U.S. DEPARTMENT OF ENERGY
FOSSIL ENERGY
ADVANCED RESEARCH AND TECHNOLOGY DEVELOPMENT

PUBLICATIONS
OF THE
FOSSIL ENERGY
ADVANCED RESEARCH AND TECHNOLOGY DEVELOPMENT
MATERIALS PROGRAM

April 1, 1993, through March 31, 1995

Compiled by
Paul T. Carlson

April 1995

Prepared for
U.S. Department of Energy
Office of Fossil Energy
Advanced Research and Technology Development Materials Program
AA 15 10 10 0

by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PREVIOUS REPORTS IN THIS SERIES

CONTENTS

1. INTRODUCTION .. 1

2. PROGRAM DEVELOPMENT AND TECHNOLOGY TRANSFER 3

 2.1 GENERAL PROGRAM .. 3
 2.1.1 Papers in Conference Proceedings 3

3. METALS AND ALLOYS .. 5

 3.1 ALLOY DEVELOPMENT .. 5
 3.1.1 Open Literature Publications 5
 3.1.2 Papers in Conference Proceedings 5

 3.2 MECHANICAL PROPERTIES .. 8
 3.2.1 Open Literature Publications 8
 3.2.2 Papers in Conference Proceedings 8

 3.3 JOINING ... 9
 3.3.1 Open Literature Publications 9
 3.3.2 Topical Reports .. 10
 3.3.3 Papers in Conference Proceedings 10

 3.4 COATINGS DEVELOPMENT ... 11
 3.4.1 Open Literature Publications 11
 3.4.2 Topical Reports .. 12
 3.4.3 Papers in Conference Proceedings 12

 3.5 CORROSION AND ENVIRONMENTAL EFFECTS 12
 3.5.1 Open Literature Publications 12
 3.5.2 Topical Reports .. 13
 3.5.3 Papers in Conference Proceedings 13
 3.5.4 Books and Book Articles 14

4. CERAMICS ... 15

 4.1 FIBER-REINFORCED COMPOSITES 15
 4.1.1 Open Literature Publications 15
 4.1.2 Topical Reports .. 15
 4.1.3 Papers in Conference Proceedings 15
 4.1.4 Books and Book Articles 17
Contents

4.2 MECHANICAL BEHAVIOR ... 17
4.2.1 Open Literature Publications 17
4.2.2 Topical Reports ... 18
4.2.3 Papers in Conference Proceedings 18
4.2.4 Books and Book Articles 19

4.3 JOINING ... 19
4.3.1 Open Literature Publications 19
4.3.2 Books and Book Articles 19

4.4 SOLD STATE ELECTROLYTE SYSTEMS 19
4.4.1 Open Literature Publications 19
4.4.2 Papers in Conference Proceedings 20

4.5 CERAMIC FILTERS .. 21
4.5.1 Open Literature Publications 21
4.5.2 Papers in Conference Proceedings 22

4.6 CERAMIC MEMBRANES .. 22
4.6.1 Open Literature Publications 22
4.6.2 Papers in Conference Proceedings 22

4.7 CERAMIC CATALYST MATERIALS 23
4.7.1 Open Literature Publications 23
4.7.2 Papers in Conference Proceedings 23
4.7.3 Books and Book Articles 23

4.8 NEW MATERIALS PROCESSES 24
4.8.1 Open Literature Publications 24
4.8.2 Topical Reports ... 24
4.8.3 Papers in Conference Proceedings 24

INDEX .. 25
1. INTRODUCTION

The objective of the Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities.

This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series (see page iii).

It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. Oral presentations, periodic progress reports, management reports, letter reports, abstracts, and summaries have not been included.

