
.
. *

LA-UR

Los Alarnos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: IMPROVING SPANNING TREES BY UPGRADING NODES

AUTHOR(S): S. 0. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi,
R. Sundaram, H. C . Wirth

SUBMITTED TO: International Colloquium on Automata, Language and Programming
Bologna, Italy
July, 1997

MSTRISUTlON OF THIS DOCUMENT IS UNLIMI ad
By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for US. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory
Los Alamos New Mexico 87545 0 s A 1 8 0 s

Portions of this document m y be illegible
in electronic image products. Smages are
produced from the best avaiiabie oFiginal
dOll lmf!I l t

Improving Spanning Trees by Upgrading Nodes

S. 0. Krumke ' M. V. Marathe H. Noltemeier '
R. Ravi4 S. S. Ravi3 R. Sundaram5 H. C. Wir th '

January 16, 1997

Abstract

We study budget constrained optimal network upgrading problems. Such problems aim at
finding optimal strategies for improving a network under some cost measure subject to certain
budget constraints. A general problem in this setting is the following. We are given an edge
weighted graph G = (V, E) where nodes represent processors and edges represent bidirectional
communication links. The processor a t a node v E V can be upgraded at a cost of c(v). Such
an upgrade reduces the delay of each link emanating from v. The goal is to find a minimum
cost set of nodes to be upgraded so that the resulting network has the best performance with
respect to some measure. We consider the problem under two measures, namely, the weight
of a minimum spanning tree and the bottleneck weight of a minimum bottleneck spanning
tree. We present approximation and hardness results for the problem. Our results are tight
to within constant factors. We also show that these approximation algorithms can be used to
construct good approximation algorithms for the dual versions of the problems where there is
a budget constraint on the upgrading cost and the objectives are minimum weight spanning
tree and minimum bottleneck weight spanning tree respectively.

Department of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany. Email:

"os Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos, NM 87545, USA. Email:

3Department of Computer Science, University at Albany - SUNY, Albany, NY 12222, USA. Email:

{krumke,noltemei,airth)Oinformatik.ui-uuerzburg.de.

madhavQc3. lanl. gov. The work is supported by the Department of Energy under Contract W-7405-EWG-36.

ravirBcs.albany.edu.
GSIA, Carnegie Mellon University, Pit tsburgh, PA 15213. Email: ravi+Qcmu. edu.

'Delta Trading Co. Work done while at MIT, Cambridge MA 02139. Email: koodsetheory .lcs.mit .edu.
Research supported by DARPA contract NOO14-92-J-1799 and NSF C C R 92-12154.

http://krumke,noltemei,airth)Oinformatik.ui-uuerzburg.de
http://ravirBcs.albany.edu

1 Introduction, Motivation and Summary of Results e - , *

Several problems arising in areas such as communication networks and VLSI design can be ex-
pressed in the following general form: Enhance the performance of a given network by upgrading a
suitable subset of nodes. In communication networks, upgrading a node corresponds t o installing
faster communication equipment at that node. Such an upgrade reduces the communication delay
along each edge emanating from the node. In signal flow networks used in VLSI design, upgrading
a node corresponds t o replacing a circuit module at the node by a functionally equivalent module
containing suitable drivers. Such an upgrade decreases the signal transmission delay along the
wires connected t o the module. There is a cost associated with upgrading a node, and there is
often a budget on the total upgrading cost. Therefore, it is of interest t o study the problem of up-
grading a network so tha t the total upgrading cost obeys the budget constraint and the resulting
network has the best possible performance among all upgrades that satisfy the budget constraint.

The performance of the upgraded network can be quantified in a number of ways. In this
paper, we consider two such measures, namely, the weight of a minimum spanning tree in the
upgraded network and the bottleneck cost (i.e., the maximum weight of an edge) in a spanning
tree of the upgraded network. Under either measure, the upgrading problem can be shown to be
NP-hard. So, the focus of the paper is on the development of efficient approximation algorithms
for upgrading problems under these two measures.

I

1.1

The problems considered in this paper involve two optimization measures, namely, the upgrading
cost and the performance of the upgraded network. Such problems can be formulated using a
framework for bicriteria problems developed in [8]. Using this framework, a generic bicriteria
upgrading problem can be specified as a triple (A, B, S) where A and B are two minimization
objectives and S specifies a class of subgraphs. The problem specifies a budget on the objective A
and the goal is t o find a subgraph in the class S tha t minimizes the objective B for the upgraded
network. As an example, the problem of upgrading a network so that the modified network has
a spanning tree of least possible weight subject t o a budget constraint on the upgrading cost can
be expressed as (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE). Similarly, the
budget constrained upgrading problem where the goal is t o minimize the bottleneck weight of a
spanning tree tarn be expressed as (NODE UPGRADING COST, BOTTLENECK WEIGHT, SPANNING
TREE).

