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Abstract 

Recently, there has been an interest in making electronic cash protocols more 
practical for electronic commerce by developing e-cash which is divisible (e.g., 
a coin which can be spent incrementally but total purchases are limited to the 
monetary value of the coin) [DC94, E094, 0 0 9 2 ,  Pai93, Oka951. In Crypto’95, 
T. Okamoto presented the first practical divisible, untraceable, off-line e-cash 
scheme, which requires only O(logh/) computations for each of the withdrawal, 
payment and deposit procedures, where h/ =(total coin value)/(smallest divis- 
ible unit). However, Okamoto’s set-up procedure is quite inefficient (on the 
order of 4000 “multi-exponentiations” and depending on the size of the RSA 
modulus). 

We formalize the notion of “range-bounded commitment,” originally used in 
Okamoto’s account establishment protocol, and present a very efficient instanti- 
ation which allows us to construct the first truly efficient divisible e-cash system. 
Our scheme only requires the equivalent of one (1) exponentiation for set-up, 
less than two (2) exponentiations for withdrawal and around 20 for payment, 
while the size of our coin remains about 300 Bytes. Hence, our withdrawal 
protocol is 3 orders of magnitude faster than Okamoto’s, while the rest of our 
system remains equally efficient, allowing for implementation in smart-cards. 
Similar to Okamoto’s, our scheme is based on proofs whose cryptographic secu- 
rity assumptions are theoretically clarified. 

Keywords: Electronic cash, efficient, anonymity, divisibility, range-bounded com- 
mitment, tracing, linking, provable, Williams integers. 

1 Introduction 

Off-line untraceable electronic cash has sparked wide interest among cryptographers 
([CFNSO, FY93, Oka95, PW92, Bra93b, DC94, E094, 0092 ,  Pai931, etc). In its 
simplest form, an anonymous off-line e-cash system consists of three parties (a bank 
B, a user U, and a receiver R) and four main procedures (account establishment, 
withdrawal, payment and deposit). The user U performs an account establishment 
protocol to open an account with bank B. To withdraw money, U performs a with- 
drawal protocol with B over an authenticated channel. User U spends a coin by 
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participating in a payment protocol with the receiver R over an anonymous channel. 
72, then perforrns a deposit protocol with the bank f?, to deposit the user’s coin. The 
system is anonymous if the bank f?, in collaboration with the receiver R, cannot trace 
the coin to the user. The system is off-line if during payment the receiver R does not 
communicate with the bank B. However, if a coin is double spent, the user’s identity 
is revealed with overwhelming probability. 

More recently, there has been a strong effort in developing secure divisible un- 
traceable off-line electronic cash protocols [DC94, E094, 0092,  Pai93, Oka951. With 
divisible e-cash a coin of value $a: can be spent in several increments but the to- 
tal amount can not exceed $2, unless the user is willing to be identified with high 
probability. This paper develops a new efficient off-line divisible e-cash protocol. 

In Crypto ’95, Okamoto [Oka95] presented the first divisible e-cash scheme in 
which all procedures can be performed efficiently (;.e., in O(logN), where N = 
(total coin value)/(smallest divisible unit)). Furthermore, all protocols, ezcept estab- 
lishing an account, are of comparable efficiency with the most efficient untraceable 
off-line e-cash systems available. Hence, [Oka95] was a major break-through in elec- 
tronic cash research. 

The protocol presented in this paper, in comparison, has an efficient “account 
establishment” protocol, hence its functionality can be included in every withdrawal. 
Therefore, unlike [Oka95], we have no trade-off between the degree of unlinkability 
among coins and efficiency attained. Having no compromise between coin linkability 
and practicality is a significant difference between ours and [Oka95]. As the name of 
this paper “easy come / easy go divisible cash” suggests, our protocols are efficient 
in providing the user with the coin, as well as efficient in allowing the user to spend 
the coin. 
Efficiency of our scheme: 

The major advantage of our system is that the construction of the electronic li- 
cense (the bulk of the computation in [Oka95]’s “user account establishment” proto- 
col) requires the equivalent of less than two (2) modular exponentiations of [Oka95], 
while [Oka95] requires more than 4000. Furthermore, in contrast to our scheme, 
the number of exponentiations in [Oka95] depends on the length of the RSA mod- 
ulus (which is an insufficient 512 bits in their efficiency calculations), impairing the 
scalability of the system. In our scheme, account establishment is used to exchange 
authentication keys to be used later in withdrawal. Similar to ([Bra93b, E094 ,0092 ,  
Pai93, CFNSO], etc.) we put the functionality of licensing into the withdrawal proto- 
col. 

It should be noted, as noted by [PW92], the more the user uses the same license 
the more likely he can be traced by other means (i.e., correlating various payments’ 
locality, date, type, frequency, etc.) The cost of not performing the account establish- 
ment protocol at each withdrawal is that withdrawals of coins using the same license 
can be linked. Hence efficient license generation impacts annonymity. 