2. PROGRAM DEVELOPMENT AND TECHNOLOGY TRANSFER

2.1 GENERAL PROGRAM

2.1.1 Papers in Conference Proceedings

3. METALS AND ALLOYS

3.1 ALLOY DEVELOPMENT

3.1.1 Open Literature Publications

3.1.2 Papers in Conference Proceedings

3.2 MECHANICAL PROPERTIES

3.2.1 Open Literature Publications

3.2.2 Papers in Conference Proceedings

3.3 JOINING

3.3.1 Open Literature Publications

3.3.2 Topical Reports

3.3.3 Papers in Conference Proceedings

3.4 COATINGS DEVELOPMENT

3.4.1 Open Literature Publications

3.4.2 Topical Reports

3.4.3 Papers in Conference Proceedings

3.5 CORROSION AND ENVIRONMENTAL EFFECTS

3.5.1 Open Literature Publications

3.5.2 Topical Reports

3.5.3 Papers in Conference Proceedings

3.5.4 Books and Book Articles

4. CERAMICS

4.1 FIBER-REINFORCED COMPOSITES

4.1.1 Open Literature Publications

4.1.2 Topical Reports

4.1.3 Papers in Conference Proceedings

Ceramics

4.1.4 Books and Book Articles

4.2 MECHANICAL BEHAVIOR

4.2.1 Open Literature Publications

4.2.2 Topical Reports

4.2.3 Papers in Conference Proceedings

4.2.4 Books and Book Articles

4.3 JOINING

4.3.1 Open Literature Publications

4.3.2 Books and Book Articles

4.4 SOLID STATE ELECTROLYTE SYSTEMS

4.4.1 Open Literature Publications

Ceramics

4.4.2 Papers in Conference Proceedings

4.5 CERAMIC FILTERS

4.5.1 Open Literature Publications

4.5.2 Papers in Conference Proceedings

4.6 CERAMIC MEMBRANES

4.6.1 Open Literature Publications

4.6.2 Papers in Conference Proceedings

4.7 CERAMIC CATALYST MATERIALS

4.7.1 Open Literature Publications

4.7.2 Papers in Conference Proceedings

4.7.3 Books and Book Articles

4.8 NEW MATERIALS PROCESSES

4.8.1 Open Literature Publications

4.8.2 Topical Reports

4.8.3 Papers in Conference Proceedings

INDEX

- **316 stainless steels** ... 10
- **800H** ... 10, 11
- **abrasive wear** .. 9
- **acoustic** .. 5
- **acoustic emission** .. 5
- **alloy development** ... 5
- **alloying** ... 5, 6, 9, 14
- **alloying additions** ... 5, 6, 14
- **alloys** ... 5-14
- **alumina** ... 18
- **aluminides** .. 5-7, 9, 10, 12-14
- **aluminizing** ... 11
- **aluminum** .. 5, 7, 12-14
- **aluminum alloys** .. 5, 7, 13, 14
- **aqueous corrosion** ... 11-13
- **AR&TD Materials Program** 1
- **breakdown** .. 1, 14
- **catalyst materials** ... 23
- **catalysts** .. 20, 23
- **cavitation erosion** .. 9
- **ceramic catalyst** .. 23
- **ceramic composites** .. 15, 18
- **ceramic fiber** ... 16, 22
- **ceramic matrix** .. 15-17, 22
- **ceramic membranes** ... 22
- **ceramics** .. 15-20
- **chemical vapor deposition** 17
- **chemical vapor infiltration** 15-17
- **chromia** .. 12
- **chromites** ... 20
- **chromium** ... 5, 11
- **chromizing** ... 11
- **cleaning** .. 22
- **coal gasification** ... 1, 12-14, 16, 21, 22
- **coal-fired** ... 16, 22
- **coatings** ... 7, 9, 11, 12, 15, 16
- **coatings development** 11
- **codeposition** ... 12
- **combustion environments** 16, 21, 22
- **components** .. 21
- **composites** .. 15-19
- **Conference on Fossil Energy Materials** 3, 5-14, 16, 18, 20-24
- **corrosion** ... 11-14, 18