We also use the notion of performance guarantee for bicriteria problems given in [8]. An (ai, p)-
approximation algorithm for a bicriteria problem (A, B, S) is a polynomial-time algorithm that
produces a solution in which the value of objective A is at most Q times the specified budget
and the value of objective B is at most ,43 times the minimum value for any solution tha t satisfies
the budget constraint. Furthermore, the solution produced by the approximation algorithm must
belong t o the subgraph class S. Reference [SI includes a discussion of known approximation results
on bicriteria network design problems.

Background: Bicriteria Problems and Approximation

1.2 Problem Definitions

The node based upgrading model discussed in this paper can be formally described as follows. Let
G = (V, E) be a connected undirected graph. For each edge e = (u, v) E E , we are given three
nonnegative integers denoted by d (e) , &(e) and d l (e) . Here, d (e) represents the length or delay

1

06 the edge e. If exactly one of the endpoints u and v is upgraded, the delay of e decreases to
dm(e) , the “medium” delay. If both endpoints are upgraded, then the delay falls to &(e) , the
“low” delay. It is assumed that dl(e) _< d,(e) 5 d(e).

Thus, the upgrade of a node 2, reduces the delay of each edge incident with v. For each node
u E V the (integral) value e(.) specifies how expensive it is to upgrade the node. For a subset W
of V , the cost of upgrading all the nodes in W , denoted by c (W) , is equal to CvEw c (v) .

For a set W C V of vertices, denote by dw the edge weight function resulting from the upgrade
of the vertices in W ; that is, for an edge e = (u,v) E E

d(u, v)

di(u, V)

if IW n {u , v}I = 0,

if IW n {u , v}I = 2.
d,,(u, v) if IW n {u, v}I = 1,

We denote the total length of a minimum spanning tree (MST) with respect to the weight function
dw by M S T G (d w) . We are now ready to formulate the problems studied in this paper.

Definition 1.1 Given an edge and node weighted graph G = (17, E) as above and a bound D , the
upgrading minimum spanning tree problem, denoted by (TOTAL WEIGHT, NODE UPGRADING
COST, SPANNING TREE), is to upgrade a set W C V of nodes such that MSTG(dw) 5 D and
c(W) is minimized.

The above problem is formulated by specifying a bound on the weight of an MST after the
upgrade, while the upgrading cost is to be minimized. I t is also meaningful to consider the
corresponding dual problem, denoted by (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING
TREE), where we are given a budget on the upgrading cost and want to obtain the best possible
weight of an MST while staying within the budget restrictions. It can be shown that an (a,,!?)-
approximation algorithm for (TOTALWEIGHT, NODEUPGRADINGCOST, SPANNINGTREE) can be
used as a subroutine to obtain a (p, a)-approximation algorithm for the dual problem.

We also consider the node based upgrading problem to obtain a spanning tree with the least
possible bottleneck cost. In defining this problem, we denote the bottleneck weight (i.e., the
maximum weight of a n edge) of a minimum bottIeneck spanning tree of G with respect to the
weight function dw by M B O T G (~ ~) . A formal definition of this problem is as follows.

Definition 1.2 Given an edge and node weighted graph G = (V, E) as above and a bound D ,
the upgrading minimum bottleneck spanning tree problem, denoted by (BOTTLENECK WEIGHT,
NODE UPGRADING COST, SPANNING TREE), is to upgrade a set W C V of nodes such that
MBOTG(dw) 5 D and c (W) is minimized.

Again, it can be shown that an (a, P)-approximation algorithm for the above problem can be
converted into a (/?, a)-approximation algorithm for the corresponding dual problem, where we
are given a bound on the node upgrading cost and want to minimize the bottleneck weight of the
tree.

In view of the fact that approximation results carry over to the respective dual problems.
the main focus of the remainder of this paper will be on the problems (TOTAL WEIGHT, NODE

SPANNING TREE).
UPGRADING COST, SP.4NNING TREE) and (BOTTLENECK WEIGHT, NODE UPGRADING COST,

2

1.3 Summary of Results

We present hardness results and approximation algorithms for the total cost and bottleneck cost
spanning tree problems under the node based network improvement model. Specifically, our results
are as follows.