Our withdrawal protocol requires the user and the bank to perform the equivalent 
of less than two (2) and one (1) exponentiations respectively. During payment, the 
user and the bank perform around 20 exponentiations. The size of our coin remains 
around 300 bytes. Hence, our scheme can be implemented in current (PC-based) 
smart cards, while allowing for coins to be divisible. 

As in the Okamoto scheme, our scheme is based on proofs whose “cryptographic 
security assumptions are theoretically clarified”. 
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Organization: We present our range-bounded commitment in Section 2. We proceed 
with an overview of Okamoto’s [Oka95] scheme in Section 3, focusing on the account 
establishment and withdrawal protocols. In Section 4 we sketch our idea and present 
our scheme in Section 5. Next we discuss the scheme’s security (Section S), based on 
a formal security model, and its efficiency (Section 7). 

2 Range-bounded Commitment 

The idea of checking whether a number is in a specific range and a protocol for its 
instatiation were first proposed by T. Okamoto in [Oka95] for the inefficient license 
generation. We propose to call such protocols range- bounded commitments. Here 
we formalize the notion of a range-bounded commitment and present an efficient 
instatiation based on the Discrete Logarithm Assumption (DLA); informally, this is 
a protocol between a prover, P ,  and a verifier, V ,  with which P can commit to a 
string, x ,  and prove to V that x is in a predetermined range. Formally, 

Definition 2.1 A range-bounded commitment scheme consists of a pair ofprob- 
abilistic polynomial-time znteractive machines, denoted (P, V )  (for prover and veri- 
fier), satisfying: 

Input specification: The private input to the prover is a string x for  which 
IzI 5 H .  The common input is a bit commitment b(z) on x ,  an integer k 
presented in unary (the security parameter), an integer H (the specified range) 
and a fraction S (the accuracy). 

e Completeness: The prover can prove that x is in the specified range. Namely, 
f o r  every x such that 1x1 5 H and for every polynomial p(.), 

1 
Prob[(P, V ) ( b ( x ) )  = 13 2 1 - - , 

P ( k )  

where the probability is taken over the coin tosses of P and V .  . Soundness: The verifier is convinced that x is in the range of H .  Namelg, 
f o r  every probabilistic polynomial-time machine P* (a cheating prover), every 
x such that 1x1 > (1 + 6)H and for every polynomial p ( . ) ,  

1 

Po’ Prob[(P*, V ) (b ( z ) )  = 11 5 

where the probability is taken over the coin tosses of P* and V .  

Secrecy: The verifier does not obtain any  informatzon about x ,  other than b(x): 
f o r  every probabilistic polynomial-time machine V* (a cheating verifier), there 
exists a probabilistic polynomial-time machine M *  ( a  simulator) so that with 
probability-taken over the coin tosses of P ,  V* and M*  -overwhelming in k 
the following two ensembles are polynomially indistinguishable 

{P, V*)(b(X))}l2l<X, and . {M*(b(X))}lZI<H. 

We now present an efficient range-bounded commitment protocol based on the 
DLA. An interesting point to note is that while computations are normally performed 
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modulo a prime Q computations involving exponents are not performed modulo Q - 1 
but on the integers, so that the range of the numbers can be checked. 

Setup: Define security parameters H,S,  k, 5 > (3k + 2) /H,  k 5 E < 5H - 2k, 
where S is the desired length of the output of the random oracle-like hash function 
if the protocol is made non-interactive, E is the length of the verifier's challenge if 
the protocol is interactive and the other parameters conform to the definition of the 
range-bounded commitment above. 

Given a prime Q with IQI = 2(1+ S)H + 6, and X = g" mod Q, prover P will 
prove to verifier V that 1x1 5 (1 + S ) H .  
The protocol: 

(1) P picks ui ER (0 , .  . . , 2(1+6)x}, and sends Ui = gut to V .  

(2) V sends ea ER (0,. . .,a'}. 
(3) P responds with u: = cia: + ua. 

(4) V verifies g": = XezUa and 0 5 u: 5 2(1+6)H.  
The protocol can be collapsed to one move if e = el  . . . e j  = '&(X, U1, . . . , Uj), 

where j is the number of iterations. In this case, it must be executed j = [ S / E ~  times, 
to guarantee that le /  2 S. 

Note that in each iteration the prover has a probability of l/2' 5 1/2k of in- 
correctly convincing the verifier that x is in the specified range, by selecting ui = 

The probability that a legitimate P (Le., for which 121 < H )  fails to convince V is 
1 - (1 - 2'-6H)j (the probability that for some i, ua > 2(1+6)H - eix), i.e. < 1 - (1 - 
2-2k)j,  from the selection of E ,  5, H .  According to [FGY96], whose second protocol 
is a generalized case of ours, the probability that V can extract some information 
regarding 2 is j2-6H+1+' (< j2-2h+1). 

-eiz + u: for some u6 ER (0,. . . , 2(1+W}.  

Formally, we can prove the following theorem: 

Theorem 2.1 Assuming g" 
protocol is a range-bounded commitment. 

