This year major advances have been made in three areas: high-lying, doubly-excited resonance states in the H\(^-\), the interaction of relativistic H\(^-\) ions with thin carbon foils and multiphoton photodetachment. We plan to pursue these studies further.

I. High-lying, doubly-excited resonance states

We have carefully studied four series of doubly-excited resonances in H\(^-\) photodetachment. Our energy resolution was 8 meV with an absolute uncertainty in the energy scale of 1 meV. Figure 1 displays partial photodetachment cross sections for H\(^-\) into H\(^+\)(n): a:n\geq 4, b:n\geq 5, c:n\geq 6, d:n\geq 7. At least three resonances can be clearly seen converging on each of the thresholds n=5, 6, 7 and 8.

Remarkably, the energies of these resonances can be modeled mathematically by a simple quantum-defect formula.\(^1\)

Fig. 1. High-lying resonances in the \(^1\)P continuum of H\(^-\).
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
These experiments were the subject of a Ph.D. dissertation\(^2\) by P.G. Harris which won the Louis Rosen Prize for the best dissertation at LAMPF in the previous year. A proof of principle of a two laser beam extension of these measurements was completed this summer at LAMPF.

II. Interactions with thin carbon foils

The results of the passage of H\(^-\) ions, for beam energies ranging from 226 MeV to 800 MeV, through thin carbon foils, ranging in thickness from 14 \(\mu g/cm^2\) to 300 \(\mu g/cm^2\), have been studied. The physics is particularly interesting because the interaction times can be as small as 0.2 fs, a time range which, outside of individual atomic collisions, has not been previously investigated. Even the shortest laser pulses are many femtoseconds.

An electron spectrometer was used to field-ionize selectively H\(^+\) Rydberg states emerging from the foil for \(n\) values ranging between 9 and 17. The yields of low lying \((n=1\) to 5\()\) hydrogen states were measured using a Doppler-tuned Nd:YAG beam to excite transitions to a Rydberg state which subsequently was field-ionized in the electron spectrometer and detected.

With the help of our Hungarian collaborators (Péter Kálmán, Technical University Budapest, and János Bergou, now at Hunter College) much progress has been made with the theoretical understanding. The possibility of making very thin crystalline foils for further studies is being investigated by Károly Rózsa (Hungarian Academy of Science).

The foil studies were the subject of a Ph.D. dissertation\(^3\) by Amir Mohagheghi which was completed in early summer 1990.

III. Multiphoton photodetachment

Multiphoton measurements are especially difficult as the dependence on laser irradiance is very sensitive. Also, since the laser beam must be focused very tightly, beam overlap uncertainties present formidable problems. Nevertheless, we have some preliminary results using linearly polarized light for photon multiplicities ranging for 2 to 5, which we are currently attempting to compare with recent theoretical predictions.\(^4\)

IV. Recent Refereed Publications

V. References

VI. Other Group Publications

VII. Talks by H.C. Bryant

Colloquium: Department of Physics, University of Wyoming, Laramie "Recent advances in the physics of the H⁻ Ion", February 27, 1990.

"H⁻ as a Quantum Mechanical Interferometer". Invited talk at the Foundations of Quantum Mechanics Workshop, Santa Fe, NM, May 29, 1990.

Seminar: Tungsram Factory, (GE) Budapest, "Atomic Physics at the Linear Accelerator at Los Alamos", June 6, 1990, 10:00 am.

Lecture: Institut für Experimentalphysik, Technische Universität Graz, Petergasse 16, "Experiments with 800 MeV H⁻ Ions", June 22, 1990, 3:30 pm.

"Recent Results for HIRAB", Invited talk at the 24th LAMPF Users Group Meeting, LANL, August 14, 1990.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.