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Abstract 

The growth rate of Toroidal Alfvhn Eigenmodes (TAE) driven unstable by resonant 

coupling of energetic charged particles is evaluated in the ‘ballooning’ limit over a wide 

range of parameters. All damping effects axe ignored. Variations in orbit width, aspect 

ratio, and the ratio of Alfv6n velocity to energetic particle ‘birth’ velocity, are explored. The 

relative contribution of passing and trapped particles, and finite Larmor radius effects, are 

also examined. The phase space location of resonant particles which interact strongly with 

the modes is described. The accuracy of the analytic results with respect to growth rate 

magnitude and parametric dependence is investigated by comparison with numerical results. 
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I. INTRODUCTION 

In toroidal plasma confinement devices, toroidal AlfvCn eigenmodesl (TAE modes) can 

be destabilized by the presence of energetic charged particles produced by fusion reactions, 

ICRF heating, or neutral beam injection. It has been observed in recent experiments2 that 

the excitation of TAE instabilities by ICRH heating or neutral beam injection result in 

the rapid loss of energetic particles. This suggests that energetic particles interact with a 

spectrum of unstable modes and experience rapid diffusion on a global scale. 

The instabilities are due to the resonant coupling of energetic particles with TAE modes. 

The energetic particles which can be in ‘resonance’ interact strongly and diffuse in phase 

space with a net transfer of particle energy to the growing unstable modes. Such ‘resonant’ 

particles will lie on surfaces in phase space. At low amplitudes, the ‘resonance surfaces’ will 

overlap (resonance overlap) only if the frequency interval between them is less than the linear 

growth rate. Thus for a discrete mode spectrum in which the frequency interval between 

resonance surfaces is greater than the linear growth rate, there will be no resonance overlap, 

and the particle phase space diffusion will be local. 

However, at finite mode amplitudes, the width of the ‘resonance surfaces’ is nonlinearly 

broadened when the particle ‘bounce frequency’ is larger than the linear growth rates. Thus 

‘resonance surfaces’ which do not overlap at low mode amplitudes may nevertheless eventu- 

ally overlap if the unstable modes can grow to high enough amplitudes before the onset of 

nonlinear saturation. 

Under certain circumstances, this nonlinear broadening can be effective in inducing res+ 

nance overlap of all modes even in circumstances where resonance overlap at low amplitudes 

occurs for only a small subset of unstable modes. Such unstable modes can grow to signifi- 

cantly larger amplitudes when there is resonance overlap than otherwise due to the increased 
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free energy which can be extracted from the particles before the modes are stabilized by 

quasilinear relaxation. This small subset of modes grows to amplitudes for which the bounce 

frequency exceeds the linear growth rate, and the intrinsic width of the corresponding reso- 

nance surfaces is thereby broadened so that resonance overlap of nearby resonance surfaces 

can now occur. The mode amplitudes continue to increase, triggering a cascade in which 

more and more resonance surfaces successively oveiclap in a manner analogous to a ‘domino 

effect.’ The result will be global phase space diffusion and enhanced loss of energetic particles 

from the containment device. 

This ‘domino effect’ has been demonstrated by E3erk et d3 It is therefore of some interest 

to investigate the relevance of the ‘domino effect’ as a possible explanation for the energetic 

particle losses observed in TAE instability experiments. The relevance of the ‘domino effect’ 

depends on the distribution of unstable modes and the extent to which TAE growth rates 

can or cannot establish resonance overlap for a few or many modes. To address the issues 

of resonance overlap, we have initiated an investigation to locate the regions in phase space 

where the resonant particles interact strongly with unstable TAE modes, and to explore the 

dependence of the TAE growth rates over a wide range of the parameters. 

The linear growth rates have been calculated by many Analytic 

were obtained in the limit in which: (1) the inverse aspect ratio E is small, E - ao/& << 1; 

(2) the particle ‘banana width’ Ab - q t ~  is small compared to the separation A - (no g)-’ 
between mode rational surfaces, A >> Ab. a0 is the minor radius, & the major radius, q the 

safety factor, TL the particle Larmor radius, and no the toroidal mode number. 