,.
&. . -

I

1. We show that , unless NPC DTIME(n'"g'"g"), there can be no polynomial time approximation
algorithm with a performance guarantee of (f(n), a) for the problems (TOTAL WEIGHT,
NODE UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, NODE UPGRAD-
ING COST, SPANNING TREE), for any a < Inn and for any polynomial time computable
function f(n). Moreover, this result holds, with f(n) being a polynomial in n, even when
the difference between the maximum and the minimum edge weights in the problem instance
is bounded by a polynomial function of the size of the graph.

2. We develop a polynomial time approximation algorithm with a performance of (1, O(1og n))
for the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem (where n
is the number of nodes in the graph), when the difference between the maximum and the
minimum edge weights in the problem instance is bounded by a polynomial function of the
size of the graph.

3. We develop a polynomial time approximation algorithm with a performance of (1, 2 In n) for
the (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem. When
all the nodes have unit costs, i.e., c(u) = 1 for all u E V , we can improve our approximation
result to a performance of (1, 5 + 4 In A), where A is the maximurn node degree in the input
graph. The running time of the modified algorithm is S (n + m).

1.4 Related Work

Some node upgrading problems have been studied under a simpler model by Paik and Sahni [lo].
In their model, upgrading a node causes the delay of each edge incident on that node t o be reduced
by a given constant factor S < 1. When both end points of an edge are upgraded, the delay of the
edge is reduced by the factor S 2 . I t is easy to see that this model is a special case of the model
trea.ted in our paper.

Under their model, Paik and Sahni studied the upgrading problem for several performance
measures including the maximum delay on an edge and the diameter of the resulting network.
They presented NP-hardness results for several problems. Their focus was on the development
of polynomial time algorithms for special classes of networks (e.g. trees, series-parallel graphs)
rather than on the development of approximation algorithms. Our constructions can be modified
to show that all the problems considered here remain NP-hard even under the Paik-Sahni model.
The approximation results presented here hold under our generalized model.

Network improvement problems where upgrading is carried out on edges rather than nodes
have also been considered in the literature. For those results, we refer the interested reader to
[I, 3, 5, 6 , 9, 111.

2 Upgrading Under Total Weight Constraint

In this section we develop our approximation algorithm for the (TOTAL WEIGHT, NODE UP-
GRADING COST, SPANNING TREE) problem. Without loss of generality we assume tha t for a
given instance of (TOTAL WEIGHT, NODE UPGRADING COST: SPANNING TREE) the bound D

3

4 . .
03 the weight of the minimum spanning tree after the upgrade satisfies D 2 MSTG(dl), Le., the
weight of an MST with respect t o dl , since node upgrading cannot reduce the weight of the mini-
mum spanning tree below this value. Thus, there exists always a subset of the nodes which, when
upgraded, leads t o an MST of weight at most D. We will also make the following assumption
about the edge weights in a given instance:

Assumption 2.1 The dijJerence dmax-dmin between the maximum edge weight dmax := maGcg d(e)
and the minimum edge weight dmin := mineEE dl(e) is bounded by a polynomial in the size of the
input graph.

.

i

2.1 Overview of the Algorithm

Our approximation algorithm can be thought of as a local improvement type algorithm. To begin
with, we compute an MST in the given graph with d(e) as the weight of each edge e. Now, during
each iteration, we select a node and a subset of its neighbors and upgrade them. The policy used
in the selection process is that of finding a set which gives us the best ratio improvement, which is
defined as the ratio of the improvement in the total weight of the spanning tree t o the total cost
spent on upgrading the nodes. Having selected such a set, we recompute the MST and repeat our
procedure. The procedure is halted when the weight of the MST is at most the required threshold
D. Our algorithm finds a node with the best ratio improvement by using an approximate solution
to the Two Cost Spanning Tree Problem defined below.

I 2.2 Algorithm and Performance Guarantee

Definition 2.2 (Two Cost Spanning Tree Problem) Given a connected undirected graph G =
(V, E) , two cost values .(e) and l (e) for each edge e E E and a bound B , f ind a spanning tree T
of G such that the total cost of T under the cost function c is at most B and the total cost of T
under the cost function 1 is a minimum among all spanning trees that obey the budget constraint
with respect to c.

In the notation of [8], t.he above problem can be expressed as the bicriteria problem (e-TOTAL
COST, 1-TOTAL COST, S P A N N I N G TREE) . This problem has been addressed by Ravi and Goemans
who obtained the following result [12].

Theorem 2.3 For all fixed E > 0, there is a polynomial time approximation algorithm for the
Two Cost Spanning Tree problem with a performance of (1 + E , 1).