Remark: Security can be proven based solely on the DLA as long as X E g" 
(mod Q )  hides all information about 2; in reality, however, even assuming the DLA 
some minimal information about x is revealed given X .  For applicability in our e- 
cash scheme this leak of information is not important, since X is already known to 
V ;  hence the range-bounded commitment protocol can be simplified by introducing 
this stronger assumption. 

(mod Q) is a secure bit commitment on x, the above 

3 The Okamoto scheme 

In Okamoto's divisible off-line e-cash scheme [Oka95] each user U generates a com- 
posite number N = PQ, such that N is a Williams integer' associated with U. 

In the account establishment protocol the bank B publishes its RSA public 
keys ( n 1 , K )  and ( n 2 , K )  and also (u1,u2) as public keys. It also publishes prime 
P and generator g E P. A users license is ( N ,  L1 = ( N  + u ~ ) ' / ~  mod nl,  L2 = 

IN = PQ is a Williams integer iff P, Q are prime, and P 3 3 mod 8 ,  Q E 7 mod 8. 
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( N  + uz)l lK mod n2) where L1 and La are blindly signed by the bank after the 
user proves that input is of the correct form. In [Oka95] Okamoto shows that this 
protocol takes approximately 4000 “multi-exponentiations”2 modulo P, assuming 256 
bit primes P and Q (Le. an RSA modulus of 512 bits) and a security parameter of 
k = 20 (i.e. the probability of misbehaving undetected is l/a2’). Furthermore the 
number of exponentiations depends both on the security parameter (k) and the length 
of the RSA modulus. 
Withdrawal of the coin is nothing more than an RSA blind signature [Cha83] on 
H(Nl lb) ,  where H is a one-way function, b is a random value and the bank’s public 
RSA key is dependent on the value of the coin. 
The coin (;.e., the value N )  defines a tree such that the following rules are satisfied: 

Once spent, a node’s ancestors and descendants can not 

A node can not be used more than once. 

0 Root route rule: 

4 Same node rule: 

be used. 

(See [Oka95, E094,0092,  Pai931 for details, and appendix B for a short description). 
The payment protocol consists of two parts: 

4 (Coin Authentication) U convinces R that the coin is a legitimate coin 
(i,e. it is signed by t?, and if N is factored then U is identified). 

4 (Denomination Revelation) U presents some data that are specific to the 
node(s) of the tree that is/are being spent, in such a way that R is guaranteed 
that (a) N is a Williams integer and (b) if U violates the root route or the same 
node rule then N can be factored. 

The reader should note that the same N is revealed for each coin with the same 
license. Hence, coins can be linked. Our system does not have this property. 

4 The basic idea 

Okamoto’s scheme is quite efficient. In fact it is only inefficient during the account 
establishment protocol. To emulate the functionality of this protocol, all that is 
needed is a method to provide a receiver R with an N ,  such that (1) N is a composite 
of two numbers, (2) N is signed by the bank, and (3) R (and subsequently the 
bank, at deposit time) is guaranteed that if N is factored, the owner of the coin 
will be identified. Condition (1) is satisfied by the denomination revelation protocol 
of [Oka95] which determines if N is a Williams integer and generates the tree as 
discussed in Section 3. What we suggest is a new approach for withdrawal (Le. signing 
N )  and coin authentication (Le. proving the correctness of N to R). 

Our idea is to  use a modified Brands [Bra93b] protocol for withdrawal and coin 
authentication. This can be done if an efficient range-bounded commitment is pro- 
vided. U has (at account establishment) associated his identity with I‘ = 9:. At 
withdrawal, he randomly generates N = pq and identifies the particular withdrawal 
(hence himself) with Iw = g:. During withdrawal, U will end up with a message 
( A  = & q g ~ g ~ q ,  B = [ N ] )  and a signature on A ,  B: sign(A, B) .  Hence (2) above is 

*Each multi-exponent is equivalent to xxx modular exponents. 
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guaranteed. The correctness of A and the unforgeability of the signature are guaran- 
teed by the protocol in [Bra93b]. 

To guarantee condition (3), we observe that during payment N is revealed and, if 
the coin is over-spent, N can be factored in the denomination revelation phase, based 
on the result in [Oka95], and as corrected in [?I. At coin authentication U proves 
that A = gfJX for some X = gfgl. Since A = g ] ; q g ~ g ~ q ,  this indirectly guarantees 
that N = p q ,  i.e. the factorization of N reveals I t .  Notice that this only holds if we 
guarantee that p ,  q are small enough so there is no wrap-around in the modulus used 
(i.e. in gYq (mod Q), pq < Q - 1); our rangebounded commitment is used for this 
purpose. 

5 The scheme 

Remark: There are actually two viable variants of our scheme. In one variant, u = 0, 
i.e. only three generators ( g , g 1 , g 2 )  are used and the identifying information of the 
user U is gY, created by the user at each withdrawal and stored by the bank B. This 
variant, apart from requiring less communication/computation from both U and the 
bank B, also allows us to prove the untraceability of our scheme with respect to an 
assumption similar to one appearing in [Oka95]. 