The regimes of interest, however, are often outside these limits. Because of the compli- 

cated nature of the spatial mode structure and the particle phase space trajectories, these 

instabilities have been investigated primarily by numerical methods. It is therefore a tedious 

task to establish the growth rate dependence on the large number of parameters involved. 

Consequently numerical surveys often cover a limited range of parameters, and it is a useful 
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supplement to such surveys to determine the accuracy of the analytic results with respect 

to growth rate magnitudes and parametric dependences. 

In this paper, we calculate the growth rates perturbatively using the lowest order ‘bal- 

looning’ eigenfunction. In Sec. 11, we outline the formalism employed. In Sec. 111, we describe 

the particle phase space trajectories in the equilibrium fields and in Sec. IV we integrate the 

linearized Vlasov equation to obtain the perturbed energetic particle distribution function. 

In Sec. V, we map the regions in phase space where the resonant particles are located, eval- 

uate the resonant particle energy transfer, and determine the TAE growth rates. In Sec. VI, 

we discuss the growth rate scaling with respect to the parameters &/e& V A / V O ,  E ,  and TL. 

&,/&A is the ratio of the ‘banana width’ to the ‘internal mode width,’ and VA/VO the ratio 

of the AlfvQn speed to the ‘birth’ speed of the energetic particles. 

It is found that the numerically calculated growth rates increase proportionately with 

Ab/cA when &/&A < 1, in agreement with the analytic theory , and its magnitude is 

within 20 percant of the analytic result when E .l. As &,/EA approaches and increases 

above unity, the growth rate levels off,eventuaUy reaching a maximum at &,/A - 1. This 

maximum is lower than the predicted analytic maximum by 20 percent when E = .025, and 

can be as much as a factor of four lower when E = .2. The growth rate decreases thereafter 

as &/A exceeds unity. The effect of finite Larmor radius is to suppress the growth rate even 

further. When &/&A < 1, the growth rates for VA/VO < 1 are larger than the growth rates 

for VA/VO > 1. However, their maximum values occurring at &,/A - 1 are approximately 

the same when V A / V ~  2 but begin to decrease when V A / V ~  > 2. 

These results are consistent with and complementary to the growth rate scalings previ- 

ously obtained by Fu et aL6 
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11. FORMALISM 

We describe AlMn modes in terms of the perturbed perpendicular magnetic potential 

Al = A"l exp(-iwt). In equilibria with small plasma beta, the sources of the perturbed 

plasma currents are the ion polarization drift and the perturbed equilibrium current 

N m c  1 
j l = u 2 2 L A "  1 - B x [ J  x (V x Al)]. 

B2 

We will neglect the perpendicular components of the equilibrium current ( J )  and we take 

J = B to be in the direction of the equilibrium magnetic field B. 

The eigenmode equation is then given by the following variational quadratic form 

A: * (V x A,) w247r Np mp -+ 4 r B .  J A,.Al-- B2 c B2 J d 3 r  [(V x A?). (V x A l )  - = 0 (1) 

where we have introduced the adjoint function AT. Since V - J = 0, this quadratic form is 

self-adjoint: 

For shear Alfvkn modes, involving field line bending and negligible compression, we may 

take the field variable = VlQ, = V@- b b.V@, where b = Q. The field @(T, 8, c )  
of toroidal eigenmodes can be expressed as a sum of Fourier modes in the generalized poloidal 

to be 

angle 8 

where 8 = Jel del (1 + (r/&) cos el)-', c is the toroidal angle, & the major radius, and 

r, 81 the radial, azimuthal angular coordinates of the minor cross-section. We assume circular 

equilibrium magnetic flux surfaces. The equilibrium magnetic field is B = % Vr  x V(q6-c) 

with safety factor q(r) = 
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TAEmodes have the feature that the Fourier amplitudes @m ( r )  have similar radial depen- 

dencies, localized in the neighborhood of mode rational surfaces defined by m - noq(r) = 0. 

