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Tight Bounds on the Size of Neural 
Networks for Classification Problems 

Valeriu Beiu ’, * and Thierry de Pauw 
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Absfract-7’his paper relies on the entropy of a data-set (Le., nzunber-of-bits) 
to prove tight bounds on the size of neural networks solving a classification 
problem. First, based on a sequence of geometrical steps, we constructively 
compute an upper bound of O(mn) on the number-ofbits for a given data- 
set-here m is the number of examples and n is the number of dimensions 
(Le., IRn). This result is used further in a nonconstructive way to bound the 
size of neural networks which correctly classify that data-set. 
Keywords-neural networks, size complexity, entropy, classification problems, 
Boolean functions. 

1. Introduction 

Multilayer feedforward neural networks (NNs) have been experimentally shown 
to be quite effective in many different applications (see Applications of Neural Net- 
works in [3], together with Part F: Applications of Neural Computation and Part 
G: Neural Networks in Practice: Case Studies from [13]). This success has led re- 
searchers to undertake a rigorous analysis of the mathematical properties that enable 
them to perform so well, and has generated two directions of research: 

one to find existence /constructive proofs for what is now known as the “uni- 
versal approximation problem” (Le., any continuous function can be approxi- 
mated arbitrarily well by a NN); 
another one to find tight bounds on the number of neurons (size) needed by 
the approximation problem (or some particular cases). 

This paper will prove several bounds-based on the entropy of the data-set-on 
the size of NNs for classification problems. In Section 2 we introduce several nota- 
tions and in Section 3 we briefly go through some pervious results. The proof will 
be given in Section 4. It is based on computing the number-ofbits needed for rep- 
resenting the data-set as the quotient between the volume of a ball containing all 
the examples (rough approximation) and the volume of a minimum hypercube [6]. 
Because all the examples from one class always lie inside the intersection of two 
balls, we shall compute the volume of this intersection. Using this volume it can be 
proven that the required number-of-bits is slightly lower. Finally, based on previous 
bounds on the magnitude of the weights of threshold gates, we shall bound the size 
of NNs solving the classification problem specified by the data-set. 
* On leave of absence from the “Politehnica” University of Bucharest, Department of 

Computer Science, Spl. independentei 3 13, RO-77206 Bucharest, Romania. 
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TigM Bounds on the Size of Neural Networks for Classiflcallon Problems 2. Several Notations 

2. Several Notations 

In this paper a network is an acyclic graph having several input nodes (inputs) 
and some (at least one) output nodes (outputs). If with each edge a synaptic weight 
is associated and each node computes the weighted sum of its inputs to which a 
nonlinear activation function is then applied (artijicial neuron): 

the network is a NN ( w , ~ l R  are the synaptic weights, 8 EIR is the threshold, A is 
the number of inputs of one neuron, and (r is a non-linear activation function). 

A classification problem is defined by a set of m examples tie., data-set) belong- 
ing to k different classes. For simplicity we shall limit the number of classes to two 
(k= 2), known as a dichotomy, but all our results are valid in general. Now: 

m = m++ m- (2) 

and x,, q,.. ., xm+ are the positive examples, while yl,y,,. . .,y, are the negative ex- 

amples; they are taken from an n-dimensional space lRn (n E IN \ { I}): 
n xi= (xi,,, xi,*, ... , xi,,) E IR , i = 1,2, ... , m,, m ,  E IN and 

yj=(yi,l,yj,2 ,..., yi4) E lRn, j=1,2 ,..., m - ,  m-E IN. (3) 

The distance between two vectors (examples) is the classical Euclidean distance: 
2 2 1 1 2  (4) 

dist, (a, b) = 4 (al - 6, )  + (a, - b2) + .. . + (a, - bJ2 = [ :',(ai - bJ2}  . 

For characterising the data-set, we also define the minimum and the maximum 

d = min [ dist, (q,yj) ] and D = max [ dist, (q,yj) 1 (5) 

A ball of radius r (r E IRf\ IO}) centered at c E IRn will be denoted by 

distance between any positive and negative examples: 

kl. ... Jn+ j=I,__. m_ i=l. ... ,m+ F l  ...., m- 

Bn [c, rl: 

Bn[c,rJ = { X E  IRn: d i s t , ( c , x ) l r } ;  (6) 

if n = 2 this is a round disc; if n = 3 it is a round ball. 
We shall denote by p, the n-dimensional Lebesgue memure in IR". If A c IR2, 

p2 (A) is the 'area' of A; if A c IR3, F~ (A) is the 'volume' of A. 
Finally, cx (n) = p,, (B, [0, I I) is the volume of the unit ball in IRn. For instance 

a (2) =n, a (3) = 4n/3, while in general a (2n - 1) = 2 n .  n;"'/[1.3.5. ..:(2n-l)] 
and a(2n)=nn/n! [ I I ,  15, 171, or in terms of the gamma function: 

n / 2  
a(n) = 

r ( n / 2 +  1) 
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Tight Bounds on the Sin, of Neural Networks for Classification Problems 3. Previous Results 

