Monte Carlo analysis of a monolithic interconnected module with a back surface reflector

PDF Version Also Available for Download.

Description

Recently, the photon Monte Carlo code, RACER-X, was modified to include wave-length dependent absorption coefficients and indices of refraction. This work was done in an effort to increase the code`s capabilities to be more applicable to a wider range of problems. These new features make RACER-X useful for analyzing devices like monolithic interconnected modules (MIMs) which have etched surface features and incorporates a back surface reflector (BSR) for spectral control. A series of calculations were performed on various MIM structures to determine the impact that surface features and component reflectivities have on spectral utilization. The traditional concern of cavity photonics ... continued below

Physical Description

15 p.

Creation Information

Ballinger, C.T.; Charache, G.W. & Murray, C.S. October 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recently, the photon Monte Carlo code, RACER-X, was modified to include wave-length dependent absorption coefficients and indices of refraction. This work was done in an effort to increase the code`s capabilities to be more applicable to a wider range of problems. These new features make RACER-X useful for analyzing devices like monolithic interconnected modules (MIMs) which have etched surface features and incorporates a back surface reflector (BSR) for spectral control. A series of calculations were performed on various MIM structures to determine the impact that surface features and component reflectivities have on spectral utilization. The traditional concern of cavity photonics is replaced with intra-cell photonics in the MIM design. Like the cavity photonic problems previously discussed, small changes in optical properties and/or geometry can lead to large changes in spectral utilization. The calculations show that seemingly innocuous surface features (e.g., trenches and grid lines) can significantly reduce the spectral utilization due to the non-normal incident photon flux. Photons that enter the device through a trench edge are refracted onto a trajectory where they will not escape. This leads to a reduction in the number of reflected below bandgap photons that return to the radiator and reduce the spectral utilization. In addition, trenches expose a lateral conduction layer in this particular series of calculations which increase the absorption of above bandgap photons in inactive material.

Physical Description

15 p.

Notes

OSTI as DE99001849

Source

  • 4. National Renewable Energy Laboratory (NREL) conference on thermophotovoltaic generation of electricity, Denver, CO (United States), 11-14 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001849
  • Report No.: KAPL-P--000135
  • Report No.: K--98167;CONF-981055--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 319618
  • Archival Resource Key: ark:/67531/metadc681652

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 2:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ballinger, C.T.; Charache, G.W. & Murray, C.S. Monte Carlo analysis of a monolithic interconnected module with a back surface reflector, article, October 1, 1998; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc681652/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.