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Abstract

Magnetic reconnection has been experimentally studied in a well-controlled,

two-dimensional laboratory magnetohydrodynamic plasma. The observations

are found to be both qualitatively and quantitatively consistent with a gen-

eralized Sweet-Parker model which incorporates compressibility, downstream

pressure, and the effective resistivity. The latter is significantly enhanced

over its classical values in the collisionless limit. This generalized Sweet-

Parker model also applies to the case in which an unidirectional, sizable third

magnetic component is present.
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I. INTRODUCTION

Magnetic reconnection is the topological change of a magnetic configuration through

breaking and rejoining of magnetic field lines. It plays a crucial role in determining the

topology of magnetic fields in space and laboratory plasmas1–3. Although this is a local-

ized process, it often causes fundamental changes in macroscopic configurations, such as in

solar flares4, magnetospheric substorms4, and relaxation processes in laboratory plasmas5.

Magnetic reconnection also provides the most plausible mechanism for releasing the energy

stored in the magnetic field to plasma kinetic and thermal energies as observed in solar

flares, auroral phenomena, and laboratory plasmas.

Magnetic reconnection was first suggested more than 50 years ago6 in order to explain

activities associated with observed solar flares. Long and quiet periods (days to months)

exist before a sudden (minutes to hours) explosion of a solar flare. Rapid changes in macro-

scopic structures associated with strong magnetic fields have been a mystery since they were

first observed more than 40 years ago. Sweet7 and Parker8 separately proposed the first

quantitative model of magnetic reconnection in two-dimensional geometry to solve this mys-

tery. This model was rather revolutionary in the sense that it was shown for the first time

how localized “reconnection” of field lines can cause the observed macroscopic changes.

Soon after it was proposed, however, it was realized that the Sweet-Parker model gives

a characteristic time too slow to explain solar flares. A typical Alfvén time τA is on the

order of 1 s while the resistive diffusion time τR is on the order of 1014 s, resulting in a

Lundquist number S ≡ τR/τA ≈ 1014. The Sweet-Parker model predicts a time-scale of

√
τAτR ≈ 106-107 s (see the next Section) for macroscopic changes to take place, compared a

typical time-scale of 103-104 s of solar flares. Because of this discrepancy, the attention has

shifted to Petschek’s model9 and other models based on a much smaller diffusion region and

standing wave structures (shocks)10,11. The much smaller size of the diffusion region allows

a much faster reconnection rate which can be consistent with observations. The Petschek

model has since been favored over the Sweet-Parker model – especially because of its faster
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predicted reconnection rates.

Despite the theoretical and computational progress made in past decades on magnetic

reconnection, all these models have remained unchallenged by a decisive MHD plasma ex-

periment in an appropriate geometry. Stenzel and Gekelman12 carried out a series of exper-

iments in a linear device and in the electron magnetohydrodynamic (EMHD) regime where

only electrons are magnetized while most space plasmas of interest are in the MHD regime

where ions are also magnetized. Although detailed local fluctuations were measured in their

experiments, quantitative tests of these leading two-dimensional (2D) MHD models were

not possible. More recent experiments have focused on the effects of the third field compo-

nent during reconnection from both global13,14 and local15 points of view. In this article, we

report such quantitative tests16 of the Sweet-Parker model in the Magnetic Reconnection

Experiment (MRX)17.

The MRX device is the most recent device dedicated to investigate the fundamental

physics of magnetic reconnection in MHD plasmas. In MRX, both the local and global

physics issues and their interrelationship are being extensively studied. The initial geometry

is made to be axisymmetric (and hence two-dimensional) although it can be made nonax-

isymmetric to study three-dimensional (3D) characteristics of reconnection. These plasmas

have a high conductivity (S ∼ 103) with the ion gyro-radius being much smaller than the

plasma size, satisfying conditions for MHD approximations. The well-controlled environ-

ment in MRX permits formation of well-defined, two-dimensional current sheets in a stable

manner, enabling quantitative comparisons with 2D MHD models through approximations

based on space-averaged analysis. A significant finding is that the observed reconnection

rate can be explained by a generalized Sweet-Parker model which includes compressibility,

downstream pressure, and the effective resistivity. The latter is significantly enhanced over

its classical values in the collisionless limit.