3. Previous Results 
The problem to find the smallest size NN which can realize an arbitrary function 

given a set of m vectors (examples, or points) in n dimensions is not new. Many 
results have been obtained for NNs having a threshold activation function. This is 
probably due to the fact that this line of research was continuing on the rigorous 
results already obtained in the literature dealing with threshold logic from the mid 
60s (see references in [7, SI). Probably the first lower bound on the size of a thresh- 
old gate circuit for "almost all" n-ary Boolean functions was given by Neciporuk in 
1964: size 2 2 (2 "In) 1'2 [20]. Later, Lupanov has proven a very tight upper bound: 
size I 2 (2 "/n) l2 X { 1 + S2 [(2 "In) ' "I} for the case when depth = 4 [ 191. Similar 
existence exponential bounds can be found in [ 123, while in [24] a Q (2 n'3) exist- 
ence lower bound for arbitrary Boolean functions has been presented. 

For classification problems, one of the first result was that a NN with only one 
hidden layer having m -  1 nodes could compute an arbitrary dichotomy (sufficient 
condition). The main improvements have been as follows: 

0 Baum [4] presented a NN with one hidden layer having rm/nl neurons ca- 
pable of realizing an arbitrary dichotomy on a set of m points in general po- 
sition in IR"; if the points are on the comers of the n-dimensional hypercube 
(i.e., binary vectors), m -  1 nodes are still needed; 

0 a slightly tighter bound was proven in [16]: only rl + (m-2)/nl neurons are 
needed in the hidden layer for realizing an arbitrary dichotomy on a set of 
m points which satisfy a more relaxed topological assumption (only the points 
form a sequence from some subsets are required to be in general position); 
also, the m - 1 nodes condition was shown to be the least upper bound needed; 

0 Arai [2] showed that m - 1 hidden neurons are necessary for arbitrary separa- 
bility (any mapping between input and output for the case of binary-valued 
units), but improved the bound for the two-category classification problem to 
m / 3  (without any condition on the inputs). 

These results show that for binary inputs the size grows exponentially (as rn I 2  "). 
Some existence lower bounds for the arbitrary dichotomy problem are (see [14]): 

a depth-2 NN requires at least m / [n log(rn/n)] hidden neurons (if m 2 3n); 
0 a depth-3 NN requires at least 2(m/logm)1'2 neurons in each of the two 

hidden layer (if m >> n '); this bound is identical to the one presented in [20] 
for m=2";  
an arbitrarily interconnected NN without feedback needs (2m /logm) ' /* neu- 
rons (if m >> n 2>. 

Several other bounds for arbitrary Boolean functions can be found in [22]. All of 
these are: (i) revealing a gap between the upper and the lower bounds, thus encour- 
aging research efforts to reduce (or even close) these gaps; (ii) suggesting that net- 
works with more hidden layers might have a smaller size. 

rxl is the ceiling of x, Le., the smallest integer greater than or equal to x, and Lxd is the 
floor of x, i.e., the largest integer less than or qual to x. 
in  this paper all the logarithms are taken to base 2. 
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4. Entropy Bounds 
A different approach to classification problems has been presented in [6]; it is 

based on computing the entropy (see also [ l ]  and [25]) of the data-set. Two bounds 
on the number-ofbits have been proven: a constructive one 

#bits < m n { r i o g ( m g l  + 5 / 2 }  = o(rnn) (8) 

and an existence one #bits = 0 (m logm). For arbitrary Boolean functions, the two 
bound are equivalent as m = 2 n, which gives #bits = 0 (n  a 2  ") for both of them. 
Because we shall build on the O(mn)  constructive bound (S), we present here a 
sketch of proof (for details see [6]). 

Sketch of pro@ Find the examples (from the two different classes) which are the 
closest to one another: xd,yd, (the distance between them is d). Translate the origin 
of the axes into x,, and rotate the axes such as the origin (i.e., x,,) and y,,, represent 
the opposite comers of a hypercube. The side length is l=d/&,  and we can use 
it as a step to quantize the whole space. As there are no examples situated at a 
distance closer than d, it is certain that there will be no hypercube containing ex- 
amples from the two different classes. 