If u # 0, on the other hand, the bank, upon tracing a double-spender, only has 
to perform a search in its account database (in order to locate I' = 9:). In contrast, 
in the first variant, it would have to store all identification values IW = gy appearing 
in withdrawal protocols, and then perform a search among them (note that this 
does not increase the order of computation or storage needed by B, since B has to 
store transcripts, and perform searches-at each deposit-of deposit protocols too). 
The proof of this variant depends on a slightly more complex assumption, which we 
nevertheless believe is an interesting number theoretic problem to be analyzed. 

We present our scheme when u f 0. It is then easy to derive the first variant 
(when u = 0). When we discuss our scheme's security (Section 6) we present the 
assumptions needed for both variants. 

We use a generalization of the discrete logarithm problem (DLP),  the representa- 
tion problem in groups of prime order; this is equivalent to the DLP [Bra93a]: 

Definition 5.1 (The representation problem in groups of prime order) 
Instance: A group Gg, a generator-tuple (91,.  . .,gk), h E Gg. 
Problem: Find a representation of h with respect to  (91, . . . , gk). 

5.1 Initialization 

Bank Initialization (setup) procedure: 
The bank B chooses the security parameters le, n, S, H = lpl = In] = JN)/2, 6 > 
(3k  + 2 ) / H ,  n 5 le 5 6 < 6H - 2 k ,  and prime Q, with IQI = 2(1+ 6 ) H  + 6 .  All 
arithmetic is performed in GQ, except for the operations involving exponents, which 
are performed in ZQ. B chooses: 

b Four generators g , g l , g 2 , g 3  of GQ, 

7 f , ' I & , , 7 f 1 , .  . ., from a family of collision intractable hash functions, 
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A private key x ER ZQ (a different key is used for every denomination). 

B publicizes the description of GQ (i.e. Q), the generator-tuple (g,gl,g2, g3), the 
description of 71, Eo, 711,. . ., and its public keys h = g", hi = gr ,  i = (1,2,3). 
User Initialization (account establishment) procedure: 
The user U shows (by physical or other means) his identity to the bank B and then 
associates himself3 with I' = g: to B. The bank verifies that I' # { 1,93}. 

5.2 Withdrawal 

The signature that is used by the bank to  sign a coin is a variation of the Schnorr 
signature [SchSl] and is also used in [Bra93b]. The signature sign(A, B )  on the pair 
(A, B )  E GQ x GQ,  consists of a tuple ( z ,  u ,  b, r )  E GQ x GQ x GQ x ZQ,  such that: 

(1) gr = hXn(A,B,Z,a,b)a and AT = z'H(A,B,Z,a,Q)b 

The withdrawal protocol 
At the beginning of the withdrawal protocol, the user creates an authenticated 

channel with the bank. This is needed in all e-cash (and physical cash!) protocols to  
guarantee that only the owner of an account withdraws money from it and that the 
user is communicating with the real bank. If u # 0 (i.e. the second variant is used), 
this functionality is included in our withdrawal protocol4. 

U :  (This step can be pre-computed.) 

Select primes p G 3 mod 8, q E 7 mod 8, IpI = /qI 5 H = (IQI - 6)/[2(1+ S)] at 
random, and calculate N = p q .  

Send Iw = gy and I' = g i  to B. 

0 U , B  : Perform a Schnorr proof of knowledge [SchSl] that U knows the repre- 
sentation of I' w.r.t. g3. 

U , B  : Use the range-bounded commitment (base 91, with security parame- 
ters H , S , k , S , c )  with Iw to prove-in an interactive way and with just one 
iteration-that IpI 5 (1 + 6 ) H .  

B: Set I = IwI'(= gyg;), and check that Iw # {1,g1}, Iga # 1. 

Pick 20 ER ZQ, and send a' = gw, 6' = ( I g z ) w  to U .  

0 U: Compute z' = (hl)'hZ(h3)" [= (Igz)" since hl = gf ,  h2 = gg, h3 = g;]. 
This step can be pre-computed (or I' can be supplied by 23). 

Let A = (Ig2)q = gfJg:giq, B = [ N , Y  = g:], and z = z". 

Pick v1 ER 26, v2 ER ZQ and compute a = a'V1gvz and b = b'qv1Av2. 

Compute the challenge c = '?f(A,B,z,u,b), and send the blinded challenge 
e' = c/vl (mod Q) to B. 

31n the first variant U sends to B his public key -using any public key cryptosystem- so that 
an authenticated channel can be created at withdrawal (U already has B's keys from the bank 
initialization protocol). 

4The user M proves to the bank B that he knows the representation of I' w.r.t. 93, and 24 is 
convinced of B's identity by checking the correctness of sig(A, B). 
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e 23: Send the response r’ = c’x + w 

24: Accept iff g” = he’d and (Ig2)r’ = z’”b‘. Compute T = r’vl+v2 

(mod Q) to U, and debit U’s account. 

(mod Q ) ,  
to get the signature ( z ,  a,  b ,  r )  on (A, B) .  

See appendix D for a graphical presentation of the protocol. 