25
Index

- **corrosion resistance** ... 11, 14
- **cracking** ... 9, 10, 13, 14
- **cracking behavior** ... 9, 10
- **creep** ... 6
- **deformation** .. 6
- **diffusion coatings** .. 11, 12
- **ductilities** ... 13
- **ductility** .. 10
- **electrochemical processes** 21
- **electrolyte systems** .. 19
- **electro-spark deposited coatings** 12
- **embrittlement** ... 5, 6, 13
- **environmental effects** .. 12, 13
- **environmental embrittlement** 5, 6
- **erosion** ... 9
- **fabrication** ... 15, 24
- **fiber** ... 15, 16, 22
- **fiber coatings** .. 15
- **fiber-reinforced composites** 15
- **filters** ... 16, 21, 22
- **fluidized bed combustion** 16, 21, 22
- **fracture** ... 8, 19
- **fuel cell materials** .. 20
- **fuel cells** .. 1, 20, 21
- **gas cleaning** ... 22
- **gas separation** ... 16
- **gas turbine applications** 17, 19
- **gas turbines** .. 21
- **grain growth** .. 8, 9
- **HAZ** ... 10
- **heat recovery** .. 1
- **high-temperature** .. 6, 9-11, 14, 20
- **hot ductility** ... 10
- **hot gas filters** ... 16, 21, 22
- **interface coatings** ... 16
- **interfaces** ... 21
- **intermetallic alloys** ... 5, 7, 14
- **intermetallics** ... 6-9
- **ion-exchange materials** ... 23
- **iron aluminides** .. 5-7, 9, 10, 12-14
- **iron-aluminum alloys** ... 7, 13, 14
- **joining** .. 9-11, 19
- **joints** .. 19
- **kinetics** .. 9
- **liquefaction** .. 1, 3, 5, 13, 16
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>materials performance .. 13</td>
</tr>
<tr>
<td>mechanical behavior ... 17</td>
</tr>
<tr>
<td>mechanical properties ... 5, 8, 9, 12, 15, 18</td>
</tr>
<tr>
<td>membranes .. 22</td>
</tr>
<tr>
<td>microstructure .. 5, 6, 8-10</td>
</tr>
<tr>
<td>microstructures .. 5, 7</td>
</tr>
<tr>
<td>model .. 16</td>
</tr>
<tr>
<td>modeling ... 15</td>
</tr>
<tr>
<td>monolithic ... 17</td>
</tr>
<tr>
<td>Nextel .. 15, 17</td>
</tr>
<tr>
<td>Nicalon/SiC composites .. 15</td>
</tr>
<tr>
<td>nickel aluminide ... 13</td>
</tr>
<tr>
<td>ordered intermetallics ... 6-8</td>
</tr>
<tr>
<td>oxidation-sulfidation ... 12</td>
</tr>
<tr>
<td>oxidation .. 12-14, 16</td>
</tr>
<tr>
<td>oxide scales .. 14</td>
</tr>
<tr>
<td>pack cementation ... 11, 12</td>
</tr>
<tr>
<td>particles .. 23, 24</td>
</tr>
<tr>
<td>polycrystalline aluminides .. 10</td>
</tr>
<tr>
<td>powders .. 24</td>
</tr>
<tr>
<td>processing .. 5-9, 14, 20</td>
</tr>
<tr>
<td>program development .. 3</td>
</tr>
<tr>
<td>purification .. 22</td>
</tr>
<tr>
<td>recrystallization .. 5</td>
</tr>
<tr>
<td>reinforced ... 15</td>
</tr>
<tr>
<td>scales ... 12, 14</td>
</tr>
<tr>
<td>separation ... 16, 22</td>
</tr>
<tr>
<td>SiC ... 15, 17-19</td>
</tr>
<tr>
<td>silicon .. 11, 15-19, 21, 22, 24</td>
</tr>
<tr>
<td>silicon carbide ... 16-18, 21, 22</td>
</tr>
<tr>
<td>silicon nitride .. 15, 24</td>
</tr>
<tr>
<td>siliconized .. 17</td>
</tr>
<tr>
<td>sintering ... 21</td>
</tr>
<tr>
<td>softening behavior ... 10</td>
</tr>
<tr>
<td>stainless steels .. 10, 11</td>
</tr>
<tr>
<td>strength ... 17, 18</td>
</tr>
<tr>
<td>stress corrosion .. 13, 14</td>
</tr>
<tr>
<td>sulfidation ... 12, 13</td>
</tr>
<tr>
<td>synthesis .. 9, 15, 19, 20</td>
</tr>
<tr>
<td>technology transfer .. 3</td>
</tr>
<tr>
<td>tensile properties .. 5, 7, 8</td>
</tr>
<tr>
<td>testing ... 19</td>
</tr>
<tr>
<td>thermomechanical processing .. 5, 8, 9</td>
</tr>
<tr>
<td>titanium oxide ... 23</td>
</tr>
<tr>
<td>tubing ... 11</td>
</tr>
</tbody>
</table>
Index