Arrangement for other sections is the following. In Sec. II, a brief derivation of the

Sweet-Parker model is given. In Sec. III, experimental apparatus of MRX including major

diagnostics are described. After the presentation of the main results in Sec. IV, implications
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of the results will be discussed in Sec. V, followed by conclusions in Sec. VI.

II. THE SWEET-PARKER MODEL

A key element of the Sweet-Parker model is the existence of a ”diffusion region” – essen-

tially a rectangular box where the magnetic field diffuses and reconnects, as illustrated in

Fig. 1. The dimensions of such a ”box” are of crucial importance since it essentially decides

the rate of magnetic reconnection by balancing incoming and outgoing plasma and flux flow

and thus the time scale for reconnection. The length of this box is of macroscopic scale but

its width is determined by the local plasma resistivity which causes magnetic diffusion; i.e.,

faster reconnection occurs with larger resistivity. The Sweet-Parker model uses resistivities

estimated by classical theories, such as the Spitzer resistivity18.

The motion of magnetic field lines in an MHD plasma with resistivity η is described by

∂B

∂t
= ∇× (V ×B) +

η

µ0
∇2B, (1)

where V is the flow velocity. The first term on the right hand side represents the effect of

plasma convection whose time-scale is Alfvén time τA = L/VA, where L is the plasma size

(or the length of diffusion region in the case of magnetic reconnection) and VA ≡ B/
√

µ0ρ

(ρ = mass density) is the Alfvén speed. The second term describes field line diffusion whose

time-scale is the diffusion time τR = µ0L
2/η. The relative importance of magnetic diffusion

to plasma convection is given by the Lundquist number S defined by τR/τA = µ0LVA/η. For

typical MHD plasmas such as solar flares4, S > 1010; for tokamaks, S > 107; and for MRX

plasmas, S <∼ 103.

Another important equation governing reconnection is the continuity equation,

∂n

∂t
+ ∇ · (nV ) ≈ ∂n̄

∂t
− n̄VR

δ
+

n̄VZ

L
= 0, (2)

where δ is the thickness (or width of the diffusion region) of the current sheet as shown in

Fig.1 and n̄ is the averaged density in the diffusion region. Figure 1 also indicates VR (VZ)
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as plasma flow speed across (along) the diffusion region. These flows are in the radial (R)

and axial (Z) direction, respectively, reflecting the geometry in MRX (see the next Section).

The last relevant equation is the equation of motion,

ρ

(
∂

∂t
+ V ·∇

)
V = −∇p + j ×B. (3)

Integration of this equation, (i.e., the R component across the current sheet and the Z

component along the current sheet) gives

∫ δ

0
ρ
∂VR

∂t
dR + pup +

1

2
ρV 2

R +
B2

Z

2µ0
− 1

µ0

∫ δ

0
BZ

∂BR

∂Z
dR = p0

=
∫ L

0
ρ
∂VZ

∂t
dZ + pdown +

1

2
ρV 2

Z +
B2

R

2µ0
− 1

µ0

∫ L

0
BR

∂BZ

∂R
dZ, (4)

where p0, pup and pdown are plasma pressures at the center and in the upstream and down-

stream regions, respectively. The last terms on both sides represent the magnetic tension

forces.

The original Sweet-Parker model7,8 assumes steady state reconnection (∂B/∂t = 0,

∂V /∂t = 0) in an incompressible plasma (∇ · V ∝ ∂n̄/∂t = 0) with uniform pressure

outside the diffusion region (pup = pdown) and with negligible ρV 2
R/2, B2

R/2µ0, and tension

forces. Then Eqs. (1), (2) and (4) can be reduced to VR = η/µ0δ, VR = (δ/L)VZ and

VZ = VA, resulting in a simple expression for the reconnection rate as measured by the

Alfvén Mach number, MA ≡ VR/VA =
√

η/µ0LVA = 1/
√

S. Therefore, a characteristic time

given by the model is τSP = L/VR = L/VA

√
S =

√
τAτR.

