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Improving Spanning Trees by Upgrading Nodes 

S. 0. Krumke ' M. V. Marathe H. Noltemeier ' 
R. Ravi4 S. S. Ravi3 R. Sundaram5 H. C. Wir th '  

January 16, 1997 

Abstract 

We study budget constrained optimal network upgrading problems. Such problems aim at 
finding optimal strategies for improving a network under some cost measure subject to certain 
budget constraints. A general problem in this setting is the following. We are given an edge 
weighted graph G = (V, E )  where nodes represent processors and edges represent bidirectional 
communication links. The processor a t  a node v E V can be upgraded at a cost of c(v). Such 
an upgrade reduces the delay of each link emanating from v. The goal is to  find a minimum 
cost set of nodes to be upgraded so that the resulting network has the best performance with 
respect to some measure. We consider the problem under two measures, namely, the weight 
of a minimum spanning tree and the bottleneck weight of a minimum bottleneck spanning 
tree. We present approximation and hardness results for the problem. Our results are tight 
to within constant factors. We also show that these approximation algorithms can be used to 
construct good approximation algorithms for the dual versions of the problems where there is 
a budget constraint on the upgrading cost and the objectives are minimum weight spanning 
tree and minimum bottleneck weight spanning tree respectively. 
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1 Introduction, Motivation and Summary of Results e - , *  

Several problems arising in areas such as communication networks and VLSI design can be ex- 
pressed in the following general form: Enhance the performance of a given network by upgrading a 
suitable subset of nodes. In communication networks, upgrading a node corresponds t o  installing 
faster communication equipment at that  node. Such an upgrade reduces the communication delay 
along each edge emanating from the node. In signal flow networks used in VLSI design, upgrading 
a node corresponds t o  replacing a circuit module at the node by a functionally equivalent module 
containing suitable drivers. Such an upgrade decreases the signal transmission delay along the 
wires connected t o  the module. There is a cost associated with upgrading a node, and there is 
often a budget on the total upgrading cost. Therefore, it is of interest t o  study the problem of up- 
grading a network so tha t  the total upgrading cost obeys the budget constraint and the resulting 
network has the best possible performance among all upgrades that  satisfy the budget constraint. 

The performance of the upgraded network can be quantified in a number of ways. In this 
paper, we consider two such measures, namely, the weight of a minimum spanning tree in the 
upgraded network and the bottleneck cost (i.e., the maximum weight of an edge) in a spanning 
tree of the upgraded network. Under either measure, the upgrading problem can be shown to  be 
NP-hard. So, the focus of the paper is on the development of efficient approximation algorithms 
for upgrading problems under these two measures. 

I 

1.1 

The problems considered in this paper involve two optimization measures, namely, the upgrading 
cost and the performance of the upgraded network. Such problems can be formulated using a 
framework for bicriteria problems developed in [8]. Using this framework, a generic bicriteria 
upgrading problem can be specified as a triple (A, B, S) where A and B are two minimization 
objectives and S specifies a class of subgraphs. The problem specifies a budget on the objective A 
and the goal is t o  find a subgraph in the class S tha t  minimizes the objective B for the upgraded 
network. As an example, the problem of upgrading a network so that the modified network has 
a spanning tree of least possible weight subject t o  a budget constraint on the upgrading cost can 
be expressed as (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE). Similarly, the 
budget constrained upgrading problem where the goal is t o  minimize the bottleneck weight of a 
spanning tree tarn be expressed as (NODE UPGRADING COST, BOTTLENECK WEIGHT, SPANNING 
TREE). 

We also use the notion of performance guarantee for bicriteria problems given in [8]. An (ai, p)- 
approximation algorithm for a bicriteria problem (A, B, S) is a polynomial-time algorithm that  
produces a solution in which the value of objective A is at most Q times the specified budget 
and the value of objective B is at most ,43 times the minimum value for any solution tha t  satisfies 
the budget constraint. Furthermore, the solution produced by the approximation algorithm must 
belong t o  the subgraph class S. Reference [SI includes a discussion of known approximation results 
on bicriteria network design problems. 

Background: Bicriteria Problems and Approximation 

1.2 Problem Definitions 

The node based upgrading model discussed in this paper can be formally described as follows. Let 
G = (V, E )  be a connected undirected graph. For each edge e = (u, v) E E ,  we are given three 
nonnegative integers denoted by d ( e ) ,  &(e)  and d l ( e ) .  Here, d ( e )  represents the length or delay 
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06 the edge e. If exactly one of the endpoints u and v is upgraded, the delay of e decreases to 
dm(e) ,  the “medium” delay. If both endpoints are upgraded, then the delay falls to &(e) ,  the 
“low” delay. It is assumed that  dl(e) _< d,(e) 5 d(e).  

Thus, the upgrade of a node 2, reduces the delay of each edge incident with v. For each node 
u E V the (integral) value e(.) specifies how expensive it is to upgrade the node. For a subset W 
of V ,  the cost of upgrading all the nodes in W ,  denoted by c ( W ) ,  is equal to  CvEw c (v ) .  

For a set W C V of vertices, denote by dw the edge weight function resulting from the upgrade 
of the vertices in W ;  that is, for an edge e = (u,v) E E 

d(u, v) 

di(u, V) 

if IW n {u ,  v}I = 0, 

if IW n {u ,  v}I = 2. 
d,,(u, v) if IW n {u, v}I = 1, 

We denote the total length of a minimum spanning tree (MST) with respect to  the weight function 
dw by M S T G ( d w ) .  We are now ready to formulate the problems studied in this paper. 