The steps of our algorithm are shown in Figure 1. This algorithm uses PROCEDURE COMPUTE
QC whose description appears after Figure 1. The description of the algorithm uses some terms
whose definitions appear in the next subsection. The following theorem states the performance of
our algorithm:

Theorem 2.4 For any fixed E > 0 , there is a polynomial time algorithm which, for any instance
of (TOTAL WEIGHT, NODE UPGRADING COST, S P A N N I N G T R E E) satisfying Assumption 2.1,
provides a performance guarantee of (1, (1 + E)20(log n)) .

Before we embark on a proof of the above theorem, we give the overall idea behind the proof.
Recall tha t each basic step of the algorithm consists of finding a node and a subset of neighbors
to upgrade.

ALGORITHM UPGRADE MST(S2)
0 Input: A graph G = (17, E) , three edge weight functions d, d,, dl, a node weight function
e, and a number D, which is a bound on the weight of an MST in the upgraded graph; a
“guess value” Q for the optimal upgrading cost.

1. Initialize the set of upgraded nodes: Wo := 0.
2. Let TO := MSTG(dw,).

3. Initialize the iteration count: i := 1.

4. Repeat the following steps until for the current tree Ti-1 and the weight function dwi-,
we have: dwi-,(Ta-l) 5 D:

(a) Let Ta-1 := MSTG(dwi-,) be an MST with respect t o the weight function dwi-, .
(b) Call PROCEDURE COMPUTE QC t o find a marked claw C with “good” quotient cost

q(C). PROCEDURE COMPUTE QC is called with the graph G, the current MST Ti-1,

the current weight function dw,-, and the bound 0.
(c) If PROCEDURE COMPUTE QC reports failure, then report failure and stop.
(d) Upgrade the marked vertices M (C) in C: Wi := Wi-1 U M (C) .
(e) Increment the iteration count: i := i + 1.

0 Output: A spanning tree with total weight no more than D, such that total cost of upgrading
the nodes is no more than (1 + &) S 2 - O(logn), provided R 2 OPT, where OPT denotes the
optimal upgrading cost to reduce the weight of an MST t o be at most D.

Figure 1: Approximation algorithm for node upgrading under total weight constraint.

Definition 2.5 A graph C = (V(C), E(C)) is called a claw, i f the edge set E(C) i s of the form
E(C) = { (w, ‘w) : w E V (C) \ { v } } f o r some node v E V (C) . If there are ut most two nodes in the
claw then we can choose any of the nodes as its center. Otherwise, the node with degree greater
than one i s the unique center. The vertices in the claw different from the center are said to be the
fingers of the claw. A claw with at least two nodes is called a nontrivial claw.

Let W be a subset of the nodes upgraded so far and let T denote a minimum spanning tree
C marked. with respect to dw; that is, T = M s T ~ (d w) . Let C be a claw with nodes M (C)

The quotient cost q(C) of C is then

and to be +m otherwise. In other words, q(C) is the cost of the vertices in M (C) divided by the
decrease in the weight of the MST when the vertices in M (C) are also upgraded and edges in the
current tree T can be exchanged for edges in the claw C.

Our analysis essentially shows that in each iteration i , there exists a claw of quotient cost at
most dw 20PT (T) - D ’ where T = T,-1 is the weight of an MST at the beginning of the iteration and
T V = W;-1 are the nodes upgraded so far. We can then use a potential function argument t o
show that this yields a logarithmic performance guarantee. We now proceed with the details of
the performance analysis.

5

, .

PROCEDURE COMPUTE QC(Q)
0 Input: A graph G = (V, E) , a spanning tree T and an weight function d on E ; W c V is
the set of upgraded nodes; a “guess value’’ Q for the optimal upgrading cost.

1. Let s := [log,+, R1.
2. For each node v @ W and all K E { 1, (1 + E) , (1 + E) ~ , . . . , (1 + E) ” } do

(a) Set up an instance l,,~. of the Two Cost Spanning Tree Problem as follows:
0 The vertex set of the graph G, contains all the vertices in G and an additional

“dummy node” 5 .

0 For each edge (u, w) E T, there is one edge (u, w) E E which has length Z(u, w) =
d(u, w) and cost c(u, w) = 0.

0 For each edge (v, w) incident on v there are two parallel edges e: and e; between
v and w in G,. The edge e: has l-length Z(eL) resulting from the upgrade of v and
c-cost c(e:) = 0. The edge e; has Z-length resulting from the upgrade of both v and
w and c-cost c(w).