Because the largest distance is D, there is a ball in IRn of radius D which contains 
all the m examples (see Fig. 1). All the m + (resp. m -) examples are contained inside 
a ball of radius D centered in that example from the opposite class which is used 
to determine the largest distance D: yDt (resp. x,). There are only three possible 
cases: 

all the examples are in the sub-space determined by the intersection of two 
balls (see Fig. 1.a.); any of the balls will now contain all the m examples; 
there are positive examples situated on the other side (with respect to x,) of 
the hyperplane orthogonal to x, -yD, and containing y,. (see Fig. 1.b.); select 
the farthest positive example and use it as the center of a third ball of radius 
D; the intersections of the three balls determine the sub-spaces where there are 
examples, but all of them are inside the ball centered in y,,; 
there are negative examples situated on the other side (with respect to yo,) of 
the hyperplane orthogonal to x, - y o ,  and containing X, (see Fig. 1.c.); now 
all the m examples are inside the ball centered in xD. 

a. 

Fig. 1. Bounding the sub-space for a given set of examples: a. the balls (discs in this example) 
determined by the two examples situated at distance D; b. modification produced by the farthest 
positive example (see text); c. modification produced by the farthest negative example (see text). 

Valeriu 6eiu & Thieny de ~ a u w  4 
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The number-ofbits for one example can now be computed as [log (V,,,/ vhc)l 
where the volume of the ball of radius D is vbaU (D, n) = a (n) . D ', and the volume 
of the hypercube is v,,, (d, n) = ( d / 6 )  n: 

#bits-,,,,, 
r ( n / 2 + 1 )  d n  

< n { h g ( D / q l  + 5 / 2 } .  (9) 

By multiplying with m, the proof is concluded. 0 

This result has been obtained using a whole ball vbau (D, n) of radius D for upper 
bounding the space containing the examples. Looking again at Fig. 1 one can see 
that: 

e 

e 

e 

for the case detailed in Fig. 1.a. all the rn examples are inside the intersection 
of two balls of radius D; 
for the case detailed in Fig. 1.b. all the negative examples m- are inside a sub- 
space of the intersection of two balls of radius D; 
for the case detailed in Fig. 1 s .  all the positive examples m, are inside a 
sub-space of the intersection of two balls of radius D. 

It becomesclear that a better bound on the number-of-bits can be obtained if instead 
of the volume Vbdl used in (9), one uses the volume of the intersection of two balls 
V ( D ,  n)  as in Fig1.a (which is the worst case). 

Proposition 1. m e  meusure (i.e. the 'volume') of the intersection of two balls in 
IR" of the sane radius r E IR+\ { O } ,  placed such that the center of each one is on 
the boundary of the other one, is V (r, n)  = 2 a (n - 1) r . a (n) with: 

n - 1  3 [n-1) / 2 
a ( n )  = - - a ( n - 2 )  - 

n . 2 "  n 

Pro05 The given problem can be rewritten as follows: let c1 = (0, 0, ... , 0) and 
c2 = (r, 0, .. . , 0); compute V(r ,  n) = p,, ( E, [c,, r] A E,, [c,, r] ). As it will be seen, 
V ( r ,  n )  can be written as V(r ,  n)  = k (n)  . r for a suitable 'constant' k (n). This 
can be deduced from the observation that, under a homothetic expansion of factor 
r, B,, [O, rl n B,, [(r, 0, ... , 0), r] is the image of E,, [0, 11 n E,  [(l, 0, .. . , 0), 11. For- 
mally, if we define: 

(10) h ,  : IR" + IRn: x + r . x  

then 

and hence k(n)=V(l ,n) .  
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The “geometric” idea for computing V (r, n) goes as follows: assume that n = 3 
and observe that by symmetry V ( r ,  n)  is twice the volume of a segment of a sphere 
(the part of a sphere situated on one side of a plane). The pIane in n = 3  becomes 
a hyperplane in IRn; it is the hyperplane containing the n -  1 ball (i.e., from IRn-’) 
representing the ‘intersection’ of the two balls [5 ] .  The volume of a segment of a 
sphere can be computed by summing the ‘volume’ of very thin cylinders, or, at the 
limit, by summing the ‘area’ of the thin discs. 

= pn ( B ,  10, rl nB,, [(r,O, ..., 01, rl ) (due to symmetry) 

= 2 p , ( B n [ 0 , r 1 n B ,  [(r,O, ..., O ) , r ] n  { X E  IRn:x12r/2})(FUbini’s theorem) 

r (change of variable: 
= 2 a (n - 1) r - * Idp [I - (p / r )  1 (n - sine = p / r, dp = r cose de) 

r/2 

n/Z (12.a) 

= 2 CI (n - 1) r n .  a (n) 

(cose)n de. 
x / 2  

where a (n) = 
n / 6  

Using integration by parts we can derive a ‘recurrence formula’ for a (n). Let: 

g (e) = sine (13.b) 

Valeriu M u  P Thierry de P a w  6 



TigM Bounds on the Sire of Neural Networks for Classification Problems 4. Entropy Bounds 

such that: 

= -3. [ q - l  + (n - 1) . [a (n  - 2) - a (n)] 

(n - 1)/2 n - 1  
a(n) = - a  a ( n - 2 )  - 

n n.2n 

which concludes the proof. 