III. EXPERIMENTAL APPARATUS AND DIAGNOSTICS

Since a detailed description of the MRX device has been given in a previous paper17,

only major relevant parts are briefly mentioned here. When a plasma is inductively formed

by two internal coils (called the flux cores) in a quadrupole field configuration, the magnetic

field domain can be divided into three sections: two private sections surrounding each flux

core and one public section surrounding both flux cores [see Fig. 2(a)]. When poloidal flux
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in the private sections is reduced the poloidal flux is “pulled” back from the public section

to the private sections resulting in magnetic reconnection as shown in Fig. 2(b). Toroidally

symmetric shape of the flux cores ensures global 2D geometry for magnetic reconnection.

The low temperature (< 50 eV) and short-pulsed (< 1 ms) MRX plasmas have the advan-

tage that internal probes can be used routinely. Triple Langmuir probes are used to measure

electron density (ne) and temperature (Te) simultaneously. The plasma density measurement

has been calibrated by a laser interferometer which measures the line-integrated density. All

three components of B are measured during the reconnection process by a 90 channel 2D

pick-up coil array with 4 cm resolution. The poloidal flux function can be obtained by in-

tegration of BZ over the radius, Ψ(R, Z) = 2π
∫R
0 BZ(R, Z)RdR. A finer 1D pick-up probe

array with 0.5 cm resolution is used to measure the BZ profile across the current sheet15. Lo-

cal flow velocity can be determined either by a Mach probe or time evolution of Ψ(R, Z), i.e.,

VX = −(∂Ψ/∂t)/(∂Ψ/∂X) (X = R in the upstream region and X = Z in the downstream

region). The latter method is valid when the resistive effects are negligible, a condition

satisfied outside the diffusion region. Results from both methods are in good agreement,

and the latter has been used routinely because of its convenience. Probe perturbation of

the plasma is estimated quantitatively and observed to be less than 5%17. Typical plasma

parameters are as follows: B < 0.5 kG, Te=5-20 eV, and ne=0.2-1.5×1020 m−3.

IV. EXPERIMENTAL TESTS OF THE SWEET-PARKER MODEL

Because of the incompressibility assumption, the effects of the third component (per-

pendicular to the page in Fig. 1) of the reconnecting magnetic field vector do not enter

explicitly in the Sweet-Parker model. However, the third component has been identified

as an important factor in deciding reconnection rate13,15. When the third component (the

toroidal field BT in MRX) is negligibly small compared to the reconnecting field (BZ), i.e.

the null-helicity case, the reconnection proceeds faster, while in the case with a sizable BT ,

i.e. the co-helicity case, a slower reconnection rate has been observed. In the following sec-
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tions, the results from these cases are presented separately in comparison with predictions

from the Sweet-Parker model.

A. The Null-helicity Case

An example of driven magnetic reconnection in MRX is displayed in Fig. 3(a) and (b),

where both the measured magnetic field vector B and contours of the poloidal flux Ψ in a

single discharge are plotted in an R-Z plane. Qualitatively, this double-Y-shaped diffusion

region is consistent with the Sweet-Parker assumption on the existence of a rectangular

diffusion region. Quantitative tests of the Sweet-Parker model, however, requires adequate

measurements of all the basic plasma parameters.

In order to accurately determine current sheet thickness δ and peak current density,

the reconnecting BZ profiles across the current sheet are measured at Z = 0 by the fine

1D probe array. The measured BZ profiles are well fit into the Harris-type function19,

tanh[(R− R0)/δ], as shown in Fig. 3(c) and (d). A shot-averaged time evolution of several

key plasma parameters for driven reconnection is shown in Fig. 4. The current density peaks

at t = 290 µs, when δ is minimized and reconnection speed VR reaches its steady state of

about 3 km/s. The ne measured at the center of the current sheet keeps increasing until a

later time, while Te at the same location remains almost constant at 10-15 eV. In general, the

Lundquist number S is calculated from the measured Te based on the Spitzer resistivity18

(parallel resistivity, η‖). This is true for the case of co-helicity reconnection where the

current flows along a sizable third component in the diffusion region. However, perpendicular

resistivity η⊥(= 2η‖) should be used in the case of null-helicity reconnection since the current

flows essentially perpendicular to the field. A more detailed calculation which incorporates

profile effects of density and temperature gives a nearly identical expression for resistivity20.