Definition 1.1 Given an  edge and node weighted graph G = (17, E )  as above and a bound D ,  the 
upgrading minimum spanning tree problem, denoted by (TOTAL WEIGHT, NODE UPGRADING 
COST, SPANNING TREE), is to upgrade a set W C V of nodes such that MSTG(dw) 5 D and 
c(W) is minimized. 

The above problem is formulated by specifying a bound on the weight of an MST after the 
upgrade, while the upgrading cost is to be minimized. I t  is also meaningful to  consider the 
corresponding dual problem, denoted by (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING 
TREE), where we are given a budget on the upgrading cost and want to obtain the best possible 
weight of an MST while staying within the budget restrictions. It can be shown that  an (a,,!?)- 
approximation algorithm for (TOTALWEIGHT, NODEUPGRADINGCOST, SPANNINGTREE) can be 
used as a subroutine to obtain a (p,  a)-approximation algorithm for the dual problem. 

We also consider the node based upgrading problem to obtain a spanning tree with the least 
possible bottleneck cost. In defining this problem, we denote the bottleneck weight (i.e., the 
maximum weight of a n  edge) of a minimum bottIeneck spanning tree of G with respect to the 
weight function dw by M B O T G ( ~ ~ ) .  A formal definition of this problem is as follows. 

Definition 1.2 Given an  edge and node weighted graph G = (V, E )  as above and a bound D ,  
the upgrading minimum bottleneck spanning tree problem, denoted by (BOTTLENECK WEIGHT, 
NODE UPGRADING COST, SPANNING TREE), is to upgrade a set W C V of nodes such that 
MBOTG(dw) 5 D and c ( W )  is minimized. 

Again, it can be shown that an (a,  P)-approximation algorithm for the above problem can be 
converted into a (/?, a)-approximation algorithm for the corresponding dual problem, where we 
are given a bound on the node upgrading cost and want to minimize the bottleneck weight of the 
tree. 

In view of the fact that  approximation results carry over to the respective dual problems. 
the main focus of the remainder of this paper will be on the problems (TOTAL WEIGHT, NODE 

SPANNING TREE). 
UPGRADING COST, SP.4NNING TREE) and (BOTTLENECK WEIGHT, NODE UPGRADING COST, 
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1.3 Summary of Results 

We present hardness results and approximation algorithms for the total cost and bottleneck cost 
spanning tree problems under the node based network improvement model. Specifically, our results 
are as follows. 

,. 
&. . - 

I 

1. We show that ,  unless NPC DTIME(n'"g'"g" ), there can be no polynomial time approximation 
algorithm with a performance guarantee of (f(n), a) for the problems (TOTAL WEIGHT, 
NODE UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, NODE UPGRAD- 
ING COST, SPANNING TREE), for any a < Inn  and for any polynomial time computable 
function f(n). Moreover, this result holds, with f(n) being a polynomial in n, even when 
the difference between the maximum and the minimum edge weights in the problem instance 
is bounded by a polynomial function of the size of the graph. 

2. We develop a polynomial time approximation algorithm with a performance of (1, O(1og n ) )  
for the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem (where n 
is the number of nodes in the graph), when the difference between the maximum and the 
minimum edge weights in the problem instance is bounded by a polynomial function of the 
size of the graph. 

3. We develop a polynomial time approximation algorithm with a performance of (1, 2 In n) for 
the (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem. When 
all the nodes have unit costs, i.e., c(u) = 1 for all u E V ,  we can improve our approximation 
result to a performance of (1, 5 + 4 In A),  where A is the maximurn node degree in the input 
graph. The running time of the modified algorithm is S ( n  + m). 

1.4 Related Work 

Some node upgrading problems have been studied under a simpler model by Paik and Sahni [lo]. 
In their model, upgrading a node causes the delay of each edge incident on that  node t o  be reduced 
by a given constant factor S < 1. When both end points of an edge are upgraded, the delay of the 
edge is reduced by the factor S 2 .  I t  is easy to see that this model is a special case of the model 
trea.ted in our paper. 

Under their model, Paik and Sahni studied the upgrading problem for several performance 
measures including the maximum delay on an edge and the diameter of the resulting network. 
They presented NP-hardness results for several problems. Their focus was on the development 
of polynomial time algorithms for special classes of networks (e.g. trees, series-parallel graphs) 
rather than on the development of approximation algorithms. Our constructions can be modified 
to  show that  all the problems considered here remain NP-hard even under the Paik-Sahni model. 
The approximation results presented here hold under our generalized model. 

Network improvement problems where upgrading is carried out on edges rather than nodes 
have also been considered in the literature. For those results, we refer the interested reader to 
[I, 3, 5, 6 ,  9, 111. 

2 Upgrading Under Total Weight Constraint 

In this section we develop our approximation algorithm for the (TOTAL WEIGHT, NODE UP- 
GRADING COST, SPANNING TREE) problem. Without loss of generality we assume tha t  for a 
given instance of (TOTAL WEIGHT, NODE UPGRADING COST: SPANNING TREE) the bound D 

3 



4 .  . 
03 the weight of the minimum spanning tree after the upgrade satisfies D 2 MSTG(dl), Le., the 
weight of an MST with respect t o  dl ,  since node upgrading cannot reduce the weight of the  mini- 
mum spanning tree below this value. Thus, there exists always a subset of the nodes which, when 
upgraded, leads t o  an MST of weight at most D. We will also make the following assumption 
about the edge weights in a given instance: 

Assumption 2.1 The dijJerence dmax-dmin between the maximum edge weight dmax := maGcg  d(e)  
and the minimum edge weight dmin := mineEE dl(e) is bounded by a polynomial in the size of the 
input graph. 