In the limit of high toroidal mode number no, there is approximate translational symmetry 

(ballooning symmetry): 

@ m ( r )  x $(noq(r>-m) exp(-im&) = 4((r-ro)/A-l) exp(-i(m+l)eo) = q&(r) exp(-imo80) 

(3) 

where m = mo + 4, TO is the location of a reference mode rational surface (noq(r0) = mo) 

corresponding to a reference poloidal mode number mo, q(r) is considered to be an increasing 

function of T with 2 approximately constant, A = (no %)-' > 0 is the separation between 

mode rational surfaces, and 00 is the phase shift between successive Fourier amplitudes. 

Hereafter we consider the high-no limit and we assume exact ballooning symmetry. 

Let J(q) be the Fourier integral transform of q5(%q(r) - m) 

We can therefore represent the field variable @ in the form [8] 

= &e + ~ T N  - eo) exp (inoq(e + ~ T N  - eo) - iwc) . 
N 

The variational quadratic form simplifies to 

(4) 

where higher order terms in l/w have been neglected. The associated eigenmode equation 

can then be approximated by the following second order differential for &(q) 
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8 2  where +oo > 7 > -00, QO = Q(TO) ,  SO = 2 2, TI; == 4xN:mp, Z = 2 ( € 0  + A,), EO = T O / & ,  

and A, x ~ 0 / 4  is a parameter introduced to account for the Shafranov shift of the equilibrium 

flux surfaces. The local dispersion relation for w is obtained by solving this equation subject 

to the boundary conditions J(q) + 0 as 171 --$ 00. 

For So - 1 and 171 2 (1/2) >> 1, 

(8) 
-* 1 1 4 = a* - exp (i(7 + e0) /2 F '11) + a** -- exp (-i(q + 0 0 ) / 2  F '7) lrll I771 

where the f sign refers to positive and negative d u e s  of 7, a** are the complex conjugate 

of a*, a(*) are arbitrary constants. For exponentially decaying solutions, we require a real. 
In order to discuss the destabilization of shear I4lfv6n modes due to the presence of a 

species of energetic particles, we add to the perturbed1 plasma current the contribution of the 

perturbed particle current $ = e, J d3v 6 f v, where 6 f is the perturbed particle distribution 

function. We assume the particle density to be a small fraction of the main plasma density 

and we treat the presence of energetic particles pertixbatively. 

The first order correction a;?, to the eigenfunction A, is determined by 

where we assume exponential growth exp(y t )  of the mode amplitude with growth rate y. We 

take the scalar product of this equation with 2: and we integrate over space to annihilate 

the left-hand side. We then obtain the following explicit expression for the growth rate 

where Ht = -: A: vl. 
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The perturbed distribution function Sf is determined by the linearized Liouville equation 

where Ho is the equilibrium Hamiltonian and HI the perturbed Hamiltonian. 

111. EQUILIBRIUM HAMILTONIAN AND PARTICLE TRA- 
JECTORIES 

Since we consider frequencies w much less than the cyclotron frequency 

we approximate Ho with the following Hamiltonian for guiding center motion: 

= eBo/mic, 

where T = T(Pc) is determined by Pc + JF d . 9  = PO = constant, and the coordinates 

T , @ , [  of the particle guiding center are related to the canonically conjugate coordinates 

Pe, &e7 Pc7 Qc by 

'i; @ = Q e - -  Ro sinQe + ... 
f + - cos Qo) - p Po} Ro 

The magnetic moment p is a constant of the guiding center motion, the canonical momentum 

Pc is constant due to axisymmetry, and p = q(;p). We have neglected terms higher order in 

the Larmor radius 9 < 1, the inverse aspect ratio f < 1, and the orbit width parameter 

9 < 1. The particle orbit is closed and periodic in the PO - Qe plane. The constant PO is 

chosen so that the time average of T - T over a periodic trajectory is zero. 