5.3 Payment & Deposit 

Coin Authentication: 

e U :  Pick 23 ER Z Q .  Compute Y = g;, Y3 = g:‘, y3 = gg3, d = ‘Hl(A, B ,  Y3, ya,date/time, I&). 
This is a non-interactive approach but one could add a random challenge from R 
into the hash (‘HI) if desired5. The non-interactive case allows for the payment 
protocol to be conducted in one move, from U to B. 
This step (except for the challenge, if an interactive approach is used) can be 
pre-processed. 

24 sends the coin to R: Send A, B = [N, Y], sign(A, B ) ,  Y3, y3, and respond 
to  challenge d with r3 = duq + x3. 

R verifies that the coin is legitimate: 

1. 

2. 

3. 

4. 

5. 

Verify the signature sign(A,B), and that Y # 9 2 ,  Y # g r ,  A # 1, 

Verify that U knows a representation of Y3 with respect to 93 

using [SchSl]: gp 2 y3Y3d. 

Prove that q is chosen correctly: Use the range-bounded commitment 
(base 92) with Y, to prove that 141 5 (l+S)H (the challenge e is computed 
based on a hash function-as d above-so that even a collaboration of 2.4 
and R cannot forge the proof). [ S / E ~  iterations are performed as discussed 
in Section 2. 

Verify that A is correctly constructed: gfiTYY3 

Limit the way U can misbehave: Check whether N is divided by the 
first IN1 primes that are congruent to 3 mod 8 or 7 mod 8. This addition is 
necessary due to a flaw in [Oka95]’s denomination revelation protocol [?I, 
and simplifies identification of double-spenders, as shown in [?I. [?] also 
describes the tracing protocol used by B in this case. We adopt this pro- 
tocol, but omit its description due to space considerations. 

Y3 # 93, (-l/N) = 1, ( 2 / N )  = -1. 

A. 

Denomination Revelation: We use [Oka95]’s protocol, with the only modifica- 
tion being the substitution of the coin (C, N )  in the hash functions of Okamoto with 
our coin, (A ,  B) .  This protocol guarantees that if one of the node rules (see Section 3) 
is violated, then U has released enough information to allow B to factor N. Note‘that 
if IC’ < k/4 nodes are spent, then 2 . (k/4 - IC)’ additional square roots of randomly 

51n any case, A, B,Ya, y3 ,date/time,IDR must be included in the hash (as in the self-challenging 
Schnorr proof of knowledge), so that even if R and U collaborate the subsequent proofs of knowledge 
are still valid. 
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chosen numbers must be shown by the user; these are described in [Oka95]’s coin 
authentication and are also performed here. 

Deposit: R sends the payment transcript to B. 

6 Security 

We now present our security model and give an overview (due to space limitations) 
of the proofs. 

As with [Oka95], our security model has been based on [FY93] and is modified to 
work for divisible, unlinkable coins. To our knowledge, this is the first formal model 
in the literature covering unlinkability. We will model the security of our scheme by 
requiring that it satisfies four requirements, which are slightly stronger than the re- 
spective [Oka95] properties (included in brackets) that do not include unforgeability: 
unreusability [No overspending], untraceability [No tracing], unexpandability [No forg- 
ing and No swindling6], and unforgeability. The use of a non-uniform, probabilistic 
polynomial time machine (p.p.t. TM) in our model simulates user collaboration as 
views to the TM. Thus, in establishing the security we prove that even a collaboration 
of users (and/or shops) cannot break the scheme. 

Our proofs of security are based on the following assumptions: 

0 (when u = 0) (Factoring and Diffie-Hellman 11) Let Q,po,qo,pl,ql be 
primes, NO = P O Q O ,  Ni = piqi, and H = lpol = Iqol = /pi! = 1411 5 
(191 - 6)/(2(1+ 6)) for some sufficiently large 5 > 0. Let the order of g in the 
multiplicative group 2; be Q. Then, no p.p.t. T M  M can, given Q, 5 ,  g ,  [YO(= 
gpo mod Q), NO(= P O Q O ) ] ,  [YI(= gql mod Q), NI(= plql)] and [IT(= gPr mod 
Q), I~-,,(G gJ’l-, mod Q)] ( r  ER (0, l}), compute T with probability better 
than 1/2 + l /HC, for all constants c and sufficiently large H (Le. M cannot 
compute r non-negligibly better (in H )  than random guessing). 

0 (Withdrawal p r o t o ~ o l ) ~  If random hash functions exist, then our with- 
drawal protocol is a restrictive blind signature protocod: the message m = 
I 9 2  = g;”1g,”3g2 is signed by the string A = g y g i g g ,  in such a way that 
a/p  = u1, y / P  = u3. 

0 (Hash functions) Hash functions (31,3c0,’Hl,. . .) behave like truly random 
functions. 

Remarks: Remarks on these assumptions are provided in appendix A. 
For our proofs we use the following lemma, which has been proven by [?I, based on 
our hash functions assumption: 

“No swindling” is guaranteed from unreusability and unexpandability: even a collaboration of 
users/shops cannot over-deposit the withdrawn/paid coins. 