For initiating the recurrence we need u (2) and a (3), which are: 
n /2  n/2 

1 + cos 26 de a(2) = j cos2ede = j 2 
x / 6  n/6 

P 

This result can be used to prove a slightly tighter bound on the number-ofbits. 

Proposition 2. The dichotomy of m = m ,  + m- examples from IR" can ulwuys be 
solved with: 

mn{rlog(D/d)l+ 2 }  
2 #bits < 

Pro05 We compute the number-of-bits required by one example as: 

From (12.a) 8 E [n/6,7c/2], thus cos0 Scos(7c/6) = 6 / 2  leading to: 
n/2 

a ( n )  < j ( 6 / 2 ) " d 6  = 
x / 6  

and by using Stirling's formula n! > 5. (n/e) we have: 

Valeriu Beiu & Thieny de Pauw 7 



Tight Bounds on the Size of Neural Networks for Classification Problems 4. Entropy Bounds 

1 n n 
2 2 2 logn - - lo@ + n log@ /6) + logn - log3 + - log3 - n + - logn 

1 1 n - 1  n - 1  n - 1  
2 2 2 2 2 log(n - 1) + - + - loge -- log7c - - log(n - 1) - - 

Because a dichotomy can be solved either for the positive, or for the negative ex- 
amples, we can choose the smallest of these two sets: min (m+, m-) _< m/2, and the 
proof is concluded. 0 

Finally, from these results we can obtain the following bounds on the size of NNs 
solving a dichotomy problem. 

Proposition 3. The dichotomy of m= m + + m -  examples from IR" can always be 
solved by a network of neurons with fan- in=A having: 

mn{rIog(o/41 + 2 }  mn{riog(D/dl + 2 }  (22) 
< size < 

A2 logA A2 

Proof: 
linear threshold functions having A inputs can be bounded as: 

It is known [21, 231 that the weights of integer representations of Boolean 

L 

and by taking logarithms we can obtain the number-ofbits 
as: 

required by one weight 

(24) 

, 

The number-of-bits of the NN will be: - -  

which shows that: 

2 . #bitsNN 2 #bitsNN > size > 
A 2  A' lo@ 

Because the entropy of the data-set is encoded by the NN, there are solutions having 
#bits< #bitsN& the solution(s) with a 'good' encoding will have #bitsz#bitsNN (there 
are cases [9, 10, 181 for which #bits>#bitsNN), and using (18) the result follows. ci 

Valefiu Belu & Thierry de Pauw 8 
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Severai remarks are in order: 
the upper bound is even tighter as, from [21], weigfh > 1.618 A which gives 

0.72 mn { r ~ o g  (~141 + 2 )  

A2 
size < 

the known bounds do not impose any limitation on the fan-in, thus in principle 
one could take A =  n which gives 

m{rlog(D/d)l + 2 )  0.72 m { Tiog ( D / ~ I +  2 (28) 
< size < n logn n 

for arbitrary Boolean functions [log (D /41= log&, giving 

m 0.36 m logn - < size < 2n n 

and showing that the bounds are tight (see Section 3 for known the bounds). 
All these results can easily be extended to Boolean circuits by taking an encoding 

of one bit per input. 

4. Conclusions 
Based on the entropy of the data-set, this paper has presented a new nonconstruc- 

tive proof on the size of NNs for solving a dichotomy. The resulting lower and 
upper bounds are tight. 

Although the proof for the number-of-bits is constructive, the shape of the bound- 
ing space does not lend itself easily to practical applications. Bounding the space 
with a ball, or the intersection of two balls-which, as we have seen, is theoretically 
possible-is computationally too difficult. For all practical cases, the simplest bound- 
ing space is a hypercube. By taking a hypercube of side length 2 0  the problem can 
be solved, but unfortunately we have to pay by a logarithmic increase on the num- 
ber-of bits: 

Presently, we are working on this particular aspect by trying to use other co-ordinates 
(e.g., polar co-ordinates instead of the rectangular ones). 

References 
1. Abu-Mostafa, Y.S.: Connectivity versus entropy, in D.Z. Anderson (ed.): Neural infor- 

mation processing systems (NIPS*87, Denver, CO), Amer. Inst. Physics, NY (1988) 
1-8. 
Arai, M.: Bounds on the number of hidden units in binary-valued three-layer neural 
networks, Neural Networks 6(6) (1993) 855-860. 
Arbib, M.A. (ed.): The handbook of brain theory and neural networks, MI" Press, 
Cambridge, MA (1995). 

