Surface Micromachined Components for a Safety Subsystem Application

PDF Version Also Available for Download.

Description

We have designed and fabricated a system using micromachining technologies that represents the first phase of an effort to develop a miniaturized or micro trajectory safety subsystem. Two Surface Micromachined (SMM) devices have been fabricated. The first is a device, denoted the Shuttle Mechanism, that contains a suspended shuttle that has a unique code imbedded in its surface. The second is a mechanical locking mechanism, denoted a Stronglink, that uses the code imbedded in the Shuttle Mechanism for unlocking. The Stronglink is designed to block a beam of optical energy until unlocked. A Photonic Integrated Circuit (PIC) fabricated in Gallium ... continued below

Physical Description

12 p.

Creation Information

Garcia, E.J.; Holswade, S.; Plummer, D.W.; Polosky, M.A.; Shul, R.J. & Sulivan, C.T. March 4, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have designed and fabricated a system using micromachining technologies that represents the first phase of an effort to develop a miniaturized or micro trajectory safety subsystem. Two Surface Micromachined (SMM) devices have been fabricated. The first is a device, denoted the Shuttle Mechanism, that contains a suspended shuttle that has a unique code imbedded in its surface. The second is a mechanical locking mechanism, denoted a Stronglink, that uses the code imbedded in the Shuttle Mechanism for unlocking. The Stronglink is designed to block a beam of optical energy until unlocked. A Photonic Integrated Circuit (PIC) fabricated in Gallium Arsenide (GaAs) and an ASIC have been designed to read the code contained in the Shuttle Mechanism. The ASIC interprets the data read by the PIC and outputs low-level drive signals for the actuators used by the Stronglink. An off-chip circuit amplifies the drive signals. Once the Stronglink is unlocked, a laser array that is assembled beneath the device is energized and light is transmitted through an aperture.

Physical Description

12 p.

Notes

OSTI as DE00004238

Medium: P; Size: 12 pages

Source

  • 45th International Instrumentation Symposium (ITS), Albuquerque, NM (US), 05/02/1999--05/06/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-0534C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 4238
  • Archival Resource Key: ark:/67531/metadc681805

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 4, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 6, 2017, 8:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Garcia, E.J.; Holswade, S.; Plummer, D.W.; Polosky, M.A.; Shul, R.J. & Sulivan, C.T. Surface Micromachined Components for a Safety Subsystem Application, article, March 4, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc681805/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.