‘We can reduce this to Brands’ original assumptionfrom [Bra93b]. Assume it does not hold. Then 
let g; = gfg2,g; = g,”gz. Then, the original assumption, with either (g1,gZ = gl), or (gl ,g2 = Si), 
does not hold. The other direction is trivial. 
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Lemma 6.1 (Schnorr signatures) Schnorr signature [Sch91] are ristentially un- 
forgeable, even when the prover in the Schnorr identification protocol is queried poly- 
nomially many times. 

Theorem 6.2 Unreusability: 
Let n be the security parameter. If the successfully deposited nodes of a coin violate 
the route node rule or the same node rule, then the identity of the coin's owner 
can be efficiently (i.e. b y  a p.p.t. TIM) computed (and subsequently proven) f rom the 
transcripts of the withdrawal and the deposit protocols with overwhelming probabzlity 
(in n). 

Proof. The Withdrawal protocol assumption and lemma 6.1 (which themselves 
require assumption Hash functions above), together with the verification done at the 
coin authentication stage, guarantee that the element A (of the coin ( A ,  B ) )  is of the 
form s";qgigzq for some p ,  q ,  u ( p ,  q not necessarily prime) and where IW s gf  , I' E g: 
(mod Q).  We will also show that p is a prime factor of the N included in B ,  and how 
this leads to identification of U, i.e. to Iw and I'. 

Steps 2 and 3 in payment guarantee that U knows a representation of Y,Y3 
w.r.t. g2]g3, respectively: Y = gi ,Y3  = g p l  for t ,t3 E 26, It1 5 (l+S)H < IQI. With 
step 4, this proves that U knows ( N ,  t , t3) ,  ( u , p ,  q )  such that: A G g 1  N g2g3 t t 3  - = g1 pp 9293 9 UP 

(mod 9). 
If N f pq (mod Q - l), t $ q (mod& - 1) or t 3  $ uq (mod Q - l), 

then 24 would know more than one representation of A with respect to (gl1g2,g3), 
which contradicts the representation problem in groups of prime order and hence 
our Wzthdrawal Protocol assumption. Therefore] t z q (mod Q - l)] t 3  G uq 
(mod Q - l), N = pq s pt (mod Q - l), and Y gi1Y3 g lq  (mod Q) .  

7 mod.8 primes, i, j odd integers, 
and that N (and therefore p', q', i, j )  is unique. Then praq" = N E pt (mod Q - 1). 
But IN1 < IQI (since (pi ,  It1 5 ( 1  + S)H,  IQI = 2(1+ 6)H + 6), hence N < Q - 1 and 

p"q" = N = pt .  Since t l N ,  t is either N ,  1 or p'"q'j', i' 5 i, j' 5 j. But at coin 
authentication R has verified that g l  Y (92, g r }  (mod Q ) ,  i.e. t (1, N } .  

Thus, t = p'"q'j' and, consequently, p = N / t  = p'i"q''-j'. 
[Oka95] provesI under the assumption that factoring is difficult (which, in turn, 

is included in assumption Factoring and Diffie-Hellman II above), and assumption 
Hash functions above, that N is guaranteed to be of the form p"q" with special p', q', 
and if the route node rule or the same node rule are violated] then B obtains p t z1  q". 
Also, N is blindly signed by B at withdrawal (it is included in X ( A ,  B ,  .zl a, b ) ) ,  hence 
it is unique. 

The ammendment to [Oka95]'s coin authentication protocol proposed by [?] guar- 

antees that U can, with an acceptable overhead, find i, i', j ,  j' such that g2 = g 2  

(mod Q )  e q E t G p" q" (mod Q - 1)] IW E 

g; (mod Q ) ,  and the fact that 
B now knows a representation of IW w.r.t. g 1  constitutes proof of double spending'. 

0 

Assume that N = p"q'3, with p' = 3 mod 8, q' 

. .  

- p r I l q ' J '  

.I . I  . . I  . I  

(mod Q - l), l p  
p"-' q'j-' 

(mod Q )  and I' E A ( q ) - ' / ( g ; g z )  E A(t)-  / ( g ] l g z )  

Therefore, if U over-spends he is identified. 

'Since the representation problem is equivalent to the DLA; but the DLA is implicit in [Bra93b] 
and hence our withdrawal protocol assumption. 
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Theorem 6.3 Let n be the security parameter. WLOG‘ we treat the collection of the 
portions of a coin as being a single, indivisible, coin. 
Unforgeability: No p.p.t. T M  can, from the views of users of arbitrarily many with- 
drawal and payment protocols, compute a single coin that does not embed the identity 

.of at  least one of these users and that will lead to two successful purchase (or deposit) 
protocols, except with negligible probability (in n). 

Unexpandability: The probability that from the views of users and shops of N 
withdrawal and of N payment protocols, a p.p.t. T M  can compute an additional coin 
that will lead to a successful purchase (or deposit), is negligible (in n). 