. 

i 

2.1 Overview of the Algorithm 

Our approximation algorithm can be thought of as a local improvement type algorithm. To begin 
with, we compute an MST in the given graph with d(e) as the weight of each edge e. Now, during 
each iteration, we select a node and a subset of its neighbors and upgrade them. The policy used 
in the selection process is that  of finding a set which gives us the best ratio improvement, which is 
defined as the  ratio of the improvement in the total weight of the spanning tree t o  the total  cost 
spent on upgrading the nodes. Having selected such a set, we recompute the MST and repeat our 
procedure. The procedure is halted when the weight of the MST is at most the required threshold 
D. Our algorithm finds a node with the best ratio improvement by using an approximate solution 
to the Two Cost Spanning Tree Problem defined below. 

I 2.2 Algorithm and Performance Guarantee 

Definition 2.2 (Two Cost Spanning Tree Problem) Given a connected undirected graph G = 
(V, E ) ,  two cost values .(e) and l ( e )  for each edge e E E and a bound B ,  f ind  a spanning tree T 
of G such that the total cost of T under the cost function c is at most B and the total cost of T 
under the cost function 1 is a minimum among all spanning trees that obey the budget constraint 
with respect to c. 

In the notation of [8],  t.he above problem can be expressed as the bicriteria problem (e-TOTAL 
COST,  1-TOTAL COST,  S P A N N I N G  TREE) .  This problem has been addressed by Ravi and Goemans 
who obtained the following result [12]. 

Theorem 2.3 For all fixed E > 0,  there is a polynomial time approximation algorithm for the 
Two Cost Spanning Tree problem with a performance of (1 + E ,  1). 

The steps of our algorithm are shown in Figure 1. This algorithm uses PROCEDURE COMPUTE 
QC whose description appears after Figure 1. The description of the algorithm uses some terms 
whose definitions appear in the next subsection. The following theorem states the performance of 
our algorithm: 

Theorem 2.4 For any fixed E > 0 ,  there is a polynomial time algorithm which, for any instance 
of (TOTAL WEIGHT,  NODE UPGRADING COST,  S P A N N I N G  T R E E )  satisfying Assumption 2.1, 
provides a performance guarantee of (1, (1 + E)20(log n)) .  

Before we embark on a proof of the above theorem, we give the overall idea behind the proof. 
Recall tha t  each basic step of the algorithm consists of finding a node and a subset of neighbors 
to upgrade. 



ALGORITHM UPGRADE MST(S2) 
0 Input: A graph G = (17, E ) ,  three edge weight functions d, d,, dl, a node weight function 
e, and a number D, which is a bound on the weight of an MST in the upgraded graph; a 
“guess value” Q for the optimal upgrading cost. 

1. Initialize the set of upgraded nodes: Wo := 0. 
2. Let TO := MSTG(dw,). 

3. Initialize the iteration count: i := 1. 

4. Repeat the following steps until for the current tree Ti-1 and the weight function dwi-, 
we have: dwi-,(Ta-l) 5 D: 

(a) Let Ta-1 := MSTG(dwi-,) be an MST with respect t o  the weight function dwi-, . 
(b) Call PROCEDURE COMPUTE QC t o  find a marked claw C with “good” quotient cost 

q(C). PROCEDURE COMPUTE QC is called with the graph G, the current MST Ti-1, 

the current weight function dw,-, and the bound 0. 
(c) If PROCEDURE COMPUTE QC reports failure, then report failure and stop. 
(d) Upgrade the marked vertices M ( C )  in C: Wi := Wi-1 U M ( C ) .  
(e) Increment the iteration count: i := i + 1. 

0 Output: A spanning tree with total weight no more than D, such that total cost of upgrading 
the nodes is no more than (1 + & ) S 2  - O(logn), provided R 2 OPT, where OPT denotes the 
optimal upgrading cost to reduce the weight of an MST t o  be at most D. 

Figure 1: Approximation algorithm for node upgrading under total weight constraint. 

Definition 2.5 A graph C = (V(C),  E(C))  is called a claw, i f  the edge set E(C)  i s  of the form 
E(C)  = { (w, ‘w) : w E V ( C )  \ { v }  } f o r  some node v E V ( C ) .  If there are ut most two nodes in the 
claw then we can choose any of the nodes as its center. Otherwise, the node with degree greater 
than one i s  the unique center. The vertices in the claw different from the center are said to be the 
fingers of the claw. A claw with at least two nodes is called a nontrivial claw. 

Let W be a subset of the nodes upgraded so far and let T denote a minimum spanning tree 
C marked. with respect to dw; that  is, T = M s T ~ ( d w ) .  Let C be a claw with nodes M ( C )  

The quotient cost q(C) of C is then 

and to be +m otherwise. In other words, q(C) is the cost of the vertices in M ( C )  divided by the 
decrease in the weight of the MST when the vertices in M ( C )  are also upgraded and edges in the 
current tree T can be exchanged for edges in the claw C. 

Our analysis essentially shows that  in each iteration i ,  there exists a claw of quotient cost at 
most dw 20PT ( T ) - D  ’ where T = T,-1 is the weight of an MST at the beginning of the iteration and 
T V  = W;-1 are the nodes upgraded so far. We can then use a potential function argument t o  
show that  this yields a logarithmic performance guarantee. We now proceed with the details of 
the performance analysis. 
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PROCEDURE COMPUTE QC(Q) 
0 Input: A graph G = (V, E ) ,  a spanning tree T and an weight function d on E ;  W c V is 
the set of upgraded nodes; a “guess value’’ Q for the optimal upgrading cost. 

1. Let s := [log,+, R1. 
2. For each node v @ W and all K E { 1, (1 + E ) ,  (1 + E ) ~ ,  . . . , (1 + E ) ” }  do 

(a) Set up an instance l,,~. of the Two Cost Spanning Tree Problem as follows: 
0 The vertex set of the graph G, contains all the vertices in G and an  additional 

“dummy node” 5 .  

