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Abstract 

An enlarged spectrum of ideal toroidal Alfvh eigenmodes is demonstrated to exist within 

a toroidicity-induced Alfvdn gap when the inverse aspect ratio is comparable to or larger than 

the value of the magnetic shear. This limit is appropriate for the low-shear region in most 

tokamaks, especially those with low aspect ratio. The new modes may be destabilized by 

fusion-product alpha particles more easily than the standard toroidal Alfv6n eigenmodes. 
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Recent studies'p2 have shown the existence in a tokamak plasma of two "core-localized" 

modes, which are low-shear versions of the ideal toroidal Alfvh eigenmodes (TAE). The 

significance of these modes is that, being low-shear, they are located near the magnetic axis 

where, in an ignited plasma, the population of fusion alpha particles is strongly peaked. 

Hence these modes could affect alpha particle confinement through TAE instability in deu- 

terium-tritium experiments. firthemore, in advanced tokamak reversed-shear operation, 

the region of low shear may be radially broadened, leading to the possibility of the prevalence 

of such TAE modes. 

The previous theoretical demonstrations of the existence of the two core-localized modes 

relied on the assumption of the inverse aspect ratio being much smaller than the value of 

the magnetic shear: i.e., E << s, where E = r/& is the inverse aspect ratio, with T the 

plasma minor radius and & the major radius at the magnetic axis, and s = (r/q)(dq/dr) is 

the magnetic shear, with q(r) the safety factor. When this inequality holds, there are two 

distinct spatial scale lengths, which allows an analytic boundary-layer type of solution by 

means of asymptotic matching. However, for typical tokamak parameters, the ordering E = s 

holds in the core region of the plasma. Moreover, for low-aspect-ratio spherical tokamaks, 

in which there is much interest re~ently,~ the corresponding ordering is likely to be E >> s. 
In either of these cases, the previous solution procedure breaks down. 

In the present Letter, we show how to solve the low-shear TAE equations in the realistic 

limit of E 2 s. Significantly, we find the result that there exists a large spectrum of core- 

localized modes within a given Alfv6n gap, instead of only two. Due to their broadened 

width, we expect that these multiple modes can be more easily destabilized by energetic 

alpha particles than can the standard toroidal Alfvbn eigenmodes, ideal or nonideal. 

The linearized ideal magnetohydrodynamic equation for shear Alfvbn waves can be re- 
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duced, for the case of high toroidal mode number, to 

B.V($V-B2VL 

In this work we consider the zero-pressure limit in order to clarify the analysis. Coupling 

to the higher frequency compressional Alfvbn branch is neglected, which leaves Eq. (1) as a 

single scalar equation for the electrostatic potential Qr. The notation is that w is the mode 

frequency, VA the Alfvbn speed, and B the equilibrium magnetic field. 

To analyze Eq. (1) , introduce flux-type large-aspect-ratio coordinates (T,  6, c),  which 

are related to the usual cylindrical coordinates (R,cp,Z) centered on the toroidal axis of 

symmetry as follows4: 

2 = T sin 8 + TQ(T) sin 28 

with ~ ( r )  = ( E +  A')/2, where A' is the radial derivative of the Shafranov shift of a magnetic 

flux surface. In this nonorthogonal basis, the equilibrium magnetic field has the contravariant 

components 

where I = B2. 05 is a flux quantity related to the plasma current. Decompose the potential 

into poloidal harmonics as Q = exp(ig-iwt)g &(T) exp(-imO), with m and n the toroidal 

and poloidal mode numbers. In the large-aspect-ratio and low-shear limit, the mode is 

localized in the vicinity of a single Alfvdn gap at T = r,, where r, is given by q(rm) = 

(rn + 1/2)/n, with q the safety factor, and consists of only two harmonics $m and 4m+l. 
Then we can rewrite Q. (1) as a pair of coupled equations: 
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Here, 52 = w/% is the normalized frequency, with wo = V A ( T , ) / ~ ~ ( T ~ ) &  the frequency at 

the center of the gap, and y = n[q - q(~m)] is the radial coordinate. 

Notice the first-derivative terms on the right-hand sides of both Eqs. (4) and (5). These 

terms were not included in the treatment of Ref. 2. In the c 2 s limit considered here, these 

terms are significant, broadening the radial mode width. 

In the core plasma region where we focus our attention, the shear, inverse aspect ratio, 

and Shafianov shift gradient are all naturally small: i.e., s, E ,  A' << 1. For applicability to 

realistic tokamaks, however, we wish to seek the solution when the ratios e/s and A'/s are 

arbitrary compared to unity. Note from the definition A' the internal 

inductance and pp the poloidd beta, that we have the relationship A' = CE in the zero-beta 

limit, where the proportionality constant has the value c = 0.25 in the case when the radial 

profile of the current is flat. 