Motion along the field line on a magnetic flux surface at f is described in terms of the 

variables PO, &e. 
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The Hamiltonian equations of motion are 

It may be verified that the guiding center drifts in the radial direction and across magnetic 

field lines are: 

where the guiding center drift velocity VD is 

The particles may be grouped into two categories: (1) passing particles with energies 

HO > pBo(1 + T / & )  which encircle the magnetic axis; (2) trapped particles with energies 

pBo(l+ F/&) > Ho > pBo(1 - T/&) ,  bounded in &e, which ‘reflect’ and form ‘banana’ 

orbits. 

A. Passing particles 

We solve the equation for Qe by quadrature. For passing particles, with initial condition 

Qe = 0 when t = 0, we obtain: 

- = 2u Qe dQe ’ (1 - tc2 sin2 (Qe/2)) 1’2 
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where 
{Ho - &(l- T- /&)} ' /~  t 

(2mi) 1 1 2 ~  & 
U = O  

2 2PBO(T-/&) 
I C =  

{Ho - PBo(1- f/&)} 

The parameter o = +1 or = -1, depending on the direction of circulation of the 

passing particles about the magnetic axis. 

In terms of Jacobian elliptic functions sn, cn, dn and their Fourier series representation, 

we have: 

sin(Qe/2) = sn(u, K )  

n' sinne 41r2 O0 

dn(u,K) = - K ~ K ~  n=l c (1+q7ln) 
2 8  sinQe = -- - 

K2 au 

cos Qe = (1 - 2sn2(u, I C ) )  = 1 + 

K = K ( I c ~ )  are the complete elliptic where Qe, 4, are oscillatory in 0, E = and 

integrals of the first and second kind respectively, and i j  = ij( I C ~ )  = exp (- K (1 - K ~ )  / K ( K ~ ) ) .  

For particles with small 'pitch angle' K~ < 1 ,far from the separatrix boundary between 

passing and trapped particles, 
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where Ab is the orbit excursion from a flux surface (orbit width). 

B. Trapped particles 

Similarly, for trapped particles, we obtain: 

- = 2u Qe dQ0 ' 112 
(t9 - sin2(Qe/z)) 

where 

and 

np cos2ne 
2E' 4x2 O0 

K' l+i7;:5 ( 1 - p " )  
C O S Q ~  = 1 - 2tPsn2(u, 6') = - - 

t 
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IV. PERTURBED HAMILTONIAN AND DISTRIBUTION FUNC- 
TION 

The perturbed Hamiltonian is 

i ICl VD JO (F) $(0 + 27rN - 0,) exp {inoq (0 + 27rN - 00) - inoc - iw t }  
e 

c N  
H1 = -- 

(20) 

The Bessel function JO (w) takes account of finite Larmor radius effects. 

Substituting the solutions of the equilibrium trajectories, we express HI in terms of the 

variables Ho, p, T ,  F - TO, 8. 

For passing particles 

HI = fig (Ho, p ,  T ,  T - ro, 0)  exp (-2 52 t - inoqo'oeo) 

where firA is periodic in 8 

and 
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where 8' = 0 - 80 and 

We have made use of the fact that noq(ro) = mo = integer, we have assumed that 8 M 2, 
a n d s = q $ .  ;F a- 

We determine the perturbed distribution Sf by integrating along the equilibrium phase 

space trajectories 

Sf = - J t d t [ F ( H o , ~ ) ,  H1] = H1 aHo dF + / t  dt H1 (iw- dF + inoif -) dF 
dHo mrR, @T 

and we obtain 

For trapped particles 

where 
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where = 8 + 27rN - 80 and 

The perturbed distribution is 

V. GROWTH RATE 

We consider a ‘slowing down’ distribution function for the energetic particles of the form: 