0 There is one edge (V,IC) joining v to the dummy node IC. This edge has length
Z(v, x) = 0 and cost c(v, x) = c(u).

0 The bound B on the c-cost of the tree is set to K .
(b) Using the algorithm mentioned in Theorem 2.3, find a tree of c-cost at most (1 +E)K

and I-cost no more than that of a ininimum budget K bounded spanning tree (if one
exists). Let T,,K be the tree produced by the algorithm.

3. If for all instances I,,K. of Two Cost Spanning Tree Problem constructed above the
algorithm from Theorem 2.3 fails to find a tree of cost at most (1 + &)IC, then report
failure and stop.

4. Among all the trees T,,K find a tree T,*,K* which minimizes the ratio c(T,*,~c*)/(d(T) -

5. Construct a marked claw C from Tt,*,lt-* as follows:
m J * , K *)) .

0 The center of C is v* and u* is marked.
0 The edge (v*, w) is in the claw C if T,*,K* contains an edge between v* and w. The

finger w is marked if and only if the edge in T,*,K* between vUr and w has c-cost
greater than zero.

6. Return the marked claw C.

0 Output: A marked claw C (with its center also marked) with quotient cost q(C) satisfying
4(C) 5 a(1 + E) d(T)-D OPT and cost c (M (C)) 5 (1 + E) Q .

6

2.3 Bounded Claw Decompositions

Definition 2.6 Let G = (V, E) be a graph and W E V a subset of marked vertices. Let K 2 1
be an integer constant. A 6-bounded claw decomposition of G with respect to W is a collection
(71,. . .C, of nontrivial claws, which are all subgraphs of G with the following properties:

(i) U:=l V(C;) = V and UrZl E(C;) = E.
(ii) No node from W appears in more than tc claws.

(iii) The claws are edge-disjoint.
(iv) If a claw C; contains nodes from W , then the center of C; belongs also to W .

Lemma 2.7 Let F be a forest in G = (V, E) and let W C V be a set of marked nodes. Then
there is a 2-bounded claw decomposition of F with respect to W . 0

Lemma 2.8 Let T := Ti-1 be an MST at the beginning of iteration i with W := Wi-1 being
the nodes upgraded so far. Let U C V be a set of nodes. Let T' = h'fSTG(dwuu) be a minimum
spanning tree after the additional upgrade of the vertices in U. Then, there is a bijection 9 : T -+ T'
with the following properties:

(i) For all edges e E T fl TI we have y (e) = e,
(ii) dwuu(p(e)) 5 dw(e) for all e E T ,

(iii) the "swaps" e + p(e) transforms T into T', and
(iv) C e E T (4 ~ (e) - d w u u (~ (e))) = dw(T) - dwuu(T')

Lemma 2.9 Let T := Ti-1 be an MST at the beginning of iteration i , i.e., T = M S T G (d w) ,
where W := W\-l is the upgrading set constructed so far. Then there is a marked claw C (where
its center v is also marked and v 6 W) with quotient cost q(C) satisfying

and c (M (C)) 5 OPT. OPT
'(') ' 2dtli(T) - D

Proof: Let T' = M S T ~ (d w u 0 p ~) be an M S T after the additional upgrade of the vertices in OPT.
Clearly, d w U o p ~ (T ') 5 D. Apply Lemma 2.7 t o T' with the vertices in OPT \ W marked. The
lemma shows that there is a %bounded claw decomposition of T' 11-ith respect t o OPT \ W . Let
the claws be C1, . . . , C,. In each claw Cj, the corresponding nodes M(Cj) := Cj f l (OPT \ W)
from OPT \ W are marked. Since the decomposition is 2-bounded with respect to OPT \ W , it
follows that

r

c (M (C j)) 5 2 . OPT
j=1

Moreover, the cost c (M (C j)) of the marked nodes in each claw Cj does not exceed O P T , since we
have marked only nodes from OPT \ W . By Lemma 2.8, there exists a bijection 9 : T -+ T' such
that

(d W (e) - dW'uOPT(Y(e))) = d W (T) - d W U O P T (T ') 2 d W (T) - D - (2)
eET

For each of the claws Cj with M(Cj) # 0 in the 2-bounded decomposition of T' its quotient cost
q(Ci) satisfies

7

' . .