2. 

3. 

Valerlu Beiu & Thierry de Pauw 9 



Tight Bounds on the Size of Neural Networks for Classification Problems References 

4. 

5. 

6. 

7. 
8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 
16. 

17. 
18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

Baum, E.B.: On the Capabilities of Multilayer Perceptrons, J. of Complexity 4 (1988) 

Baum, E.B.: When are k-nearest neighbour and back propagation accurate for feasible 
size sets of examples ?, draft in E. Amaldi and E. Mayoraz: Mathematical foundations 
of amjicial neural networks (summer school lecture notes), Swiss Federal Institute of 
Technology Lausanne and Kurt Btjsch Academic Institute Sion, September 1992. In 
SJ. Hanson, G.A. Drastal and R.L. Rivest (eds.): Computational learning theory and 
natural learning systems-Vol. I: Constraints and prospects, Bradford/MIT Press, 1994. 
Beiu, V.: Entropy bounds for classification algorithms, Neural Network World 6(4) 

Beiu, V.: Digital integrated circuit implementations, Chapter E1.4 in [ 131, E1.4:l-34. 
Beiu, V.: VLSI complexity of discrete neural networks, Gordon and Breach, Newark 
(1997). 
Beiu, V., Taylor, J.G.: VU1 optimal neural network learning algorithm, in D.W. Pear- 
son, N.C. Steele and R.F. Albrecht (eds.): Arrificial neural nets and genetic algorithms 
(ICANNGA'95, Alb, France), Springer-Verlag, Vienna (1995) 61-64. 
Beiu, V., Taylor, J.G.: Direct synthesis of neural networks, Proc. MicroNeuro'96 
(Lausanne, Switzerland), IEEE CS Press, Los Alamitos, CA (1996) 257-264. 
Bishop, C.M.: Neural networks for pattern recognition, Oxford University Press, Ox- 
ford, UK (1995). 
Bruck, J., Smolensky, R.: Polynomial threshold functions, ACo functions and spectral 
norms, Res. Rep. RJ 7410 (67387), 11/15/89, IBM Yorktown Heights, NY (1989). Also 
in SUM J. Computing 21(1) (1992) 3342.  
Fiesler, E., Beale, R. (eds.): Handbook of neural computation. Oxford Univ. Press and 
the Inst. of Physics Publishing, NY (1996). 
Hassoun, M.H.: Funliamentals of artificial neural networks, MIT Press, Cambridge, 
MA (1995). 
Hecht-Nielsen, R., Neurocomputing, Addison-Wesley, Reading, MA (1989). 
Huang, S.-C., Huang, Y.-F.: Bounds on the number of hidden neurons of multilayer 
perceptrons in classification and recognition, IEEE Trans. on Neural Networks 2(1) 
(1991) 47-55. 
Kohonen, T.: Self-organizing and associative memory, Springer-Verlag, Berlin (1988). 
Krishnamoorthy, A.V., Paturi, R., Blume, M., Linden, G.D., Linden L.H., Esener, S.C.: 
Hardware tradeoffs for Boolean concept learning, in Proc. World Con$ OR Neural Net- 
works '94 (WCNN'94, San Diego), Lawrence Erlbaum & INNS Press, Hillsdale (1994) 

Lupanov, O.B.: The synthesis of circuits from threshold elements, Problemy Kibernetiki 

Neciporuk, E.I.: The synthesis of networks from threshold elements, Problemy 
Kibernetiki 11 (1964) 49-62. English translation in Automation Express 7( 1) 35-39 and 

Parberry, I.: Circuit complexity and neural networks, MI" Press, Cambridge, MA 
(1994). 
Paugam-Moisy, H.: Optimisation des riseaux des neuronfs artijiciels. PhD thesis, 
Laboratoire de l'hformatique du Parallelisme LIP-MAG, Ecole Normale Sup6rieure 
de Lyon (46 All& d'Italie, 69364 Lyon, France) (1992). 
Raghavan, P.: Learning in threshold networks: a computational model and applications. 
Tech. Rep. RC 13859, IBM Res. (1988). Also in Proc. 1st Workshop on Computational 
huming Theory (Cambridge, MA), ACM Press (1988) 19-27. 
Siu, K.-Y., Roychowdhury, V., Kaihth, T.: Depth-size tradeoffs for neural computa- 
tions, ZEEE Trans. on Comp. 40(12) (1991) 1402-1412. 
Williamson, R.C.: €-entropy and the complexity of feedforward neural networks, in 
R.P. Lippmann, J.E. Moody and D.S. Touretzky (eds.): Neural information processing 
systems (NIPS*90, Denver, CO), Morgan Kaufmann, San Mako (1991) 946-952. 