27rv03 {g(a, p, f)/(V3 + a;)) G ( V , ~ , T )  = 
1 2s de J d3v v2 { g(v, p, t ) / ( ~ ?  + 8;)) h( 1 - io) 

exp [-(I - X)/6X] + exp [-(I + x)/6A] 
6X [I - exp(-2/6X] g(a, P? F) = 

A(& r )  = (1 - p(1 - P/&))”2 

1 
6x0 + - A In 

3 6X(V) 

where p = pBo/Ho, v = (2H0/mi)”~, a = V/VO, V I  = VZ/VO,  h(v) is the step function, m&/2 

is the birth kinetic energy, and the physical meaning of the constants 6x0, A, V I  is discussed in 

Ref. 10. The distribution function F is normalized so that p ^ ( f )  = (8~rni/3B,2) (&)I d9/d3vv2F 

is the mean beta of the energetic particles. 

2* 

0 

For 6X(v) >> 1, the function g ( a , p , r )  + 1 and the distribution function is isotropic 

G(V, p, 7) 1 / ( ~ 3  +a;), vz 1. 

To calculate the growth rate of TAEmodes, we substitute the solutions for Sf in(see 

Eq. (10)): 
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where is replaced by the complex conjugate 2;. 
It is sufficient to consider only the response of the ‘resonant’ particles to the perturbing 

fields. The ‘resonant’ particles lie on a ‘resonant’ surface, determined by: 

passing [a - o e w b ] ~ ~ @ ,  = 0 [ P - ~ ~ ~ 1 I - I 0 = : E ,  = O  
Or (Ho = Era, /J, F) = 

in the three-dimensional particle phase space Ho, p, F. 

trapped 

For passing particles, the resonance condition can be written 

where w M -vA/2qO&, Era = m,w,2,/2, and Z(e) is the dimensionless distance from the 

mode rational surface of the mo + L azimuthd component. 

In Fig. 1, we plot Xpas as a function of the pitch angle parameter K~(P) = 2pao/ (1 - p( 1 - E O ) )  

for constant d u e s  of resonant velocity gireg and of magnetic moment (pB0) = p$,. The 

‘toroidal’ drift is (Q,) = - (Ho~o)/(mis’S2iRo(l+&o)) at 

K~ = 1. Thus Xpas increases monotonically from V,I/ (2vou,) as K~ increases from zero to 

= 0 at tc2 = 0, and (Q,) 
Pas P= 

unity. Resonant particles with Bre  < 1 are in the region 131 > V A /  (2v0) and have values of 

K~ bounded by the lines tc2 = 0 and 8, = 1. The 1:esonant energy G : ~  of passing particles 

at z with ‘pitch angle’ tc2 is determined by the line of constant B~ passing through the 

point (XpM = 2 , ~ ~ ) .  Since the particle magnetic moment is conserved, the particles are 

constrained to move along lines of constant (pB0). 

For trapped particles, the resonance condition can be written 

In Fig. 2 ,  we plot Xt, as a function of ~“(p) = l / ~ ~ ( p )  for constant values of reso- 

= nant velocity and of magnetic moment (pB0) =: ph. The ‘toroidal’ drift is (Os) 
trp 
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(Hoqo) / (miTRiRo(1- E O ) )  at d2 = 0, and ( Q c )  

and hence its direction changes at an intermediate value of d2. Thus at 

and positive, while at # = 0, Xt, = ( v ~ ( 1 -  E o ) / v o B r a  - qorLVr,,/SoA} / { (2~0)l/~ (1 - 
Resonant particles have values of 

= - (Ho~o) / (WTS&&(l+ E O ) )  at d2 = 1, 

+ 1, Xtv is large 
trp 

which are bounded by the lines tcn = 0 and V, = 1. 

Resonances occur at integer values of Xtv, t‘ = -Xtq. The resonant energy VL of trapped 

particles with ‘pitch angle’ d2 and in resonance with bounce harmonic number t‘ is deter- 

mined by the line of constant gres passing through the point (Xtv = 4, d2). 

