro.5(RuPd)o.5 pseudo-binary alloy computed wit.11 the CCP-A. On t.he right: on-site energy 2*9 

associated with the fully ordered sublattice occupied by Zr for the same alloy (see test). Notice 

the different scaling applied to the vertical asis. 

FIG. i. Total DOS (in states/Ry.atom) vs. energy (in Ry) for the binary alloys (a) RuZr, (b) 

PdZr. and (c) RuPd, as coinputed with the CP.4. The Fermi energy is taken as zero of energy. 

FIG. 8. Energy of mising (in mRy/atom) vs. concentration for a.) Ru-Pd, and b) Ru-Zr (solid 

line) and Pd-Zr (dashed line) alloys, as computed with the CP-A. 

FIG. 9. First (a) and second (b) nearest neighbor EPI (in mRy/atom) vs. concentration for 

bcc-baed Zro.e(RuI-cPdc)o.s. Solid line: Ru-Zr; dotted line: Pd-Zr; dashed line: Ru-Pd. 
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FIG. 10. Second nearest neighbor EPI (in mRy/atom). 1-2. between Ru and Pd in the 

Zro.sRuo.2sPd0.2s alloy vs. band-filling, as coniputed with the GPlI  applied to the fully random 

CPA medium. The vertical line shows the band filling t.hat corresponds to the actual alloy. 

FIG. 11. Energy of tlie disordered alloy Zr0.5(Ru1-,PdC)o.s, in inRy/atonil vs. concentration. 

Dashed line: as obtained with tlie PCPA; solid line: with the full CP-A. 

FIG. 12. Phase diagram for the pseudo-binary system Zro.s(Rul-,Pd,)o.s computed with the 

CVM in the simple cube approximation. The dashed line correspond to t.he spinodal line of 

decomposition. 

FIG. 13. Electronic specific heat coefficient, in  niJ(g.ar)-1.K-2, as a function of 

Pd-concentration for the pseudo-binary Z ~ O . ~ ( R U ~ - ~ P ~ ~ ) O . ~  alloy [from Ref. 5’7). 

FIG. 14. DOS’s (in states/Ry.atom), at the Fermi energy, as a fun&& of Pd-concentration, 

for a) (ZrRu)f?c(ZrPd):2 (see test), and b) Zro.s(Rul-,Pd,)o.~ f ro3  PCP.4. 
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T.4BLES 

T.4BLE I. Tight-binding fitting paranieters A: a.ud P: for Zr. Ru and Pd. see Eq. 2.2. Ah and 

P h  are espressed in Ry and (a.u.)-', respectively. 

Zr R II Pd 

SI< Parameter (h) Ah Ph Ah PI' Ah Ph 

S S f f  

P W  

PPT 

d d a  

ddi; 

ddd 

spa 

s d a  

PdC 

pds: 

-i-i.S759 

57.7912 

-54.lG53 

-10.4902 

203.5139 

-373.1065 

74.5814 

42.4407 

-47.8802 

129.0867 

1.2GGS 

1.1951 

1.5654 

1.0714 

1.5235 

2.0514 

1.2541 

1.1972 

1.1358 

1.5757 

-113.lGl.3 

137.3739 

-259.4552 

-39.9G83 

293.2352 

-619.G101 

1$'2.0322 

-7G.4761 

-73.546 1 

355.0203 

1.3912. 

1.3373 

1.3810 

1.1773. 

1.7263 

2.3203 

1.3SS5 

1.3148 

1.2592 

1.84'23 

-112.0270 

137.7712 

-1SS.658G 

-25.3505 

201.3557 

-4'21.0329 

141.3045 

-G4.1410 

-61.3223 

241.0660 

1.3823 

1.3240 

1.7817 

1.1708 

1.7090 

2.2903 

1.3765 

1.3068 

1.2484 

1.7833 



TABLE 11. Polynomial coefficients for the on-site energies, see Eq. 2.6. 

Zr 

x .A [Ry] B [Ry (a.u.)-'] C [Ry (a .~ . ) -~]  

S 

P 

t29 

eg 

12.2G4350 -3.15-1Gi9 

1.413209 0.073624 

7.620164 -1.913354 

7.078303 .- -1 -7s 1268 

0.2064 1 i 

-0.033483 

0.119266 

0.110827 

... Ru 

x A [RYl B [Ry (a.u.)-'] C [Ry (a .~.)-~]  

9.750855 

9.586590 

6.973325 

6.492239 

-2.737315 

-2.534969 

-2.030726 

-1.904228 

~ 

0.188767 

0.169262 

0.141034 

0.132454 

Pd 

x A P Y I  B [Ry (a.u.)-'] C [Ry (L.u.)-~] 

7.608464 

8.526845 

5.163944 

4.789320 

-2.1.56563 

-2.294863 

-1.5iSOS2 

-1.4755'7'7 

0.14876 1 

0.153363 

0.111592 

0.104SlS 

TABLE 111. Effective pair interactions (in mRy/atom) for the bcc-based binary alloy at 

equiatomic composition, as computed with the CPA-GPM formalism. 

shell 1 2 3 4 5 

31.18 1.75 0.80 0.81 -2.37 VRuZr 

20.28 1.13 1.20 1.59 -2.13 VPdZr 

-1.57 -2.51 -0.14 -0.2s 0.57 VRuPd 
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