- turbine .. 17, 19, 22
- vapor deposition ... 17
- weldability .. 5, 10, 11
- welding .. 10, 11
- weldments .. 11
- yttrium .. 20
- zirconia .. 20
INTERNAL DISTRIBUTION

K. Breder
T. D. Burchell
P. T. Carlson (5)
N. C. Cole
D. F. Craig
M. A. Janney
R. R. Judkins
J. R. Keiser
C. T. Liu
C. G. McKamey
J. Sheffield

V. K. Sikka
J. O. Stiegler
D. P. Stinton
R. W. Swindeman
P. T. Thornton
P. F. Tortorelli
I. G. Wright

Central Research Library
Document Reference Section
ORNL Patent Section
Laboratory Records Department (2)
LRD - RC

EXTERNAL DISTRIBUTION

3M COMPANY
Ceramic Materials Department
201-4N-01 3M Center,
St. Paul, MN 55144
M. A. Leitheiser

A. P. GREEN REFRACTORIES
COMPANY
Green Blvd.
Mexico, MO 65265
J. L. Hill

AIR PRODUCTS AND CHEMICALS
P.O. Box 538
Allentown, PA 18105
S. W. Dean

ALBERTA RESEARCH COUNCIL
Oil Sands Research Department
P.O. Box 8330
Postal Station F
Edmonton, Alberta
Canada T6H5X2
L. G. S. Gray

ALLISON GAS TURBINE DIVISION
P.O. Box 420
Indianapolis, IN 46206-0420
P. Khandelwal (Speed Code W-5)
R. A. Wenglarz (Speed Code W-16)

AMA RESEARCH & DEVELOPMENT CENTER
5950 McIntyre Street
Golden, CO 80403
T. B. Cox

ARGONNE NATIONAL LABORATORY-WEST
P.O. Box 2528
Idaho Falls, ID 83403-2528
S. P. Henslee

ARGONNE NATIONAL LABORATORY
9700 S. Cass Avenue
Argonne, IL 60439
W. A. Ellingson
K. Natesan
J. P. Singh
SOUTHWEST RESEARCH INSTITUTE
6620 Culebra Road
P.O. Drawer 28510
San Antonio, TX 78284
F. F. Lyle, Jr.

TENNESSEE VALLEY AUTHORITY
1101 Market Street
3A Missionary Ridge
Chattanooga, TN 37402-2801
A. M. Manaker

TENNESSEE VALLEY AUTHORITY
Energy Demonstration & Technology
MR 2N58A
Chattanooga, TN 37402-2801
C. M. Huang

THE JOHNS HOPKINS UNIVERSITY
Materials Science & Engineering
Maryland Hall
Baltimore, MD 21218
R. E. Green, Jr.

THE MATERIALS PROPERTIES COUNCIL, INC.
United Engineering Center
345 E. Forty-Seventh Street
New York, NY 10017
M. Prager

THE NORTON COMPANY
High Performance Ceramics Division
Goddard Road
Northborough, MA 01532-1545
N. Corbin

THE TORRINGTON COMPANY
Advanced Technology Center
59 Field Street
Torrington, CT 06790
W. J. Chmura

UNION CARBIDE CORPORATION
Linde Division
P.O. Box 44
175 East Park Drive
Tonawanda, NY 14151-0044
Harry Cheung

UNITED TECHNOLOGIES RESEARCH CENTER
MS 24, Silver Lane
East Hartford, CT 06108
K. M. Prewo

UNIVERSITY OF TENNESSEE AT KNOXVILLE
Materials Science and Engineering
Department
Knoxville, TN 37996
R. A. Buchanan
P. Liaw
C. D. Lundin

UNIVERSITY OF TENNESSEE SPACE INSTITUTE
Tullahoma, TN 37388
J. W. Muehlhauser

UNIVERSITY OF WASHINGTON
Department of Materials Science and Engineering
101 Wilson, FB-10
Seattle, WA 98195
T. G. Stoebe

VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY
Department of Materials Engineering
Blacksburg, VA 24601
W. A. Curtin
K. L. Reifsnider
Distribution

WESTERN RESEARCH INSTITUTE
365 N. 9th Street
P.O. Box 3395
University Station
Laramie, WY 82071
V. K. Sethi

WESTINGHOUSE ELECTRIC
CORPORATION
Research and Development Center
1310 Beulah Road
Pittsburgh, PA 15235
S. C. Singhal