The perturbed distribution function has a simple pole on this surface. We follow the 

Landau prescription to evaluate the ‘resonant’ particle contribution to the perturbed current 

by making the substitution: 

- 1 6 (Ho - J%s) - -i7r 
A. Passing particles 

For passing particles, we obtain the growth rate: 

where 

x G(v, ji, ~ ) h ( l -  V) (35) 
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a- and Z = (F - ro)/A - t ,  rL = vO/Q,, w* = $, WOb = AL 
90% 

l"Iw = Upas (OZ, F) x Upas (az, ro) , x = ( r  - ro)/A - e, W = W(x ,  ro) .  

If we take the I C ~  < 1 approximation to characterize the particle orbits, we can obtain an 
approximate analytic expression for ypMhg in the limit of: (1) small Z << 1 where a#CL(r) is 

sharply peaked at values of ( r  - ro)/A = L f 3 with a spatial width of ZA; (2) small orbit 

width satisfying the inequality &/A << 1. We then have: 

V A  wb % a(1 - p)"2woa, 

- (7 - To) x,, M - 

Bra 2voaZ(1 - p ) 1 / 2  

(e - eo) - -- "b (e - eo) case A A 

and approximating $(q) by its asymptotic expansion (Eq. (8)) 

A +aJ 
He M - 1 27r --oo 

iA 

dq $ (q) q sin (q  + 00)  exp (-i l(q + 0 0 )  - izpm) 

1 1 1 
2 2 v, p) + a-h;(z + -, V, p ) }  exp (-i(t + n - -)eo) 

iA 1 1 1 + - { a+*k(z - - 8, p )  + Q-*h;(z - -, 8, p)} exp + n + p0) 2rAb n 2' 2 

1 00 1 A 

h,(z+2,?j,p) =i dqnJ,(?)q-'exp(a(Z+- 2 -n)q-r'q+in- 

where the branch of the square root is determined by Izl < 1. f i e  has maxima at Z = n f 1/2 

with the largest maxima occurring at z = &4,fi. For an isotropic distribution function 

with ?jl << 1 (ignoring the contributions proportionatl to E), we obtain 
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where we assume 5 = VA/VO < 1, and we take into account only the dominant contribution 

(due to the energy weighting) in the neighborhood of = zki . 
Since 

we have 

J dxW 

Ab 1 > F > -  A 

Ab I > - > > .  A 
For 1 > > Ab/A, the growth rate may be approximated by5 

and for 1 > Ab/ > 

where F M 5.50/8 (Eq. (9)). 

B. Trapped particles 

For trapped particles, we obtain the growth rate 
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where 

VI. NUMERICAL RESULTS 

We determine the eigenfunction &q) by numerically solving Eq. (7) subject to the bound- 

ary condition $(q) + 0 as 1.171 4 00, and we evaluate the Fourier coefficients &,  fit,^ by 

numerical integration after substitution of &q) and the solutions of the particle phase space 

trajectories in Eqs. (23) and (27). In Fig. 3, we plot the magnitude of the resonant particle 

coupling I&/(miv,2)1 as a function of position 2 for passing particles with zero pitch angle 

tc2 = 0. For small orbit width qor~  < EOA, fit has fmite peaked maxima at z = &!j and 

z = Ai. q o r ~  measures the typical ‘banana width’ of the passing particles and eoA the 

‘internal radial width’ of & q5(x). However (assuming v ~ / v o  < 1) the coupling strength is 

largest in the neighborhood of Z = f $ due to the resonant energy weighting. As the pa- 

rameter q o r ~ / ~ o A  approaches and exceeds unity, the particle ‘banana width’ becomes larger 

than the ‘internal radial width,’ the particle interacts strongly over a smaller fraction of its 

periodic trajectory, and the resonant particle coupling to the mode progressively weakens. 

At the same time there is orbit broadening of the region of fmite resonant particle coupling. 