0 For each edge (u, w) E T, there is one edge (u,  w) E E which has length Z(u, w) = 
d(u, w) and cost c(u, w) = 0. 

0 For each edge (v, w) incident on v there are two parallel edges e: and e; between 
v and w in G,. The edge e: has l-length Z(eL) resulting from the upgrade of v and 
c-cost c(e:) = 0. The edge e; has Z-length resulting from the upgrade of both v and 
w and c-cost c(w). 

0 There is one edge (V,IC) joining v to  the dummy node IC. This edge has length 
Z(v, x) = 0 and cost c(v, x) = c(u). 

0 The bound B on the c-cost of the tree is set to K .  
(b) Using the algorithm mentioned in Theorem 2.3, find a tree of c-cost at most (1 +E)K 

and I-cost no more than that of a ininimum budget K bounded spanning tree (if one 
exists). Let T,,K be the tree produced by the algorithm. 

3. If for all instances I,,K. of Two Cost Spanning Tree Problem constructed above the 
algorithm from Theorem 2.3 fails to  find a tree of cost at most (1 + &)IC, then report 
failure and stop. 

4. Among all the trees T,,K find a tree T,*,K* which minimizes the ratio c(T,*,~c*)/(d(T) - 

5. Construct a marked claw C from Tt,*,lt-* as follows: 
m J * , K * ) ) .  

0 The center of C is v* and u* is marked. 
0 The edge (v*, w) is in the claw C if T,*,K* contains an edge between v* and w. The 

finger w is marked if and only if the edge in T,*,K* between vUr and w has c-cost 
greater than zero. 

6.  Return the marked claw C. 

0 Output: A marked claw C (with its center also marked) with quotient cost q(C) satisfying 
4(C) 5 a(1 + E )  d(T)-D OPT and cost c ( M ( C ) )  5 (1 + E ) Q .  
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2.3 Bounded Claw Decompositions 

Definition 2.6 Let G = (V, E )  be a graph and W E V a subset of marked vertices. Let K 2 1 
be an integer constant. A 6-bounded claw decomposition of G with respect to W is a collection 
(71,. . .C, of nontrivial claws, which are all subgraphs of G with the following properties: 

(i) U:=l V(C;) = V and UrZl E(C;) = E.  
(ii) No node from W appears in more than tc claws. 

(iii) The claws are edge-disjoint. 
(iv) If a claw C; contains nodes from W ,  then the center of C; belongs also to W .  

Lemma 2.7 Let F be a forest in G = (V, E )  and let W C V be a set of marked nodes. Then 
there is a 2-bounded claw decomposition of F with respect to W .  0 

Lemma 2.8 Let T := Ti-1 be an MST at the beginning of iteration i with W := Wi-1 being 
the nodes upgraded so far. Let U C V be a set of nodes. Let T' = h'fSTG(dwuu) be a minimum 
spanning tree after the additional upgrade of the vertices in U. Then, there is a bijection 9 : T -+ T' 
with the following properties: 

(i) For all edges e E T fl TI we have y ( e )  = e, 
(ii) dwuu(p(e) )  5 dw(e )  for all e E T ,  

(iii) the "swaps" e + p(e )  transforms T into T', and 
(iv) C e E T ( 4 ~ ( e )  - d w u u ( ~ ( e ) ) )  = dw(T) - dwuu(T')  

Lemma 2.9 Let T := Ti-1 be an MST at the beginning of iteration i ,  i.e., T = M S T G ( d w ) ,  
where W := W\-l is the upgrading set constructed so far. Then there is a marked claw C (where 
its center v is  also marked and v 6 W )  with quotient cost q(C) satisfying 

and c ( M ( C ) )  5 OPT. OPT 
'(') ' 2dtli(T) - D 

Proof: Let T' = M S T ~ ( d w u 0 p ~ )  be an M S T  after the additional upgrade of the vertices in OPT.  
Clearly, d w U o p ~ ( T ' )  5 D.  Apply Lemma 2.7 t o  T' with the vertices in OPT \ W marked. The 
lemma shows that there is a %bounded claw decomposition of T' 11-ith respect t o  OPT \ W .  Let 
the claws be C1, . . . , C,. In each claw Cj, the corresponding nodes M(Cj )  := Cj f l  (OPT \ W )  
from OPT \ W are marked. Since the decomposition is 2-bounded with respect to OPT \ W ,  it 
follows that 

r 

c ( M ( C j ) )  5 2 .  OPT 
j=1  

Moreover, the cost c ( M ( C j ) )  of the marked nodes in each claw Cj does not exceed O P T ,  since we 
have marked only nodes from OPT \ W .  By Lemma 2.8, there exists a bijection 9 : T -+ T' such 
that 

( d W ( e )  - dW'uOPT(Y(e))) = d W ( T )  - d W U O P T ( T ' )  2 d W ( T )  - D -  (2)  
eET 

For each of the claws Cj with M(Cj) # 0 in the 2-bounded decomposition of T' its quotient cost 
q(Ci) satisfies 
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' dWuOPT(V(e))). 

since we can exchange the edges cp(e) (e  E Cj) for the corresponding edges e in the current tree 

T after the upgrade and this way decrease the weight of the tree by at least Cv(e)Ecj (dw(e )  - 

q(C) - (dw(e )  - dW"oPT(v(e))) L C(lw(Cj)) for j = 1, * - 1  r .  (4) 

Let C be a claw among all the claws Cj with minimum quotient cost q(C). Then, 

e€Cj 

Notice that  the above equation holds for j = 1,. . . , r ,  regardless of whether M(Cj)  is empty or 
not. Summing the inequalities in (4) over j = 1,. . ., r ,  and using equations (1) and (2) now 
implies that  C possesses the desired properties stated in the lemma. 