' dWuOPT(V(e))).

since we can exchange the edges cp(e) (e E Cj) for the corresponding edges e in the current tree

T after the upgrade and this way decrease the weight of the tree by at least Cv(e)Ecj (dw(e) -

q(C) - (dw(e) - dW"oPT(v(e))) L C(lw(Cj)) for j = 1, * - 1 r . (4)

Let C be a claw among all the claws Cj with minimum quotient cost q(C). Then,

e€Cj

Notice that the above equation holds for j = 1,. . . , r , regardless of whether M(Cj) is empty or
not. Summing the inequalities in (4) over j = 1,. . ., r , and using equations (1) and (2) now
implies that C possesses the desired properties stated in the lemma.

2.4

Lenima 2.9 implies the existence of a marked with the required properties. We mill now deal with
the problem of finding a marked claw with a good quotient cost in each iteration.

Finding a good claw in each iteration

Lemma 2.10 Suppose that the bound i2 given to Algorithm UPGRADE MST satisfies 0 2 OPT.
Then, for each stage i of the algorithm, it chooses a marked claw C' such that

and

where T := Ti-1 is an MST at the beginning of iteration i and W := Wi-1 is the set of nodes
upgraded so far.

Proof: By Lemma 2.9, there is a marked claw C with quotient cost q(C) at most 2dw:F7-D. Let
w be the center of this claw which by Lemma 2.9 is marked. Let c(C) := c(M(C)) be the cost of
the marked nodes in C and L := MSTTUC (~ w ~ ~ (c)) be the weight of the MST in T U C resulting
from the upgrade of the marked vertices in C. Then, by definition of the quotient cost q(C) we
have

Consider the iteration of PROCEDURE COMPUTE QC when it processes the instance Iv,h- of
Two Cost Spanning Tree ProbZem with graph G, and c(C) 5 K < (1 + I) ' c(C). The tree
M S T ~ ~ c (d w ~ ~ , a (c)) induces a spanning tree in G, of total c-cost at most c(C) (which is at most
I<) and of total I-length no more than L. Thus, the algorithm from Theorem 2.3 will find a tree
T,,K such that its total c-cost c(T,,~c) is bounded from above by (1 + E) K 5 (1 + E)~c(C) and of
total I-length Z(Tv,~) no more than L.

has
quotient cost at most c(T,,fi-)/(dw(T) - Z(Tu,~<*)), which is at most (1 + E) 2 c (C) / (d ~ ~ (T) - L) . The

By construction, the marked claw C' computed by PROCEDURE COMPUTE QC from

lemma now follows from (5). (3

2.5 Guessing an Upper Bound on the Improvement Cost

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of

R E (1, (1 + e) , (1 +e)2, . . . , (1 + E) ~ } , where t := [log,+, c(T/)1

8

We then choose the best solution among all solutions produced. Our analysis shows that when
OPT 5 Q < (1 + E) 1 OPT, the algorithm will indeed produce a solution. In the sequel, we
estimate the quality of this solution. Assume that the algorithm uses f + 1 iterations and denote
by C1, . . . , Cf, Cf+l the claws chosen in Step 4b of the algorithm. Let c; := c(M(C;)) denote the
cost of the vertices upgraded in iteration i. Then, by construction

*

c;< (1 + ~) Q i (1+e)20PT f o r i = l , . . . , f + 1. (6)

2.6 Potential Function Argument

We are now ready to complete the proof of the performance stated in Theorem 2.4. Let MST;
denote the weight of the MST at the end of iteration i, i.e., MST; := dwi(T;). Define (6; :=
MST; - D. Since we have assumed that the algorithm uses f + 1 iterations, we have (6; 2 1 for
i = 0 , . . ., f and #f+l 5 0. As before, let c; := c(M(C;)) denote the cost of the vertices upgraded
in iteration i . Then we have

) (6& Lemma 2.10

(‘ - a - O P T $;+I (6i - (MST; - MST;+1) - < (7)

where ry := 2(1+ E) ~ . We now use an analysis technique due to Leighton and Rao [7] to complete
the proof. The recurrence (7) and the estimate ln(1- 7) 5 -T give us

$0
f

C c i < r w . O P T . l n - .
i=l (6f

Notice that. the total cost of the nodes chosen by the algorithm is exactly the sum Cif=*,’ c;. By
(8) and (6) we have

We will now show how to bound In b. Notice that $f = MSTf - D 2 1, since the algorithm
uses f + 1 iterations and does not stop after the f t h iteration. We have (60 = MSTo - D < -
(T Z - 1) (a’,,, - &in), where d,,, and dmin denote the maximum and the minimum edge weight in
the graph, defined in Assumption 2.1. It now follows from Assumption 2.1 that In (bo E O(1ogn).
Using this result in (9) yields

Qr

f +1

;=1
C ci 5 (1 + E)’ - OPT + 2(1+ E)2u(log n) . OPT.