For 1 > q o r ~ / A  > i ( 1 -  VA/VO),  VA/VO < 1, EO -, 0, the width 62, of the ‘resonance region’ 

about 121 = f is approximately 63& = { (1 + ~ ~ O ~ L V , ~ / Z I O A ) ’ / ~  + 1 4 - VA/%O. 11 
In our numerical investigation, we ignore the typically damping (negative) contribution 

to y of the terms proportional to E which are negligible when Iw/w*I < 1. This enables us 

to focus on the growth (positive) contribution to 7 (the term proportional to g) without 
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having to specify a value for the mean beta TO 

the notation y* to denote the contribution proportional to $ 
of the energetic particles. We introduce I 

where 

and ll;= and ll&, are determined by Eqs. (35) and (39) excluding the term proportional to 

6 G(3, p, s;)h(l - 3). We use Eqs. (41) and (42) to numerically calculate the TAE growth 

rates in terms of the parameters 2 q 0 ,  SO, E, E, y, 00. 
h 

Unless otherwise specified, we consider energetic particles having an isotropic slowing 

down distribution function. In Fig. 4, we plot I'i for passing particles as a function of 

qOrL/EO A for different values of €0. When qorL/&oA < 1, I?; increases linearly with qorL/coA, 

reflecting primarily the increase in the diamagnetic drift frequency Iw*i, and in agreement 

with the analytic theory. For €0 5 .l, the magnitude of I?; is within 20% of the predicted 

magnitude (Eq. (36)).  The rate of increase of r; decreases when Q O ~ L / E O A  - 1 and the 

resonant particle coupling begins to weaken. I?; reaches a maximum when qorL/EoA is larger 

than unity and the orbit width is of the order of the separation between mode rational 

surfaces qorL/A - .55). This maximum is close to the magnitude given by Eq. (37), namely 

a <(1 - S2), when EO -+ 0 and the condition for its validity can be well satisfied. For finite 

values of € 0 ,  I'; can be lower than the above limit by as much as a factor of 4(eo = 0.2). 

Thereafter, r; decreases as qorL/A increases above unity. 

a0 

In Fig. 5,  we compare the relative contribution to the growth rates of trapped particles 

rt and passing particles I';. I?; is typically lower than r; for isotropic distribution functions. 
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The structure displayed by the plot of I?,* is due to the appearance of additional trapped 

particle bounce frequency resonances as qor,J~oA increases. When qor~/SoA << uA/u0, 

the toroidal drifts are negligible and resonances occur for integer values of t satisfying t < 

-{vA(~ - ~0)’/’}/{~0(2~~)’/~}. Thus for UA/VO = 2/3 and EO = .2,t= -1, -2, * - * etc. When 

qor~/SoA = V A ( ~  - EO) /VO,  the resonance at t = 0 is now possible, and it is the onset of this 

resonance which is responsible for the increase in I?,* seen in Fig. 5 at q o r ~ / ~ o A  = 8/3. 

In Fig. 6, we plot I?* = I?;+I?,* as a function of q o r ~ / ~ o A  with and without (Jo (e) = 1) 

finite Larmor radius (FLR) effects for several values of EO. FLR effects weakens the resonance 

particle coupling. I?* with FLR is smaller than r* without FLR, the difference increasing in 

magnitude as q o r ~ / A  increases above unity. 

In Fig. 7, we plot I?* as a function of qorL/EoA for different values of UA/V,-,. For small 

orbit widths q o r ~ / ~ o A  < 1, I?* is significantly lower in magnitude when UA/VO > 1 since 

there are no particles in the neighborhood of the strong ‘resonance’ at Z = f . 5 .  However, 

the maximum values of I?* are comparable when VA/VO 5 2 due to the effects of finite orbit 

width, but begin to decrease when VA/VO > 2. Qualitatively similar results are obtained for 

‘beam-like’ distribution functions as may be seen in Fig. 8. 