193-215. 

(196) 497-505. 

V O ~ .  1, 551-559. 

20 (1973) 109-140. 

7(2) 27-32. 

Valerlu Beiu a Thieny de P a w  



CON'I'RIBU'I'IONS MUS'I' 131: SENT '10: 

Pr(iI. lo\i Mirn 
l)pI(i. Inceligencia Artificial. IlNEl) 
SL.IIL~:I dcl Key, S/II 

E - 28040 MADRlD, Spain Phone: + 34 I 3987155 
E-mail: iwann97@dia.uiied.es Fax: + 34 1 3986697 

IMPORTANT DATES 

Work-Conference June 4-6, 1997 

INSCRIPTION, 'TRAVEL AND II(ITE1, INFORMATION 

UIXRAMAR EXPRESS 
IXputacitS, 23X, 3" Phone: +34 3 11827 I40 

F a x :  -1-34 3 4827 158 1:-08007 BAKCEIdONA, S p i n  

IDERIA and AVIACO will he thc official carriers for lWANN'97, offering 
special  rates and conditions.  International code for special rate: 
BT7 1 132 1 MPE0038. 

POSSIBI1,I'TY OF GRANTS 

The Oiganization Committee of lWANN'97 will provide a very limited 
number of full or partial grant.; Please contact the WWW address for 
further information. 

STEERING COMMITTEE 

Joan Cabestany , Univeisidad PolitCcnica de Catalunya (E) 
Jos6 Mira Mira, UNED (E) 
Albert0 Prieto, Universidad de Granada (E) 
Francisco Sandoval, Universidad de Malaga (E) 

ORGANIZATION COMMITTEE 

Joa.ri Cabcstatty and Francisco Sandoval (E), Co-chairmen 
M l c h a c l ,  IJniversity of Southern California (USA) 
ScnCn Rarro. Universidad de Santiago (E) 
Gabriel de Blasio, Univ. de 1,as Palinas de Gran Caiiaria (E) 
'Qevor C l a r h n ,  King's College London (UK) 
Ana Delgado, UNED (E) 
Dante Del Corso, Politecnico de Torino (1) 
Bel& Esteban-Sinchez, ITC (E) 
Tanias D. Gedeon, University of New South Wales (AUS) 
K-OS, Universitlt Dortmund (G) 
Jeannv I-lerault, Institute National Polytechnique de Grcnohle (1:) 
Jaap I lockstra, Delft llnivcrsity ol'l'eclinology (NI ,) 
Shnnsuhe Sato, Osaka Iliiiversity (Jp) 
Igor Shcvclev, Russian Ac;idcmy of  Scicncc(R) 
C'loe htldei-I7ci rc!li. Istitulo di C'ihcrnctica. C,'NI< ( I )  

:I Univcrsidadc C;ik)lic;i do I<io dc Janeilri (Dr) 
Midicl V c r l c E i ,  lJnivcisi!c (.':itIioliqiic (IC I .ouvaiii~l;i-Ncuvc (13) 
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PROGRAMME COMMITTEE 

J(JsC' Miru unci A l m t o ,  Co-chairmen (E) 
Iior Aleksander, Imperial Coll. of Science Technology and Medicine (UK) 
Jort Alvarez, UNED (E) 
Shun-lchi Amari, University of Tokyo (Jp) 
Xavier Arrequit, CSEM (CH) 
Franqois Blayo, Univ. Paris 1 (F) 
Leon Chua, University of California (USA) 
Marie Cottrell, Univ. Paris 1 (F) 
Akira Date, Tokyo University of Agriculture and Technology (Jp) 
Antonio DIaz-Estrella, Universidad de Mdlaga (E) 
M. Duranton, Phillips (F) 
Reinhardckhorn, Philips University (D) 
Kunihiko Fukushima, Osaka University (Jp) 
Patrik Garda, Univ. Pierre et Marie Curie (F) 
Anne Gukrin-Dug&. INPG (F) 
Martin Hasler, EPFL (CH) 
Mohamad H . dssou Wayne State University (USA) 
d i d a d  de Mllaga (E) 
Simon Jones, IERI Loughborough Univ. of Tech. (UK) 
Christian Jutten, lNPG (F) 
H. Klar, Technische Universitat Berlin (G) 
K.Nicholas Leibovic, Univ. Buffalo (USA) 
J.I,ettvin, MIT (USA) 
Francisco Javier Mpez Aligu6. TJniversidad de Extremadura (E) 
Jordi Madrenas, UPC (E) 
Pierre Marchal, CSEM (CH) 
Juan Manuel Moreno, UPC (E) 
Josef A. Nossek, Der Technischen Universitlt Munchen (G) 
Julio Ortega, Universidad de Granada (E) 
Francisco Jose Pelayo, Universidad de Granada (E) 
Franz Pichler, Johannes Kepler Universidt Linz (A) 
Vjcenzo Piuri, Politecnico di Milano (I) 
Leonard0 ReyLeri. Politecnico di Torino (I) 
Tarmas Roska, Hungarian Academy of Sciences (H) 
E. Sanchez-Sinencio, Texas A&M Univ. (USA) 
J. Sirnoes Da Fonseca, Faculty of Medicine of Lisbon (P) 
John G. Taylor, King's College London (UK) 
Carme Torras, Instituto de Cibernktica del CSIC-UPC (E) 
Philip Treleyen, University College London (UK) 
Elena Valderrama, Centro Nacional de Microelectr6nica (E) 
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IWANN'97 
INTERNATIONAL WORK-CONFERENCE 