2.4 

Lenima 2.9 implies the existence of a marked with the required properties. We mill now deal with 
the problem of finding a marked claw with a good quotient cost in each iteration. 

Finding a good claw in each iteration 

Lemma 2.10 Suppose that the bound i2 given to Algorithm UPGRADE MST satisfies 0 2 OPT. 
Then, for each stage i of the algorithm, it chooses a marked claw C' such that 

and 

where T := Ti-1 is an MST at the beginning of iteration i and W := Wi-1 is the set of nodes 
upgraded so far. 

Proof: By Lemma 2.9, there is a marked claw C with quotient cost q(C) at most 2dw:F7-D. Let 
w be the center of this claw which by Lemma 2.9 is marked. Let c(C) := c(M(C))  be the cost of 
the marked nodes in C and L := MSTTUC ( ~ w ~ ~ ( c ) )  be the weight of the MST in T U  C resulting 
from the upgrade of the marked vertices in C. Then, by definition of the quotient cost q(C) we 
have 

Consider the iteration of PROCEDURE COMPUTE QC when it processes the instance Iv,h- of 
Two Cost Spanning Tree ProbZem with graph G, and c(C) 5 K < (1 + I )  ' c(C).  The tree 
M S T ~ ~ c ( d w ~ ~ , a ( c ) )  induces a spanning tree in G, of total c-cost at most c(C) (which is at most 
I<) and of total I-length no more than L. Thus, the algorithm from Theorem 2.3 will find a tree 
T,,K such that  its total c-cost c(T,,~c) is bounded from above by (1 + E ) K  5 (1 + E)~c(C) and of 
total I-length Z(Tv,~)  no more than L.  

has 
quotient cost at most c(T,,fi-)/(dw(T) - Z(Tu,~<*)), which is at most ( 1 + E ) 2 c ( C ) / ( d ~ ~ ( T )  - L ) .  The 

By construction, the marked claw C' computed by PROCEDURE COMPUTE QC from 

lemma now follows from (5). (3 

2.5 Guessing an Upper Bound on the Improvement Cost 

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of 

R E (1, (1 + e ) ,  (1 +e)2, . . . , (1 + E ) ~ } ,  where t := [log,+, c(T/)1 
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We then choose the best solution among all solutions produced. Our analysis shows that when 
OPT 5 Q < (1 + E )  1 OPT, the algorithm will indeed produce a solution. In the sequel, we 
estimate the quality of this solution. Assume that the algorithm uses f + 1 iterations and denote 
by C1, . . . , Cf, Cf+l the claws chosen in Step 4b of the algorithm. Let c; := c(M(C;)) denote the 
cost of the vertices upgraded in iteration i. Then, by construction 

* 

c;< ( 1 + ~ ) Q i  (1+e)20PT f o r i = l ,  . . . , f +  1. (6) 

2.6 Potential Function Argument 

We are now ready to  complete the proof of the performance stated in Theorem 2.4. Let MST; 
denote the weight of the MST at the end of iteration i, i.e., MST; := dwi(T;). Define (6; := 
MST; - D. Since we have assumed that the algorithm uses f + 1 iterations, we have (6; 2 1 for 
i = 0 , .  . ., f and #f+l 5 0. As before, let c; := c(M(C;) )  denote the cost of the vertices upgraded 
in iteration i .  Then we have 

) (6& Lemma 2.10 

( ‘ - a - O P T  $;+I (6i - (MST; - MST;+1) - < (7) 

where ry := 2(1+ E ) ~ .  We now use an analysis technique due to Leighton and Rao [7] to complete 
the proof. The recurrence (7) and the estimate ln(1- 7) 5 -T give us 

$0 
f 

C c i < r w . O P T . l n - .  
i=l (6f 

Notice that. the  total cost of the nodes chosen by the algorithm is exactly the sum Cif=*,’ c;. By 
(8) and (6) we have 

We will now show how to bound In b. Notice that $f = MSTf - D 2 1, since the algorithm 
uses f + 1 iterations and does not stop after the f t h  iteration. We have (60 = MSTo - D < - 
( T Z  - 1) (a’,,, - &in), where d,,, and dmin denote the maximum and the minimum edge weight in 
the graph, defined in Assumption 2.1. It now follows from Assumption 2.1 that In (bo E O(1ogn). 
Using this result in (9) yields 

Qr 

f +1 

;=1 
C ci 5 (1 + E)’ - OPT + 2(1+ E)2u(log n) . OPT. 

This completes the proof of Theorem 2.4. 

3 Upgrading Under Bottleneck Constraint 

0 

This section presents our approximation algorithm for (BOTTLENECK WEIGHT, NODE UPGRAD- 
ING COST, SPANNING TREE). Given a bound D on the bottleneck delay of a spanning tree, we 
partition the set of edges into four sets according to how many of the endpoints must be upgraded 
in order to  make the delay of an edge fall below the threshold D. An edge of delay at most D 
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. =  - is-called a noncritical edge. An edge e is said to be a medium critical edge, if d(e) > D and 
dm(e) 5 D. We say that  e is a. highly critical edge, if &(e) > D and dl(e) _< D. Finally, any 
edge e with dl(e) > D is called a useless edge. Since node upgrading cannot reduce the delay of 
a useless edge t o  be below the threshold D, we assume without loss of generality that  the set of 
useless edges is empty. 

In the  sequel we present our approximation algorithm for the (BOTTLENECK WEIGHT, NODE 
UPGRADING COST, SPANNING TREE) problem. In contrast to  our algorithm from Section 2, we 
do  not have t o  make any assumptions about the edge weights being polynomially bounded in the  
input size. 