4 4 / 2  + p p ) ,  with 

Therefore, dropping small O(s) terms but retaining terms of O(E/S), we can rewrite the 

coupled eigenmode equations, Qs. (4) and (5), in the following simplified form: 

z (S  - S) + (1 - € * C l ) S  + €*(l - g)A + E * ( g  + @ ) A  = 0 

4 



z (A - A) + (1 + E * c ~ ) A  - ~ * ( l +  g ) S  + E*(g - Q)S = 0. (7) 

Here, S = #,,, + 4-1 and A = #m - ~L+I are symmetric and antisymmetric combinations 

of the coupled mode harmonics, with S dS/dz and so forth, where z = p/s is the scaled 

radial coordinate in the low-shear regime. We have replaced the frequency according to 

SZa = 1/4 + 79, where g measures the shift of the frequency away from the center of the 

Alfven gap; the normalization is such that the values g = f l  correspond, respectively, 

to the upper and lower ideal Alh6n continua. Nonsingular eigenmodes will exist within 

the gap for discrete values of g in the interval -1 < g < +l. The constants defined by 

Q = c/(l + c) < 1 and c1 = 2(1 - c)/(l + c) assume the values Q = 0.2 and c1 = 1.2 for 

uniform current. Equations (6) and (7) are to be solved with the boundary conditions that 

the wave functions vanish at large argument. Thus, for a given Shafranov shift, the problem 

is reduced in the zerebeta limit to obtaining the eigenvalue g as a function of only a single 

parameter E* = q/s = e(1 + c)/2s. 

It is straightforward to integrate Eqs. (6) and (7) numerically. Results are presented 

in Fig. 1, for the flat-current case (c  = 0.25). It is also possible to obtain an approxi- 

mate analytic solution in the large-€* limit, which will facilitate the interpretation of certain 

interesting features of these results. 

Consider EQs. (6) and (7) for the case when E* >> 1. This allows a long wavelength 

solution with the ordering S << S - E*S, and similarly for A(z). We first consider the case 

when g = Q - A, with X N # ( 1 / ~ * )  << Q. Then Eqs. (6) and (7) reduce to 

-zA + € * C I A  - &*(l+ a)S - k * S  0. (9) 

All the terms in Eqs. (8) and (9) are the same order, with (AIS( - O ( l / e )  < 1. These 

two equations can be combined into one harmonic-oscillator-type equation for the symmetric 
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eigenfunction S, 

€*2 [4 - 2 4 1  + a))] 5 + [(€*C1 - 2co€*2x) - 2'1 s z 0, (10) 

from which we immediately obtain the eigenvalues 

[-c1+ (Z+ 1)J-l , A!? = 0,1,2,3,  ... . (11) 
gi+' N 1 

-Q+-  2Q&* 

The corresponding wave functions are S(z) = exp(-<'/2)H&), where H&) are the Hermite 

polynomials, with argument 5 = z/@ [< - 2 ~ ( 1 +  Proceeding in a similar manner 

for the case when g = -Q+X, we find that now the antisymmetric wave function is dominant, 

IA/Sl- O(@) > 1, and the eigenvalues are given by 

The validity of EQs. (11) and (12) requires s m a l l  radial quantum number, i.e., 4 << E*G/c~. 
Continuing our analytical exploration, we note that by means of Fourier transformation 

the full set of Eqs. (6) and (7) for the low-shear eigenmodes can be recast, without any 

approximation, as a single second-order equation: 

Here the potential Vh is given by 

- V*(k) = E*%' - p2 - 4Q2) f E*CI (.' - g-) + p' -!(i!?-)2 (14) 
2(p * g) 4 p f 

with Q ( k )  = k/( l  + k2), P(k)  = (a - k2)/(1 + k'), and P' = dP/dk. Equation (13) is valid 

for either wavefunction \k+ or !P- , defined by 
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The advantage of the Fourier transformation is that it reduces the order of the eigenmode 

equations. Their numerical solution in IC-space is therefore easier than in real z-space. Ana- 

lytically, the problem is simplified because it is reduced to the consideration of a Schr6dinger- 

type equation, whose treatment is familiar. For instance, the large-IC form of the potential, 

indicates that the solution is asymptotically well-behaved, !I!* + exp(.z*d- I I C l ) ,  as long 

as the frequency does not enter the Alfv6n continuum. Also, the value of the potential at 

IC = 0, which is given by 

(l (cg +%)I f 9) 
V*(O) = - E*2(g2 - 4) f E*C1 - [ 

must be negative for the existence of bound-state solutions. In L e  E* >> 1 limit, this 

requires that jgl > cg be generally satisfied in order to have nonsingular solutions, leading to 

an interior spectral “forbidden zone” of width Ag = 2 ~ .  An exception occurs when the value 

of 191 is very close to q, in which case the O(E*) term in &. (17) contributes to making the 

potential V+ deeper than V- and thus allowing an extra solution for the !I!+ wavefunction. 

Finally, the WKB quantization condition f d k J W  = (2t + 1 ) ~  can be used to obtain the 

eigenvalues when the potential is slowly varying. In the E* >> 1 limit, the ordering IC2 << 1 

for the bound-state turning points is appropriate, and we can then obtain the approximate 

expression 

94 N - 4 + (2t+ 111 E* Jm (18) 

which is fairly accurate even when E* is not very large. The validity of this WKB result 

requires t >> 1. However, the number of modes is limited by t < &*G, since g2 < 1. 