ON 
ARTIFICIAL AND NATURAL NEURAL 

NETWORKS 

Biological and Artificial Architectures, Technologies and Applications 

Final Cali for Papers 

Lanzarote - Canary Islands, Spain 
June 4-6. 1997 

1 ORGANIZED B Y  

Universidad Nacional de Educaci6n a Distancia (UNED), Madrid 
Universidad de Las Palmas de Gran Canaria 

Universidad PolitCcnica de Catalunya 
Universidad de Milaga 
Universidad de Granada 

IN COOPERXIION WITH 

Asociaci6n Espaiiola de Redes Neuronales (AERN) 
IFIP Working Group in Neural Computer Systcm~,. WGIO 6 

Spanish RIG IIXE Neural Nelworks Couiicil 
UK&RI Coinmuniciition Chaptcr of 11<1:1 

, 



IlVANN'97. Thc IOiu1h Iiitcrn;itional Workshop on Artificial NWKII Networks. 
iiow chiinged to Internatiot1;rl W'nrk-Confercncc on Artificial and Natiir;~] 
Ncurril Networks, will take place in Lanzarote, Canary Isl;inds (Spain) from 
4 to 6 olJune, I097.'This biennial meeting with focus on biologically inspired 
and more realistic motlels of Ilatml neumns and neural nets and new hybrid 
computing paradigms. was first held in Granada (1991). Sitges (1993) and 
l'orremolinos, Malaga (1995) with a growing number of participants from 
more than 20 countries and with high quality papers publislied by Springer- 
Verlag (LNCS 540, 6R6 and 910). 

SCOPE 

Neural cnrnputation is considered here in the dual perspective of analysis (as 
science) and synthesis (as engineering). As a science of analysis, r 11 
computation seeks to help neurology, brain theory, arid cognitive psychoLugy 
i n  the understanding of the functioning of the Nervous Systems by means of 
computational models of neurons, neural nets and subcellular processes, with 
the possibility of using electronics and computers as a alaboratoryB in which 
cognitive processes can be simulated and hypothesis proven without having 
to act directly upon living beings. 
As a syntlwsis engineering, neural computation seeks to complement the 
symbolic perspcctive of Artificial Intelligence (AI), using the biologically 
inspired models of distributed, aelf-progmmming and self-organizing 
networks, to solve those non-;ilgorithmic problems of function approximation 
and pattern classification having to do with changing and only partially known 
environments. Fault tolerance and dynamic reconfiguration are other basic 
advantages of neural nets. 

In the sea of meetings, congresses and workshops on ANN's, IWANN'97 
focus on the three subjects that most concern us: 

( I )  The seeking of biologically inspired new models of local 
computation architectures and learning along with the 
organizational principles behind of the complexity of intelligent 
behavior. 

(2) The searching for some methodological contributions in the 
analysis and design of knowledge-based ANN's, instead of d 
nets), and in the reduction of the knowledge level to the sub- 
symbolic implementation level. 

(3) The cooperation with symbolic AI, with the integration of 
connectionist and symbolic processing in hybrid and multi-strategy 
approaches for perception, decision and control tasks, as well as 
for case-based reasoning, concepts formation and learning. 

'lb contribute to the posing and partially solving of these global topics, 
lH'ANN'97 offer a brain-storming interdisciplinary forum in advanced Neural 
Computation for scientists and engineers from biology neuroanatomy, 
computational nenrophysiology. molecular biology, biophysics, linguistics, 
psychology, mathematics and physics, computer science, artificial intelligence, 
parallel computing. analog and digital elcctroiiics. :~t lva~~ced computer 
architectures, revcrsc engineering. cngnitive sciences and all the concerncd 
applicd doniains (sensory systcms ilnd signal processing. mnnitoring. diag- 
nosis. classilicatinii and decision inakiiiE, intclliEcnt control iiiid sutiervisinn. 