I 

3.1 Overview of the Algorithm 

The algorithm maintains a set W of nodes, a set F of edges and a set 6 of clusters which partition 
the  vertex set V of the given graph G. The set B of clusters is initialized to  be the set of connected 
components of the bottleneck graph bottleneck(G, d ,  D ) ,  containing only those edges e which have 
a delay d(e) of at most D. The set W of upgrading nodes is initially empty. 

The algorithm iteratively merges clusters until only one cluster remains. To this end, in each 
iteration it determines a node v of minimum bottleneck quotient cost. The bottleneck quotient cost 
of a node v is the ratio whose numerator is the cost of v plus the costs of some nodes adjacent t o  
v in different clusters via highly critical edges, and whose deiiominator is the number of clusters 
which have nodes a.djacent t o  v. A precise definition of the bottleneck quotient cost appears in 
Equation (10) in the algorithm depicted in Figure 2. This quotient cost measures the “average 
upgrading cost” of v and the vertices that  are adjacent to  v through highly critical edges. The 
algorithm then adds v and the nodes mentioned above to  the solution set W and merges the 
corresponding clusters. The iteration stops, when only one cluster is left. 

3.2 Analysis and Performance Guarantee 

In the sequel, we use OPT to  denote the minimum node upgrading cost t o  obtain a bottleneck 
spanning tree of given delay at most D. A key lemma used in establishing the performance 
guarantee of our algorithm is the following. A proof of this lemma is included in the appendix. 

Lemma 3.1 Let v be a node chosen in Step 5b of algorithm UPGRADE BOTTLENECK SPANNING 
TREE and let C denote the total cost of the nodes added to the solution set W in this iteration. 
Let there be q clusters before v is chosen and assume that in this iteration r clusters are merged. 
T h e n C / r  5 OPT/q. 

Using the above lemma, the following theorem, which gives the performance guarantee and 
the running time of our algorithm, can be proven. 

Theorein 3.2 The algorithm in Figure 2 provides a performance guarantee of (1, 2 In n) for the 
(BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNIXG TREE) problem. The algorithm 
can be implemented to run in time O(nm a(m, n ) ) ,  where a is the inverse of Ackermun‘s function. 
cl 

Proof (Performance): The proof uses a potential function argument similar t o  the proof of 
Theorem 2.4. Thus, we only highlight the main steps. Assume that the algorithm uses f iterations 
of the loop and denote by VI , .  . .t’f the vertices chosen in Step .5b of the algorithm. 
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ALGORITHM UPGRADE BOTTLENECK SPANNING TREE 
Input: A graph G = (V, E ) ,  three edge weight functions d,  d,, dl ,  a node weight function 

c, and a number D which is a bound on the bottleneck weight of a minimum bottleneck 
spanning tree in the upgraded graph. 

1. G’ := bottleneck(G, d, D) .  

2. GI, .  . . , G, := connected components of G’. 
3. Initialize the set of upgraded nodes: W := 0. 
4. F := set of edges of G’. 
5. While G’ = (V, F )  has more than one connected component 

(a) Assume that 6 = {GI . . . , Gq} is the set of components. 
(b) Find a node w E V in the graph G minimizing the ratio 

Here, the cost c(w,G,) is defined in the following way: If w E G, or w is adjacent 
to a node in G, via a medium critical edge, then c(v,G,) := 0. If all the edges 
from TJ t o  Gj  are highly critical. then c(w, G,) is defined t o  be the minimum cost 
of a vertex in C, adjacent to  w. If there is no edge between t~ and any node in G,, 
then c(w, Gj) := +m. 

(c) Let w be the node and G1 , . . . , Gr be the components in C chosen in Step 5b above, 
where w.1.o.g. w E GI. 

(d) Let e2,.  . . , e ,  be a set of edges in G connecting t~ to  GZ, . . . , G,, respectively. 
(e) F := F U { e z , .  . ., e r } ,  Le., merge G1, G 2 , .  . . , G, into one component. 

(g) For i := 2 , .  . . , r :  If e; = (w, w;) is highly critical, then W := W U {wi}. 
(h) GI, . . . , G,, := connected components of G’ = (V, F )  

(f) w := w u {w}. 

6. Output W. 

Output: A spanning tree with bottleneck weight no more than D ,  such tha t  total cost 
of upgrading the nodes is no more than 21n n . OPT, where OPT denotes the optimal 
upgrading cost t o  reduce the weight of a bottleneck spanning tree t o  be at most D. 

Figure 2: Approximation algorithm for node upgrading under a bottleneck constraint. 
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I - .  
- Let (bj denote the number of clusters after choosing vertex Vj in this iteration. Thus, for 

&stance, (bo = t ,  the number of components at the beginning of the whole algorithm and (bj = I, 
since we end up with one cluster. Let the number of clusters merged using vertex 'uj be rj and 
the total cost of the vertices added in that  iteration be c j .  

I 
I 

I 

Using Lemma 3.1 one can show the following inequality for the potential function q$: 

2 * O P T  

f 

i= l  

Taking natural logarithms on both sides and simplifying using the estimate ln(1 - T )  _< -T , we 
obtain 

(bo .l 

(bf - 
2 . O P T - l n -  >E.;. 

Note that (bo 5 n := IVl and (bj = 1 a.nd hence from (12) we get 

f cc; 5 2 . O P T . l n n .  

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum e;. This 
completes the proof of Theorem 3.2. 

When the upgrading cost of each node is 1, we can prove the following result. 