Let us now compare the analytical results with the exact numerical results for the sake of 

interpretation. The approximate analytical results of Eqs. (ll), (12), and (18) indicate that 

a multiplicity of eigenmodes, indexed by the non-negative radial mode number e, exists when 
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E* >, 1. This feature is exhibited by the numerical results in Fig. 1. Rom Ref. 2 we already 

know that in the E* << 1 limit, there exists a core-localized eigenmode whose frequency is near 

the bottom of the Alfvh gap and whose mode structure has the polarization correspond- 

ing to that of the symmetric function S(z) or @+(k), and there is another solution whose 

frequency is near the top of the A h &  gap and whose mode structure has the polarization 

corresponding to that of the antisymmetric function A(z)  or lP-(k). In the zero-beta limit, 

the existence of the upper core-localized mode was found2 to require E* > s(1 + c)/2(1+2c), 

which, however, is not exhibited in Fig. 1 since this condition is outside the scaling adopted 

in the present analysis. The lower core-localized mode has no corresponding condition for 

existence. As the value of E* increases above unity, more eigenmodes enter the spectrum one 

by one. Figure 1 shows only the first seven eigenvalues for each polarization. In general, as 

the inverse aspect ratio increases, the eigenvalues for the modes with antisymmetric polar- 

ization (higher frequency) slowly decrease toward +@ from above, and the eigenvdues for 

the modes with symmetric polarization (lower frequency) slowly increase toward -Q from 

below. The one exception is the lowest-order (t = 0) symmetric mode, the branch which in 

the E* 0 limit goes over to the usual ideal TAE mode. This mode may be understood 

by noticing that Eq. (11) yields a root just below g = Q if 1 = 0, whereas Eq. (12) has no 

corresponding root above g = -@. This behavior is related to the difference in the depth of 

the Fourier-space potential well, remarked upon earlier. The c ~ / ~ Q E *  term in Eqs. (1 1) and 

(12), which causes this difference, becomes less significant as the radial quantization number 

t increases, so that the higher-order eigenvalues tend toward equal but opposite pairs, as in 

Q. (18). At large E* we iind fairly good quantitative agreement with the numerical eigen- 

values gl in Fig. 1 when we use the real-space estimates of Eqs. (11) and (12) for t = 0 , l  

and the WKB estimate of Eq. (18) for t > 1. Also notice that the Alhh gap enlarges with 

E * ,  whereas the spacing in frequency of the multiple modes is constant for a given value of 

the shear. 
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The results found here haw several intriguing implications. First, it is now clear that 

there are not merely two TAE modes in the low-shear region, but instead a multiple spec- 

trum. The lowest-order symmetrically polarized mode connects to the lower-frequency core- 

localized mode (which corresponds to the usual TAE), in the limit when the inverse aspect 

ratio is smal l  compared to the magnetic shear. The lowest-order antisymmetric mode corre- 

sponds to the upper-frequency core-localized mode of Ref. 2 in the same small but nonzero 

inverse aspect ratio limit. However, in the more realistic case when the inverse aspect ratio 

is comparable to or larger than the magnetic shear (appropriate, respectively, for the central 

region of a usual tokamak or a spherical tokamak), the spectrum is significantly enlarged and 

there exists a multiplicity of core-localized modes. This feature may facilitate the considera- 

tion of low-shear modes for the purpose of investigating Alh6n-type instability properties in 

present-day deuterium/tritium  experiment^.^ Non-ignition experiments that can use external 

antennae to excite and study A&& eigenmodes6 may be able to observe this multiplicity 

of corelocalized modes. Two-dimensional codes for TAE stability analysis of fusion plasmas 

should also confirm this result. 

Another significant implication is that we expect these multiple core-localized modes, 

due to their broadened width, to be more strongly destabilized by energetic alpha particles 

than the standard ideal or nonideal toroidal Ah6n eigenmodes. For the standard ideal TAE 

mode,7 located in the finite-shear, i.e., s = 0(1), region, the outer radial mode width AT of 

a poloidal harmonic is (AT),& m r/m, although most of the wave energy is concentrated in 

a narrow inner width that scales as  AT)^, = ( ~ / s ) ( r / m ) .  Contrast this with the low-shear 

modes found here, whose radial mode width scales as Ar = ~ E / S  (T/m), which exceeds 

either the inner or outer TAE mode width since in the low-shear region the local value of 

E / S  is typically high. Larger mode width implies stronger drive. (A method for calculating 

the drive in the low-shear limit has been described recently.*) Large mode width also implies 

that the modes are relatively insensitive to nonideal effe~ts,~J' which are smal l  scale, and 
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FIGURE CAPTIONS 

FIG. 1. Spectrum of values of the eigenfrequency shift g as a function of the inverse aspect 

ratio parameter E+ for the first seven symmetric (solid curves) and antisymmetric 

(dashed curves) eigenmodes, for the flat-current case (cg = 0.2). No modes exist 

within the interior “forbidden zone” demarcated by the two horizontal lines (large 

dashes) at g = fa, except the lowest-order symmetric mode. 
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