Contrihutions nil thc following and related topics are welcome. 

TOI'ICS 

I .  

2. 

3. 

4. 

5 .  

6 .  

Biological I;oundatkms of Neural Conrprrfaliorr: Principles of 
brain organization. Neuroanatomy and Neurophysiology of 
synapses, dendrodendritic contacts, neurons and neural nets in 
peripheral and central areas. Plasticity. learning and memory in 
natural neural nets. Models of development and evolution. The 
computational perspective in Neuroscience. 

Formal Tools and Computational Models of Neurons arid 
Neural Nets Archilectures: Analytic and logic models. Object 
oriented formulations. Hybrid knowledge representation and 
inference tools (rules and frames with analytic slots) .  
Probabilistic. bayesian and fuzzy models. Energy related models. 

Plasticity Phenomena (Maturing, Learning nnd Memory): 
Biological mechanisms of learning and memory. Computational 
formulations using correlational,  reinforcement and 
minimization strategies. Conditioned reflex and associative 
mechanisms. Inductive- deductive and abductive symbolic- 
subsymholic formulations. Generalization. 

Complex Systents Dynnmics: Self-organization, cooperative 
processes, autopoiesis, emergent computation, synergetic, 
evolutive optimization and genetic algorithms. Self-reproducing 
nets. Self-organizing feature maps. Simulated evolution. Social 
organization phenomena. 

Cognitive Science and AI: Hybrid knowledge based system. 
Neural networks for knowledge modeling, acquisition and 
refinement. Natural language understanding. Concepts 
formation. Spatial and temporal planning and scheduling. 
Intentionality. - 
autonomy. N e 7  a 
VLSI neuro eviqes). Evolutive Tchitectures. Real systems 

. A ' v G o n  and evaluation. 

1. 

8. 

0.  

I O .  

Methodology for Data Analysis, Task Selection and Nets 
Design. 

Neural Networks for Perception: Biologically inspired 
preprocessing. Low level processing, source separation, sensor 
fusion, segmentation, feature extraction, adaptive filtering. noise 
reduction, texture, ,stereo correspondence, motion analysis, 
speech recognition, artificial vision, and hybrid architectures for 
multisensorial perception. 

Neural Networks,fir Costniunications System: Modems and 
codccs. network management, digital communications. 

Nciirnl Networks f o r  Control and Kohotics: Systems 
identification, motion planning and control, adaptive. piedictivc 
and model-based control systems, navigation, rcal timc 
;ipplicatioiis. visoo-inottrr conidinat ion. 

BEATRIZ Costa Teguise Hotel 
Costa Teguise 

Lanzarote - Canary Islands, June 4-6, 1997 

I-anzarote, the most northerly and easterly island of the Canarian archipelago, 
is at the same time the most unusual one and produces a strange fascination 
on those who visit it because the fast succession of fire, sea and colors co~~trasts 
with craters, green valleys and unforgettable golden and w x m  beaches. 

LANGUAGE 

English will be the official language of lWANN'97. Simultaneous translation 
will not be provided. 

INVITED SPEAKERS 

Prof. Marvin Minsky Neuronal and Symbolic Perspectives of AI 
MIT (USA) 

Prof. Reinhard Eckhorn Models of Visual Processing 
Philips University (D) 

Prof. Valcntino Braitenberg Sensory-Motor Integration 
Institute for Biological Cybernetics (D) 

Dr. Javier De Felipe Microcircuits in the Brain 
Instituto Cajal. CSIC (E) 

Dr. Paolo Ienne Digital Architectures in Neurocomputers 
EPFL (CH) 

CALL FOR PAPERS 

The Programme Committee seeks for original papers on the above mentioned 
topics. Authors should pay special attention to explanation of theoreti'cal and 
technical choices involved, point out possible limitations and describe the 
current state of their work. AI1 received papers will be reviewed by the 
Programme Committee. Accepted papers may be presented orally or as poster 
panels, however all accepted contributions will be published in full length 
(LNCS Springer-Verlag Series). 

INSTRUCTIONS TO AUTHORS 

The text should be 'ustitied to occupy the full line width, an using one-line 
spacing. teadings h n t .  bold) should be c , d  atPd ali 
left. Xtle (14 point, bold) should be centered. Abstract and affiliati 
must be also included. 

If possible, please make use of the latexlplaintex style file available in the 
WWW page: Iitt~~://petrus.upc.es/i~~iinnY7.html, where you can gct more 
dctiiiled instructions to the authors. In addition, one sheet must he attached 
including: Title and authors namcs, list of-eywords, the 'l'opic the pap<r 
fits best, preferred presentation (oral or poster) and the corresponding author 
(name, postal and e-mail addresses. phone and fax nulnhcrs). 