VII. SUMMARY 

Starting with a perturbed field representation satisfying the required periodicities in the 

toroidal angle C and the generalized poloidal angle 8, and treating the presence of energetic 

particles perturbatively, we derived expressions for TAE growth rates which reduce to the 

conventional expressions in the ballooning limit.6 We calculated the TAE gowth rates nu- 

merically with all damping effects neglected, and we discussed their behavior over a wide 

range of parameter space. 

The instabilities are due to the resonant coupling of energetic particles with TAE modes. 
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The resonance condition for passing particles with small pitch angles ( K ~  -+ 0) is Izl = 

VA . Assuming - < 1, the resonance particle coupling is largest in the neighborhood 
2voVra VO 
of 121 = i. The effective spatial width SZra of this resonance is SZ, N EOA for small orbit 

widths qorL < EOA. As - ‘Or’ approaches and exceeds unity, the strength of the resonance 

coupling is reduced. At the same time, the effective resonance width SZ, is broadened by 

finite orbit effects, and for 1 > QOTL/A > $ (1 - VA/VO), SZrm is approximately 

EOA 

For trapped particles with large pitch angles tc2 + 00, in resonance with the eth harmonic of 

the bounce frequency, the resonance condition is 

Many harmonics contribute to the growth rate with the lowest harmonics dominant. 

Our numerical results on TAE growth rates may be summarized as follows: 

1. The ‘growth rate’ for passing particles is in agreement with the analytic theories 

only in the limit of EO -+ 0. For qorL/EoA < 1, r’; is within 20% of the analytic result 

when EO 5 .l. I’; reaches a maximum at qorL/A - 1, and this maximum is lower than 

the predicted maximum by N 20% when €0 = .025 and as much as 4 times lower when 

Eo = .2. 

2. The ‘growth rates’ I?* decrease as qorL/A increases above unity. 

3. For isotropic distribution functions, the trapped particle ‘growth rate’ l?: is lower than 

the passing particle ‘growth rate’ r’;. 

4. Finite Lazmor radius effects further suppress the growth rates when qort/A > 1. 
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UA 

VO 
5. Although the ‘growth rates’ I?* in the regime g,3TL/EOA < 1 are largest when - < 1, 

their maximum values occurring at gorL/A - :I are comparable when vA/v,, 5 2 but 

begin to decrease when UA/UO > 2. 

These results provide information on resonant particle coupling and TAE growth rates. 

With additional information on TAE mode distribution which must be obtained from 

an analysis of the eigenvalues of global Alfvhn eigenmodes, we will be able to assess 

whether the ‘domino effect’ is a viable mechanism for producing rapid diffusion on a 

global scale when TAE instabilities are excited. 
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Figure Captions 

[l] Contours of constant Tire and  BO); Tires of resonant passing particles at with ‘pitch 

angle’ K~ is determined by line of constant vres passing through the point (XPw = 2, K ~ ) .  

[2] Contours of constant Vres and  BO); B r a  of trapped particles with ‘pitch angle’ K~ and 

in resonance with bounce harmonic number l is determined by line of constant gre 

passing through the point (X t ,  = -e, K”). 

~ 

[3] Variation of resonant particle coupling If&/rn&l (arbitrary units) with Z for several 

values of qor~ /A .  

[4] Variation of passing particle ‘growth rate’ r5 with qorL/aoA for several values of 

E0;without FLR; straight solid lines correspond to analytic results. 

[5] Relative contributions to ‘growth rate’ I?* of passing particles r; and trapped particles 

r;;with FLR - and without FLR . - -; variation with qor~/eoA. 

[6] ‘Growth rates’ r* with FLR - and without FLR - e - ;  variation with q ~ r ~ / & o A  for 

several values of EO. 

[7] ‘Growth rate’ r* with FLR; variation with qor~/aoA for several values of VA/VO; 

isotropic distribution. 

[8] ‘Growth rate’ I?* with FLR; variation with qor~/&oA for several values of VA/VO; ‘beam- 

like’ distribution: 6Ao = .1, A = 2, BI = .61. 
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