A series of experiments has been performed in which BZ is varied from 200 G to 420

G while other conditions are kept constant, including the fill pressure pfill (6 mTorr). It is

observed that the reconnection rate decreases as BZ increases. A straightforward test of
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the Sweet-Parker model is shown in Fig. 5 where the reconnection rate is plotted against

1/
√

S. Clearly, the observation does not agree with the Sweet-Parker prediction (dotted

line). While the reconnection rate changes by a factor of 3, 1/
√

S changes only by a factor

of 1.5. Causes of these discrepancies can be found by systematically examining the validity

of each assumption made by Sweet and Parker in Eqs. (1), (2), and (4).

The first equation to be evaluated is Ohm’s law in the toroidal direction, ET +VR×BZ =

η⊥jT , which has been used to derive Eq. (1). All three terms are measured across the current

sheet. As shown in the inset of Fig. 6, ET (= −Ψ̇/2πR) balances with VR ×BZ outside the

diffusion region and η⊥jT inside the diffusion region. In this example, the measured effective

resistivity (η∗⊥ = ET /jT ) is about twice its classical value. It is found that the enhancement of

resistivity is a strong function of collisionality (characterized by the dimensionless parameter

λmfp/δ and dominated by changes in density), as shown in Fig. 6. A significant enhancement

(∼ 10) of the resistivity is observed in the collisionless regime (λmfp � δ).

We note that electron-neutral collisions are estimated to be negligible compared to

Coulomb collisions in the present experimental regimes. For Te =10-15 eV, the estimated

cross-section of electron-neutral collision is 7× 10−17cm2 including all possible processes21.

With the maximum possible neutral density of 4× 1014 atom/cm3 from pfill =6 mTorr, the

mean free path for electron-neutral collisions is ≥ 35 cm, much longer than 2-14cm of mean

free path due to Coulomb collisions.

The incompressibility assumption does not hold since the ∇ · V (or ∂n̄/∂t) term is not

negligible compared to the other terms in the continuity equation [Eq.(2)] as seen in Fig. 4,

which shows increasing density in the current sheet during reconnection. Retaining this

term in the continuity equation leads to an increased inflow,

VR =
δ

L

(
VZ +

L

n

∂n

∂t

)
, (5)

due to an accumulation of density at the center. Quantitative importance of compressibility

is shown in Fig. 7, where the ratio of the second term to the first term of the above equation

is plotted against MA = VR/VA. The accumulation of density can result in an increase
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in VR by as large as 40% especially in the cases of larger BZ or narrower current sheet.

Compressibility, which allows local density build-up, explains why higher central density is

observed in discharges with higher field even though the initial density is the same. We note

that the particle source term in the diffusion region is negligible in the present experimental

regimes. [It appears that in discharges with high pfill (>∼ 10 mTorr), the continuity equation

cannot be satisfied without an additional source term.]

Examination of each term in the momentum equation [Eq. (4)] reveals that all assump-

tions made in the Sweet-Parker model hold approximately true, except that pdown � pup

(dominated by differences in density), as measured by spatial scans of a Langmuir probe.

Figure 8 shows time evolution of densities measured at center (Z = 0, R = 37.5cm), up-

stream (Z = 0, R =30cm and 44cm), and down-stream (Z = −10cm, R = 37.5cm) regions.

