Three dimensional characterization and archiving system

PDF Version Also Available for Download.

Description

This system (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. It is in the final phase of a 3-phase program to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and radioactive and organic contamination is a critical D&D task. Surface characterization includes identification of dangerous inorganic materials such as asbestos and transite. 3D-ICAS robotically conveys a multisensor probe near the surfaces to be inspected, using coherent laser radar tracking, which also provides 3D facility maps. High-speed automated organic analysis is provided by ... continued below

Physical Description

52 p.

Creation Information

Clark, R.; Gallman, P.; Gaudreault, J.; Mosehauer, R.; Slotwinski, A.; Jarvis, G. et al. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This system (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. It is in the final phase of a 3-phase program to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and radioactive and organic contamination is a critical D&D task. Surface characterization includes identification of dangerous inorganic materials such as asbestos and transite. 3D-ICAS robotically conveys a multisensor probe near the surfaces to be inspected, using coherent laser radar tracking, which also provides 3D facility maps. High-speed automated organic analysis is provided by means of gas chromatograph-mass spectrometer sensor which can process a sample without contact in one minute. Volatile organics are extracted directly from contaminated surfaces without sample removal; multiple stage focusing is used for high time resolution. Additional discrimination is obtained through a final stage time-of-flight mass spectrometer. The radionuclide sensors combines {alpha}, {beta}, and {gamma} counting with energy discrimination of the {alpha} channel; this quantifies isotopes of U, Pu, Th, Tc, Np, and Am in one minute. The Molecular Vibrational Spectrometry sensor is used to characterize substrate material such as concrete, transite, wood, or asbestos; this can be used to provide estimates of the depth of contamination. The 3D-ICAS will be available for real-time monitoring immediately after each 1 to 2 minute sample period. After surface mapping, 3-D displays will be provided showing contours of detected contaminant concentrations. Permanent measurement and contaminant level archiving will be provided, assuring data integrity and allowing regulatory review before and after D&D operations.

Physical Description

52 p.

Notes

INIS; OSTI as DE97052263

Source

  • Conference on industry partnerships to deploy environmental technology, Morgantown, WV (United States), 22-24 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97052263
  • Report No.: DOE/MC/30176--97/C0823
  • Report No.: CONF-9610231--20
  • Grant Number: AC21-93MC30176
  • Office of Scientific & Technical Information Report Number: 491887
  • Archival Resource Key: ark:/67531/metadc681388

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • June 14, 2016, 7:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Clark, R.; Gallman, P.; Gaudreault, J.; Mosehauer, R.; Slotwinski, A.; Jarvis, G. et al. Three dimensional characterization and archiving system, article, December 31, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc681388/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.