We discuss the validity of the above theorem. In [Bra93b] it is proven, under 
assumption Hash functions and lemma 6.1 above, that it is infeasible to existen- 
tially forge a coin (unexpandability), even when performing the withdrawal protocol 
polynomially many times and with respect to different account numbers. It is also 
proven, under assumption Withdrawal protocol, that every coin embeds the identity 
of its owner (unforgeability). [Bra93a] shows that these proofs are valid even if U’s 
identity is represented in more than one generator (as in our case, (gl, 93)). Our 
scheme restricts U’s power, in comparison to [Bra93b]: U’s secret numbers ( p ,  q )  have 
to be factors of N ,  where IN1 < \ & I .  Our scheme also proves (at payment time) that 
U knows the representation of A w.r.t. ( g l l g 2 , g 3 )  as in [Bra93b, Bra93al. Hence, 
the proofs of [Bra93b, Bra93al carry along, and guarantee the unforgeability and 
unexpandability of our scheme. 

Theorem 6.4 Untraceability: 
Let n be the security parameter. WLOG we treat the collection of the portions o f a  coin 
as being a single, indivisible, coin. Let Wi be the set of all withdrawals (W)  of user 
Ui. Then no p.p.t. T M  M that can access all B’s views, and that possesses two coins 
Ci,Cj, two users’ withdrawal sets W1, W2 (U1 # UZ) and withdrawals Wi, W1, WZ,  
such that Ci is the coin originating from Wi E W1, and Cj is  a coin originating 
from either W1 E W1 or WZ E W2, can distinguish (non-negligibly better (in n) than 
random guessing) whether Cj came from W1 or Wz. (This theorem also guarantees 
unlinkabality among coins of the same user). 

For simplicity, we argue the theorem’s validity for u = 0 (first variant). 
Since all random numbers of U1,Uz (that determine B’s views) are chosen inde- 

pendently of the users’ identities, the fact Wi E W1 cannot help M .  Hence the above 
problem is equivalent to saying that M cannot distinguish whether Cj came from 
W1 or Wz , for any coin Cj and withdrawals W1, W2. 

We concentrate on the information revealed in the coin authentication protocol, 
since the denomination revelation remains unchanged from [Oka95]. Assume that B 
has access to an oracle that allows it to distinguish which withdrawal protocol the 
coin Cj came from. We show that B can use this oracle to break the Fuctoring and 
Diffie-Hellman 11 assumption. 

Given [Yi(z g F  mod Q) ,  NO(= poqo)],  [Yi(= glQ’ mod Q) ,  N I ( =  plql)] and [I,-(= 
gf‘ mod Q ) ,  h-,-(= g1 pl-r mod Q)] ( r  E R  (0, l}), the bank calculates the views: 

0 Wi (withdrawal view for ( I w ) i  = Id, i E { T ,  1 - r } ) :  

11 



Pick wi, ER ZQ. 
Compute a: = gwa, b: = ( I i g 2 ) w * ,  ri = c:x + wi. 
The range-bounded commitment can be simulated by setting Ut = g;"'(Iw)ie' .  

0 P, (payment view for q', N j ,  j E {O,1}):  

Compute % = gp modQ), where g2 = sf'. The range-bounded 
commitment can again be simulated in the same way as above; in this case the 
simulator also modifies the output of the hash function XO, but since the latter 
is a random oracle the simulation is computationally indistinguishable from the 
real protocol (a similar technique is used in, e.g., [?I). 
Compute Aj = g p  y j  , zj = A:. 
Pick f j  ER ZQ, and compute aj = g f ~  , bj = A:. 
Computecj ='N(Aj,Nj,zj,aj,bj) a n d r j  = c j x +  fj. 

It is easy to see that a's views of the above protocols are valid. Furthermore, if 
Z? can use the oracle to see which of Wi corresponds to, e.g., CO, then it can break 
the Factoring and Diffie-Hellman I1 assumption. 

All we need to show now is that the views B constructed are valid views of coins, 
i.e. there exists a set of choices that any user U could have made in order to obtain 
coin C, (of payment Pj) after engaging in Wi (for some i E { r ,  1 - r } ) .  Then the 
oracle does provide a valid response. 

But for any pair (Wi, Pj),  U could choose V I ,  212 such that VI = C j / c i  and fj = 
wjvl + 212. Then it is easy to verify that U would end up with the same coin Z? 
simulated in Pj , after engaging in Wi. 

7 Efficiency 

The efficiency of our scheme and comparison to [Oka95], partially discussed in the 
introduction and abstract, is fully discussed in Appendix C. 

It is apparent that the storage, computation and communication requirements of 
our scheme are well within the power of current smart cards, resulting in the first 
untraceable divisible off-line electronic cash scheme that can implemented in practice. 

The most important open problem (excluding extensions to tamper-resistant de- 
vices and escrowing) is to find a way to break the linkability between portions of the 
same coin. 
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figure=tree.ps 

Figure 1: Tree for a $1,000 coin. 