Theorem 3.3 There is an approximation algorithm for the (BOTTLENECK WEIGHT, NODE UP- 
GRADING COST, SPANNING TREE) problem with unit upgrading costs @e., e(.) = 1 for all 'u E V ) ,  
with a performance of (1, 5 + 4 In A),  where A is the maximum degree in the input graph. This 
algorithm can be implemented to run in time O(n + vt) . 

4 Concluding Remarks 

We considered minimum cost network upgrading problems under two performance measures, 
namely, the weight of a minimum spanning tree and the bottleneck weight of a minimum bottle- 
neck weight spanning tree in the upgraded network. We presented polynomial time approximation 
algorithms for these problems. For these problems, our algorithms produced solutions in which the 
budget constraints were satisfied. This is unlike many bicriteria network design problems where 
it is necessary to  violate the budget constraint by a small factor in order t o  efficiently obtain a 
solution that  is near-optimal with respect to the objective function [SI. 

An open problem that arises immediately from our work is whether there is a good approxima- 
tion algorithm for the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem 
even when Assumption 2.1 is not satisfied. It is also of interest t o  investigate whether our results 
for spanning trees can be extended to  Steiner trees. Other open problems under the node-based 
upgrading model can be formulated using different performance measures for the upgraded net- 
work. Some measures which are of interest in this context include bottleneck weight, diameter 
and lengths of paths between specified pairs of vertices. 
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* * -  Appendix 

A Hardness Results 

The following result states the complexity of obtaining near-optimal solutions to the problems 
(TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, 
NODE UPGRADING COST, SPANNING TREE). 

Theorem A. l  Unless NP C DTIME(n'"g'"g" ), there can be no polynomial time approximation 
algorithm for either (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) or (BOT- 
TLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE) with a performance of (f(n), a) 
for any (Y < In n and any polynomial time computable function f .  Moreover, this result holds with 
f (n)  = nk being any polynomial, even i f  the difference between the maximum edge weight and the 
minimum edge weight in the problem instance is bounded by a polynomial function of the size of 
the gmph. 0 

We prove the above result by using a reduction from the MIN SET COVER probiem and 
Feige's result 121 on the non-approximability of MIN SET COVER. It also follows from our proof 
of Theorem -4.1 that  similar hardness results hold for the problems (NODE UPGRADING COST, 
TOTAL WEIGHT, SPANNING TREE) and (NODE UPGRADING COST, BOTTLENECK WEIGHT, 
SPANNING TREE). 

Recall that  an instance of MIN SET COVER consists of a finite set Q of ground elements 
(41, . . . , qn}, a collection F = .{QI, . . . , Qm} of subsets of Q and the requirement is t o  pick a 
minimum number of sets from 3 such that  their union equals Q. The proof of Theorem A . l  uses 
Feige's result concerning the nonapproximability of the MIN SET COVER problem stated below. 

Theorem A.2 (Feige [ 2 ] )  Unless NP C_ DTIME(n'"g'"g" ), the MIN SET COVER problem, with a 
ground set Q of size IQI, cannot be approximated in polynomial time within a performance factor 
of P < In IQI. 
Proof of Theorem A.1: Suppose A is a polynomial time algorithm that provides a performance 
guarantee of ( f ( n ) ,  a ) ,  for some polynomial time computable function f ( n )  and some value 
a < In n, for the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem. We will 
show that  A can be used to  obtain a polynomial time approximation algorithm with a. perforniance 
guarantee of a for MIN SET COVER. Theorem A.1 would then follow in view of Feige's result 
indicated above. 

Given an instance of MIN SET COVER, we produce an instance of (TOTAL WEIGHT, NODE 
UPGRADING COST, SPANNING TREE) as follows. We first construct the natural bipartite graph, 
one side of the partition for set nodes Q3,  j = 1,. . . , m, and the other for element nodes qz,  
i = 1,. . . , n. We insert an edge (Q3,  yi) if qi E Q3. We now add one more node R (the "root'?) 
and connect R t o  all the set nodes. 

Note tha t  the resulting graph is bipartite (with R and the element nodes on one side and the 
set nodes on the other side). 

The current weight, medium weight and the low weight values for each edge are f(n)-(n+m)+l, 
1 and 1 respectively. The cost of upgrading R is set to  zero. For every set node, the cost of 
upgrading is set to  1; for every element node, the cost of upgrading is set t o  [nzln n1 + 1. The  
budget on the weight of a spanning tree in the upgraded network is set t o  n + m. The resulting 
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instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) satisfies the following L -  

property. 

Claim A.3 Let O P T  denote the number of sets in an optimum solution to the MIN SET COVER 
instance. Then there is  a solution to the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING 
TREE) instance constructed above with an upgrading cost of at most OPT. 

Proof of Claim A.3: Let F* be an optimal solution to the MIN SET COVER instance. Let us 
upgrade the node R and the nodes corresponding to  the sets in 3*. The cost of this upgrade is 
OPT. A spanning tree T in which each edge has weight 1 can now be constructed by attaching 
each set node t o  R and for each upgraded set node, attaching the nodes corresponding t o  the 

0 

Now, suppose we run A on the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) 
instance constructed above and examine the spanning tree T’ produced by A for the upgraded 
network. Since A violates the budget constraint only by a factor f ( n ) ,  by the above claim, the 
weight of T’ is at most f ( n )  ‘ (rn + n).  Since the weight of each edge in the original (unupgraded) 
network was chosen as f ( n )  (m + n)  + 1, T’ cannot include any such edge. Therefore, by our 
construction, the weight of each edge of T’ is exactly 1. 

We also note that  the cost of the upgrading set chosen by A is at most a. OPT < m In n. Since 
the upgrading cost of any element node (namely, [m In n1 + 1) exceeds this bound, A could not 
have upgraded any of the element nodes. 