The down-stream density increases in time and becomes comparable to the central density

later into reconnection while the up-stream density stays low and constant. The measured

electron temperatures are roughly flat over space. Therefore, the momentum equation is

modified to

V 2
Z = V 2

A(1 + κ)− 2
pdown − pup

ρ
, (6)

where κ ≡ (2/B2
Z)
∫ L
0 BR(∂BZ/∂R)dZ representing the relative importance of the down-

stream tension force, which is omitted in the Sweet-Parker model. Calculated from the

measured profiles of BR and BZ , values of κ range from 0.2 to 0.3, leading a slight (∼ 0.1)

increase in the outflow. However, the higher down-stream pressure pdown ∼ p0 � pup sub-

stantially reduces the outflow, as also shown in in Fig. 5. As S increases, the reconnection

rate decreases and the outflow slows to as low as 10-20% of VA.

By incorporating the effective resistivity, compressibility, and finite down-stream pres-

sure, the Sweet-Parker model can be modified to define an effective Lundquist number Seff

as

Seff =
µ0LVA

η∗
· 1

1 + Lṅ/nVZ

· VZ

VA

(7)
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so that MA = 1/
√

Seff. The observed reconnection rate is plotted against 1/
√

Seff in Fig. 9.

As expected, they are in good agreement. Indeed, the process of magnetic reconnection in

MRX can be explained quantitatively by a generalized version of the Sweet-Parker model.

B. The Co-helicity Case

In general, the third vector component may not be negligibly small compared with the

reconnecting components during magnetic reconnection happening in nature. Without the

third component (the null-helicity case), the reconnecting field lines are exactly anti-parallel,

while in the presence of an uni-directional, sizable third component (the co-helicity case), the

field lines reconnect obliquely. In the classical Sweet-Parker model described in Sec. II, the

effects of the third component of B do not enter because of the incompressible assumption.

Since the generalized Sweet-Parker model is applicable to the null-helicity case in MRX,

an interesting question is whether or not the same model can also explain the observed

reconnection rate in the co-helicity case.

Effects of the third component have been extensively studied in MRX15. Two major

differences have been observed during “pull” reconnection experiments in MRX: (1) a thin

double-Y-shaped diffusion region forms in the null-helicity case while an O-shaped diffusion

region develops in the co-helicity case; (2) the reconnection proceeds much slower in the

co-helicity than in the null-helicity even all other conditions are held constant.

In order to apply the Sweet-Parker model, a diffusion region with the shape of a rect-

angular box needs to be well-defined. At the first glance, unlike the null-helicity case, it

would appear that a diffusion region with an O-point is inconsistent with the Sweet-Parker

assumption of a rectangular box. However, a careful examination of the current density

profiles shown in Fig. 10(c) reveals that the thickness of current sheet is indeed well-defined

and it is almost independent of Z. The O-shaped fine structure resides well within the

current sheet and it is not important in defining a rectangular diffusion region. The profiles

of BZ , BT , and jT at Z = 0 are shown in Fig. 10(a) and (b). Again, δ is determined by
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fitting jT into the Harris-type current sheet19, sech2[(R− R0)/δ].

As in the null-helicity case, all three modifications to the original Sweet-Parker model

have been examined for the co-helicity case. It is noted that η‖ should be used here to

calculate the classical resistivity. It is found that the resistivity enhancement ranges 2-4 for

the cases examined so far at a relatively low field (BZ ≈ 200 G) while the collisionality pa-

rameter λmfp/δ=0.5-2. Density accumulation in the diffusion region is negligible in this case,

as expected from the fact that the existence of a sizable BT makes plasma less compressible.

The effect of higher down-stream pressure than up-stream is more predominant, resulting

in an outflow as low as ∼5% of the Alfvén speed.

The generalized Sweet-Parker model applies also to the co-helicity cases, as shown in

Fig. 11, where the observed reconnection rates in both null- and co-helicity cases are plotted

against 1/
√

Seff, spanning over a decade in magnitude. The reconnection rate in the co-

helicity case is slower than the null-helicity case due to a combined effect of lower anomalous

resistivity, lower compressibility, and higher down-stream pressure.

V. DISCUSSIONS

Qualitatively, magnetic reconnection observed in MRX is in good accord with the Sweet-

Parker model whose essence resides in the existence of a rectangular diffusion region. Such a

rectangular box is well-defined experimentally in a quasi-steady state manner regardless of

the existence of the third component. The global two-dimensional nature of magnetic recon-

nection is ensured by the axisymmetric boundary conditions although the fine-scale dynamics

within the diffusion region, such as microinstabilities, must be fully three-dimensional.