A Remarks on Assumptions 

1. An assumption similar to Factoring and Difie-Hellman II appears in [Oka95]. 
I t  implies that the Discrete Logarithm Assumption (DLA) holds and that fac- 
toring is difficult, since if either can be solved the assumption doesn’t hold. If 
u # 0, i.e. the second variant of our scheme is used, then this assumption needs 
to  be modified as follows: 
(MultipleFactoringand Diffie-Hellman) (Let Q, HI 6,po,  q o , p l ,  41, NO,  N1, YO, Yl, I,., Il-,. 
be defined as previously, and UO, u1 ER Zq). No p.p.t. T M  can, given Q, 6, g, [Yo, NO, Y:(E 
guOQO mod Q ) ] ,  [Yl, N1, Y{(= gulp1 mod Q)] and [I,., I:(= gur mod Q)], [Il-,., I{-,.(= 
g”1-7 mod Q)] (r  ER (0, l}), computer with probability better than 1/2+1/Hc, 
for all constants c and sufficiently large H. 

We believe that this assumption represents an interesting number theoretic 
problem to be studied. 

2. An assumption equivalent (see footnote on this assumption) to Withdrawal pro- 
tocol appears in [Bra93b]. Although it is stronger than the DLA, there are 
convincing arguments that suggest that breaking it requires breaking either the 
Schnorr signature scheme or the DLA. 

3. The Hush functions assumption is difficult to guarantee. As suggested by [Oka95] 
it requires tamper-free devices. [BR93] suggest an implementation using MD5 
in a special manner. We use it because it clarifies our scheme, and, for all 
practical purposes, commonly available one way hash functions can be used. 

B Binary tree approach 

In all anonymous off-line truly divisible e-cash schemes, a binary tree approach is used. 
Each node of the tree represents an amount; the root represents the whole amount, 
its children half of the amount, its “grand-children’’ a quarter of the amount, etc. 
This approach limits the size of the coin, by requiring that the bank authenticates 
only the root of the tree. 

For example, in figure 1 we show a tree for the coin n. In this tree if, say, 
no = $1,000, then 7200 = no1 = $500 and no00 = no01 = no10 = no11 = $250. 

For a tree construction to work properly, we must ensure that the same node rule 
and the root route rule (see Section 3) are satisfied. These two rules guarantee that a 
user cannot spend more than the total value of the coin (i.e. the denomination of the 
tree’s root). In the context of off-line electronic cash, “cannot spend” means that if 
these nodes are spent, then the user’s identity is revealed. 
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C Efficiency 

We examine the efficiency when H = Ipl = IqI = 256, n = k = 6 = 40, S = 160, 
IN1 = 512’, I&\ = 640 (i.e. 5 = 0.24), and the binary tree has 18 levels, i.e. the 
divisibility precision is 217, hence sufficient to divide a $1,000 coin down to 1 cent. 
We assume the existence of fast, random hash functions. No pre-processing is assumed 
(unless explicitly stated). In practice several of the steps can be pre-computed. We 
calculate for u = 0. A * marks the numbers that have been used in the abstract and 
introduction. 
Storage requirements: The informationU needs to store for one coin ( p ,  q ,  ( a ,  b ,  r ) )  
is 304’ Bytes (up to 464 Bytes if U stores, rather than recalculating before each pay- 
ment, A and/or z ,  and plus 80 Bytes if u # 0). In comparison, the coins in [Oka95] 
are 264 Bytes and in [Bra93b] 384 Bytes, when the same parameters are used. 
Computation and communication: Our exponentiations are 5 times less costly 
than [Oka95]. The exponentiations in our range-bounded commitment are 10 times 
less expensive. At withdrawal U performs the equivalent of less than 2* exponen- 
tiations of [Oka95] (and B less than 1*). U sends 440 Bytes, and B 306 Bytes. U 
also needs to calculate one Williams integer, but he can pre-compute one any time 
before withdrawal. In contrast, in [Oka95] 2.4 needs to perform more than 4,000* 
“multi-exponentiations” for the same functionality. 

In the coin authentication phase, U transmits 664 Bytes to R. U needs to perform 
the equivalent of less than 1* exponentiation of [Oka95] (if he re-computes A and z )  
and R1* (the IN1 divisions are as costly as 3 exponentiations, or 3/5 exps of [Oka95]). 

In the denomination revelation phase1’, 9 nodes (on average) are paid. For each 
node, two 512 bit values are sent to R, for a total of 1,152 Bytes. In addition, about 
320 Bytes (on average) are sent for verifying that N is a Williams integer. Both U 
and R compute approximately 19* roots (mod N )  (we include the Williams integer 
verification), where each root computation is similar to an exponentiation (mod N ) .  

gAlthough we believe that 512 bits are not sufEcient for an RSA modulus, we use this value for 
comparison with [Oka95]. However our coin remains small if, e.g. IN1 = 1024 (+300 Bytes). 

lowe adopt the calculations of [Oka95]. 
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D The withdrawal protocol 

The user U 

p E 3 mod 8 , q  E 7 mod 8 

B = [ N  = p q ,  Y = g;] Iw = g; 

Proves knowledge of 
representation of I’ w.r.t. 93 
Proves Iw is a bounded commitment 

The bank l3 

Verifies knowledge 
Verifies proof 

C’ 

r’ = c’z + w 
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