Precision intercomparison of beam current monitors at CEBAF

PDF Version Also Available for Download.

Description

The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 {mu}A. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward ... continued below

Physical Description

4 p.

Creation Information

Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, r.; Liang, C.; Sinclair, C. et al. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 {mu}A. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current.

Physical Description

4 p.

Notes

INIS; OSTI as DE96013061

Source

  • 16. Institute of Electrical and Electronic Engineers (IEEE) particle accelerator conference, Dallas, TX (United States), 1-5 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96013061
  • Report No.: DOE/ER/40150--332
  • Report No.: CEBAF-PR--95-021;CONF-950512--388
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 369507
  • Archival Resource Key: ark:/67531/metadc681589

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 3, 2015, 6:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, r.; Liang, C.; Sinclair, C. et al. Precision intercomparison of beam current monitors at CEBAF, article, December 31, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc681589/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.