Quantitatively, the observed reconnection rates can also be explained by the Sweet-

Parker model but only after it is generalized to incorporate three effects: effective resistivity,

compressibility and finite down-stream pressure. One relevant question might be whether

Petschek-type models can explain the same observations. Direct comparisons, however, are

not possible since these shock-based models do not predict definite reconnection rates, only
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their maxima2. Shock structures, a characteristic feature of Petschek-type models, would

appear as multiple jumps in BZ(R) profiles in the downstream region. However, these jumps

have not been observed yet within the sensitivity limits of the measurements. We note that

the present work neither verifies nor disproves the Petschek-type model. Further experi-

mental investigations in MRX include searching for shock structures in larger S regimes or

under more powerful driving forces through external coils.

All three effects incorporated in the generalized Sweet-Parker model can be important

also during magnetic reconnection happening in nature or other laboratory plasmas. Effects

of the compressibility must be transient (as seen in MRX) by nature since the density accu-

mulation cannot be sustained indefinitely. However, occurrences of magnetic reconnection in

nature do not have to be steady state. They can be impulsive locally while global structures

are maintained in a quasi (slowly evolving) steady state, as supported by a recent computer

simulation using compressible MHD equations22.

The effect of downstream pressure is easy to understand. As observed in MRX, higher

plasma pressure in the downstream region slows the outflow, thus reducing the reconnection

rate. One can envision another case in which lower pressure in the downstream region can

result in super-Alfvénic outflow, leading to an increase in the reconnection rate, a situation

which can exist in solar flares and other cosmic environments.

Effects of finite viscosity have been also omitted during the analysis of the momentum

equation in the Sweet-Parker model. However, this assumption cannot be justified when

large velocity gradients exist in the down-stream region. In this case, a viscous term ρν⊥∇2V

should be added to the right hand side of Eq.(3). Following W. Park23, a crude estimate of

the viscous effects can be formulated to modify Eq.(6) to

V 2
Z

[
1 +

(
1 +

L

n

ṅ

VZ

)
ν⊥µ0

η∗⊥

]
= V 2

A(1 + κ)− 2
pdown − pup

ρ
, (8)

where the outflow could be also slowed by finite ν⊥. By using the classical values24, ν⊥µ0/η⊥

can be estimated to

ν⊥µ0

η⊥
=

1

4

√
mi

me

(
Te

Ti

)3/2

βi ∼ 1− 2 (9)
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where βi = nTi/(B
2/2µ0) is the ion beta. Therefore, the viscous effects are small if η∗⊥/η⊥ �

1. However, in order to quantify the ∇2V term experimentally, measurements of detailed

2D velocity profiles are required.

A legitimate question regarding the relevance of laboratory plasma experiments to the

space plasmas arises from the achievable low Lundquist numbers (∼ 103) in laboratory.

However, the observation of resistivity enhancement indicates that, just as in the space

plasmas, the collisionless effects (within framework of either two-fluid treatments or full

kinetic treatments of the diffusion region) dominate over the simple resistive MHD effects

(Coulomb collisions) in MRX. Indeed, it is found that the current sheet thickness δ is

determined not by Spitzer resistivity but by the ion skin depth c/ωpi, or equivalently the

ion gyro-radius ρi due to the force balance, β∗ ≡ (p0 − pup)/(B
2
Z/2µ0) = 1. By using this

force balance, the result δ ' ρi can be translated into a constant drift parameter, vd/vthe

(vd/vthi), where vd ≡ jT /en and vthe (vthi) = electron (ion) thermal velocity. In Fig. 12,

the drift parameters are shown as functions of plasma density for the null-helicity case in