Thus, the upgrading set chosen by A consists of some set nodes and possibly the node R. 
Therefore, the number of upgraded set nodes is at most CY - OPT. In T‘, each element node must 
be attached to an upgraded set node; otherwise, the weight of such an edge would be greater 
than 1. In other words, the sets corresponding to the upgraded set nodes form a cover of size 
a t  most a OPT for the MIN SET COVER instance. Thus, using A, we have constructed a 
polynomial time approximation algorithm with a performance guarantee a < I n n  for the MIN 
SET COVER problem. This completes the proof for the (TOTAL WEIGHT, NODE UPGRADING 
COST, SPANNING TREE) problem. 

When f ( n )  is a polynomial in n, we obtain the non-approximability result for (TOTAL WEIGHT, 
NODE UPGRADING COST, SPANNING TREE) for the case when the difference between the maxi- 
mum edge weight and the minimum possible edge weight is polynomially bounded. 

We note that  the above construction also yields the hardness result for approximating the 
(BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem. The reason is 
that  our transformation leads to  a spanning tree in which each edge has a weight of 1 in the 

0 

By a slightly different transformation from SET COVER, it can be shown that the (TOTAL 
WEIGHT, NODE UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, NODE 
UPGRADING COST, SPANNING TREE) problems remain NP-hard even when each node has an 
upgrading cost of 1. 

elements in that  set. Clearly, the weight of T is n + m. 

upgraded network; that  is, the minimum bottleneck cost of the tree is 1. 

B Proofs for Upgrading under Bottleneck Constraint 

B.1 Claw Partitions 

While in Section 2 our main tool for decomposing the optimal solution was the notion of a 
bounded claw decomposition, for the bottleneck upgrading problem, we introduce the notion of a 
claw partition, which is formally defined below. 
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' 
Definition B. l  Let G = (V, E )  be a graph with node set V .  A claw partition of V in G is a 
collection of node-disjoint nontrivial claws, which are all subgraphs of G and whose vertices form 
a partition of V .  . 

Thus, a claw partition can be viewed as a relaxation of a l-bounded claw decomposition where 
we do  not require each edge of the graph G t o  appear in one of the claws. The following lemma 
can be proved by an easy induction on /VI. 

Lemma B.2 Let G be a connected graph with node set V ,  where \VI 2 2. Then there is a claw 
0 partition of V in G. 

B.2 Proof of Lemma 3.1 

Proof: Let T* be an optimal tree with the nodes W* be the upgraded nodes. Let OPT := c(W*) 
be the cost of the optimal solution. Let 8 = GI, . . . , G, be the clusters when the node 'u was 
chosen and let T*(w) be the graph obtained from T* by contracting each G, to a supernode. 
T*(v) is connected and contains all supernodes. We then remove edges (if necessary) from T*(v) 
so as to make i t  a spanning tree. Note that all the  edges in this tree are either medium or highly 
critical. 

Let A C W* be the set of nodes in the optimal solution that  are adjacent t o  another cluster in 
T*(v) .  Clearly, the cost of these nodes is no more than OPT.  Take a claw partition of T*(w). We 
now obtain a set of claws in the graph G itself in the following way: Initialize E' to  be the empty 
set. For each claw in the partition with center G', and fingers G;, . . . ,Gi we do the following: 
For each edge (Gi, Gg) the optimal tree T* must have contained an edge (u, w) with u E Gi and 
w E Ga, Notice tha t  since this edge was either medium or highly critical, at least one of the 
vertices u and w must belong to  -4 W*. We add (u, 20) to E'. 

It is easy t o  see tha t  the subgraph of G induced by the edges in E'consists of disjoint nontrivial 
claws. Also, all edges in the claws were medium or highly critical and the total number of nodes 
in the claws is at least q. We need one more useful observation: If a claw center is not contained 
in A, then aZZ the fingers of the claw must be contained in A, since the edges in the claw were 
medium or highly critical. 

Let A, be the set of nodes from A acting as centers in the just generated claws. Let =Imed 
denote the fingers of the claws contained in A which are connected t o  their claw center via a 
medium critical edge, whereas Ahigh  stands for the set of fingers adjacent to  the center via a 
highly critical edge and also contained in A. For each claw with exactly two nodes we designate 
an arbitrary one of the nodes to  be the center. Then by construction, A,, Amed and A h z g h  are 
disioint. Therefore, 

For a node u E A,, let Nu denote the number of vertices in the claw centered at u. We have 
seen tha t  if a center is not in A, then all the fingers belong to  the optimal solution. Clearly. this 
can onIy happen, if the  claw centered at u does not contain a highly critical edge. Thus, we can 
estimate the total number of nodes in the claws from above by summing up the cardinalities of 
the claws with centers in A and for all other claws adding twice the number of fingers. Hence 

Nu + 2JAmedl _> J{  w : w belongs t o  some claw }] _> Q, (15) 
uEAc 
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T I  . ., . - *  since the total number of nodes in the claws is at least q. 
We now estimate the first sum in (14). If u E A,, then the bottleneck quotient cost of u is 

a t  most the cost of u plus the cost of the fingers in the claw that  are in Ahisfa divided by the 
total number of nodes in the claw. This in turn is at least C / r  by the choice of the algorithm in 
Step 5b. By summing up over all those centers, this leads to  

Now, for a node u in Amed, its bottleneck quotient cost is at most c(u) /2 ,  which again is at least 
C / r .  Thus 

(17) 
C C 

2- v = 21Amedl -7. C ( U )  > - 
&Arned 

Using (16) and (17) in (14) yields 

OPT 2 

L 

uEAmed ’ 

This proves the claim. 
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