This completes the proof of Theorem 2.4.

3 Upgrading Under Bottleneck Constraint

0

This section presents our approximation algorithm for (BOTTLENECK WEIGHT, NODE UPGRAD-
ING COST, SPANNING TREE). Given a bound D on the bottleneck delay of a spanning tree, we
partition the set of edges into four sets according to how many of the endpoints must be upgraded
in order to make the delay of an edge fall below the threshold D. An edge of delay at most D

9

. = - is-called a noncritical edge. An edge e is said to be a medium critical edge, if d(e) > D and
dm(e) 5 D. We say that e is a. highly critical edge, if &(e) > D and dl(e) _< D. Finally, any
edge e with dl(e) > D is called a useless edge. Since node upgrading cannot reduce the delay of
a useless edge t o be below the threshold D, we assume without loss of generality that the set of
useless edges is empty.

In the sequel we present our approximation algorithm for the (BOTTLENECK WEIGHT, NODE
UPGRADING COST, SPANNING TREE) problem. In contrast to our algorithm from Section 2, we
do not have t o make any assumptions about the edge weights being polynomially bounded in the
input size.

I

3.1 Overview of the Algorithm

The algorithm maintains a set W of nodes, a set F of edges and a set 6 of clusters which partition
the vertex set V of the given graph G. The set B of clusters is initialized to be the set of connected
components of the bottleneck graph bottleneck(G, d , D) , containing only those edges e which have
a delay d(e) of at most D. The set W of upgrading nodes is initially empty.

The algorithm iteratively merges clusters until only one cluster remains. To this end, in each
iteration it determines a node v of minimum bottleneck quotient cost. The bottleneck quotient cost
of a node v is the ratio whose numerator is the cost of v plus the costs of some nodes adjacent t o
v in different clusters via highly critical edges, and whose deiiominator is the number of clusters
which have nodes a.djacent t o v. A precise definition of the bottleneck quotient cost appears in
Equation (10) in the algorithm depicted in Figure 2. This quotient cost measures the “average
upgrading cost” of v and the vertices that are adjacent to v through highly critical edges. The
algorithm then adds v and the nodes mentioned above to the solution set W and merges the
corresponding clusters. The iteration stops, when only one cluster is left.

3.2 Analysis and Performance Guarantee

In the sequel, we use OPT to denote the minimum node upgrading cost t o obtain a bottleneck
spanning tree of given delay at most D. A key lemma used in establishing the performance
guarantee of our algorithm is the following. A proof of this lemma is included in the appendix.

Lemma 3.1 Let v be a node chosen in Step 5b of algorithm UPGRADE BOTTLENECK SPANNING
TREE and let C denote the total cost of the nodes added to the solution set W in this iteration.
Let there be q clusters before v is chosen and assume that in this iteration r clusters are merged.
T h e n C / r 5 OPT/q.

Using the above lemma, the following theorem, which gives the performance guarantee and
the running time of our algorithm, can be proven.

Theorein 3.2 The algorithm in Figure 2 provides a performance guarantee of (1, 2 In n) for the
(BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNIXG TREE) problem. The algorithm
can be implemented to run in time O(nm a(m, n)) , where a is the inverse of Ackermun‘s function.
cl

Proof (Performance): The proof uses a potential function argument similar t o the proof of
Theorem 2.4. Thus, we only highlight the main steps. Assume that the algorithm uses f iterations
of the loop and denote by VI , . . .t’f the vertices chosen in Step .5b of the algorithm.

10

. _ I

ALGORITHM UPGRADE BOTTLENECK SPANNING TREE
Input: A graph G = (V, E) , three edge weight functions d, d,, dl , a node weight function

c, and a number D which is a bound on the bottleneck weight of a minimum bottleneck
spanning tree in the upgraded graph.

1. G’ := bottleneck(G, d, D) .

2. GI, . . . , G, := connected components of G’.
3. Initialize the set of upgraded nodes: W := 0.
4. F := set of edges of G’.
5. While G’ = (V, F) has more than one connected component

(a) Assume that 6 = {GI . . . , Gq} is the set of components.
(b) Find a node w E V in the graph G minimizing the ratio

Here, the cost c(w,G,) is defined in the following way: If w E G, or w is adjacent
to a node in G, via a medium critical edge, then c(v,G,) := 0. If all the edges
from TJ t o Gj are highly critical. then c(w, G,) is defined t o be the minimum cost
of a vertex in C, adjacent to w. If there is no edge between t~ and any node in G,,
then c(w, Gj) := +m.

