First results for a novel superconducting imaging-surface sensor array

PDF Version Also Available for Download.

Description

A superconducting imaging-surface system was constructed using 12 coplanar thin-film SQUID magnetometers located parallel to and spaced 2 cm from a 25 cm diameter lead imaging-plane. Some measurements included two additional sensors on the back side of the superconducting imaging-plane to study the field symmetry for the system. Performance was measured in a shielded can and in the open laboratory environment. Data from this system has been used to: (1) understand the noise characteristics of the dewar-SQUID imaging plate arrangement, (2) to verify the imaging principle, (c) measure the background rejection factor of the imaging plane, and (4) compare superconducting ... continued below

Physical Description

5 p.

Creation Information

Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlashov, A.; Overton, W.; Peters, M.V. et al. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A superconducting imaging-surface system was constructed using 12 coplanar thin-film SQUID magnetometers located parallel to and spaced 2 cm from a 25 cm diameter lead imaging-plane. Some measurements included two additional sensors on the back side of the superconducting imaging-plane to study the field symmetry for the system. Performance was measured in a shielded can and in the open laboratory environment. Data from this system has been used to: (1) understand the noise characteristics of the dewar-SQUID imaging plate arrangement, (2) to verify the imaging principle, (c) measure the background rejection factor of the imaging plane, and (4) compare superconducting materials for the imaging plane. A phantom source field was measured at the sensors as a function of phantom distance from the sensor array to verify the imaging theory. Both the shape and absolute values of the measured and predicted curves agree very well indicating the system is behaving as a gradiometer in accordance with theory. The output from SQUIDs located behind the imaging surface that sense background fields can be used for software or analog background cancellation. Fields arising from sources close to the imaging plane were shielded from the background sensors by more than a factor of 1000. Measurement of the symmetry of sensor sensitivity to uniform fields exactly followed theoretical predictions.

Physical Description

5 p.

Notes

OSTI as DE99002589

Source

  • Applied superconductivity conference, Palm Desert, CA (United States), 13-18 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002589
  • Report No.: LA-UR--98-4086
  • Report No.: CONF-9809130--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 350914
  • Archival Resource Key: ark:/67531/metadc681084

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 25, 2016, 4:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlashov, A.; Overton, W.; Peters, M.V. et al. First results for a novel superconducting imaging-surface sensor array, article, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc681084/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.