MRX. Both drift parameters are relatively a constant, i.e., vd/vthe ' 0.1 and vd/vthi ' 3−4,

independent of density. This suggests that instabilities25 driven by relative drift between ions

and electrons provide a mechanism to limit current density, thus controlling the reconnection

rate. In the co-helicity case, a higher drift parameter vd/vthe ∼ 0.2 is observed. However, we

have to emphasize that the mechanism to limit current density should be different from the

null-helicity case to the co-helicity case since the current essentially flows in the perpendicular

direction in one case while parallel in the other. Finally, we note that these collisionless

effects must enter the Ohm’s law through fluctuations since all non-fluctuating terms (except

ET and ηjT ) in the generalized Ohm’s law including the Hall and electron pressure terms are

estimated to be negligible. Both theoretical and experimental undertaking invoking stability

analysis and high frequency fluctuation measurements is underway in MRX in an effort to

understand the mechanism of the resistivity enhancement.
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VI. CONCLUSIONS

The well-controlled boundary conditions in MRX permit formation and maintenance of

a stable, well-defined, two-dimensional current sheet (or diffusion region) during magnetic

reconnection in MHD plasmas. In both qualitative and quantitative sense, the observed

magnetic reconnection is consistent with a generalized Sweet-Parker model, independent of

the presence of an unidirectional, sizable third magnetic component. The generalizations of

the model include finite compressibility, higher down-stream pressure than up-stream, and

the effective resistivity. The latter is significantly enhanced over its classical values in the

collisionless limit. A significant implication of this result is that the Sweet-Parker model

with generalizations is indeed valid in certain cases. By adopting the concept of anomalous

resistivity, the Sweet-Parker model can predict a time-scale much closer to the one of the

solar flares26, although we always have to keep in mind that the solar flares are much more

complicated than just in a two-dimensional space. Nonetheless, laboratory experiments

provide unique opportunities to challenge these theories in a well-controlled environment.
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FIGURES

2δ

2L

B

B

FIG. 1. An illustration of the Sweet-Parker model.
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FIG. 2. An illustration of the MRX geometry for magnetic reconnection: (a) a quadrupole

configuration formed by two flux cores, providing one public and two private regions, (b) a

two-dimensional magnetic reconnection induced by pulling flux from the public back to the private

regions.
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FIG. 3. An example of driven magnetic reconnection measured in a single shot by a 2D probe

array: (a) vector plot of poloidal field, (b) poloidal flux contours, (c) measured radial profile of

BZ by a fine probe array and fitted curve to tanh[(R−R0)/δ], (d) deduced current density profile.

Toroidal field (the third component) is negligibly small.

FIG. 4. A shot-averaged time evolution of driven magnetic reconnection. From top: peak

current density, current sheet thickness, inflow speed at R = 30 cm from flux contour movement,

electron density at center, electron temperature at center.

18



FIG. 5. Experimental test of the Sweet-Parker model (dotted lines): reconnection rate vs. 1/
√

S.

FIG. 6. Resistivity enhancement as a function of collisionality characterized by the ratio of

electron mean free path (calculated from ne and Te) to current sheet thickness. An example of all

three terms of Ohm’s law across the current sheet is shown in the inset where ET = −Ψ̇/2πR and

VR is from flux contour movement.
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FIG. 7. Time evolution of density measured at center (Z = 0, R = 37.5cm), up-stream

(Z = 0, R =30cm and 44cm), and down-stream (Z = −10cm, R = 37.5cm) regions.

FIG. 8. Effects of compressibility (open diamonds) and downstream pressure (open squares) as

functions of reconnection rate. As reconnection rates decreases, the outflow is further slowed by

downstream pressure while the effect of compressibility becomes increasingly important.
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FIG. 9. The observed reconnection rates are compared to the prediction by a generalized

Sweet-Parker model, 1/
√

Seff, which incorporates finite compressibility, downstream pressure and

the effective resistivity.

FIG. 10. The measured profile in the co-helicity case: (a) radial profiles of BT and BZ at Z = 0,

(b) radial profile of jT at Z = 0, and (c) jT profile in R− Z plane.
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FIG. 11. The observed reconnection rates are compared to predictions by a generalized

Sweet-Parker model for both null-helicity and co-helicity cases.

FIG. 12. The drift velocity when normalized by the ion thermal velocity (a) or the electron

thermal velocity (b) as functions of density in the null-helicity case.
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