(c) Let w be the node and G1 , . . . , Gr be the components in C chosen in Step 5b above,
where w.1.o.g. w E GI.

(d) Let e2,. . . , e , be a set of edges in G connecting t~ to GZ, . . . , G,, respectively.
(e) F := F U { e z , . . ., e r } , Le., merge G1, G 2 , . . . , G, into one component.

(g) For i := 2 , . . . , r : If e; = (w, w;) is highly critical, then W := W U {wi}.
(h) GI, . . . , G,, := connected components of G’ = (V, F)

(f) w := w u {w}.

6. Output W.

Output: A spanning tree with bottleneck weight no more than D , such tha t total cost
of upgrading the nodes is no more than 21n n . OPT, where OPT denotes the optimal
upgrading cost t o reduce the weight of a bottleneck spanning tree t o be at most D.

Figure 2: Approximation algorithm for node upgrading under a bottleneck constraint.

11

I - .
- Let (bj denote the number of clusters after choosing vertex Vj in this iteration. Thus, for

&stance, (bo = t , the number of components at the beginning of the whole algorithm and (bj = I,
since we end up with one cluster. Let the number of clusters merged using vertex 'uj be rj and
the total cost of the vertices added in that iteration be c j .

I
I

I

Using Lemma 3.1 one can show the following inequality for the potential function q$:

2 * O P T

f

i= l

Taking natural logarithms on both sides and simplifying using the estimate ln(1 - T) _< -T , we
obtain

(bo .l

(bf -
2 . O P T - l n - >E.;.

Note that (bo 5 n := IVl and (bj = 1 a.nd hence from (12) we get

f cc; 5 2 . O P T . l n n .

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum e;. This
completes the proof of Theorem 3.2.

When the upgrading cost of each node is 1, we can prove the following result.

Theorem 3.3 There is an approximation algorithm for the (BOTTLENECK WEIGHT, NODE UP-
GRADING COST, SPANNING TREE) problem with unit upgrading costs @e., e(.) = 1 for all 'u E V) ,
with a performance of (1, 5 + 4 In A), where A is the maximum degree in the input graph. This
algorithm can be implemented to run in time O(n + vt) .

4 Concluding Remarks

We considered minimum cost network upgrading problems under two performance measures,
namely, the weight of a minimum spanning tree and the bottleneck weight of a minimum bottle-
neck weight spanning tree in the upgraded network. We presented polynomial time approximation
algorithms for these problems. For these problems, our algorithms produced solutions in which the
budget constraints were satisfied. This is unlike many bicriteria network design problems where
it is necessary to violate the budget constraint by a small factor in order t o efficiently obtain a
solution that is near-optimal with respect to the objective function [SI.

An open problem that arises immediately from our work is whether there is a good approxima-
tion algorithm for the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem
even when Assumption 2.1 is not satisfied. It is also of interest t o investigate whether our results
for spanning trees can be extended to Steiner trees. Other open problems under the node-based
upgrading model can be formulated using different performance measures for the upgraded net-
work. Some measures which are of interest in this context include bottleneck weight, diameter
and lengths of paths between specified pairs of vertices.

12

References . .

[l] 0. Berman, “Improving The Location of Minisum Facilities Through Network Modification,”
Annals of Operations Research, Vol. 40, 1992, pp. 1-16.

[23 U. Feige, “A threshold of In n for approximating set cover,” Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing (STOC’96), Philadelphia, PA, May 1996, pp.
3 14-3 18.

[3] G. N. Frederickson and R. Solis-Oba, “Increasing the Weight of Minimum Spanning Trees” ,
Proceedings of the Sixth Annual A CM-SIAM Symposium on Discrete Algorithms (SODA’96),
January 1996, pp. 539-546.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

[5] S. 0. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi and K. U. Drangmeister, “Modify-
ing Networks t o Obtain Low Cost Trees,” Proc. Workshop on Graph Theoretic Concepts in
Computer Science (WG’96), Cadenabbia, Italy, June 1996, pp. 293-307.

[6] S. 0. Krumke, H. Noltemeier, M. V. Marathe, R. Ravi and S. S. Ravi, “Improving Steiner
Trees of a Network Under Multiple Constraints”, Technical Report, LA-UR 96-1374, Los
Alamos National Laboratory, Los Alamos, NM, 1996.

[‘TI F. T. Leighton and S. Rao, “An Approximate Max-Flow Min-Cut Theorem for Uniform Mul-
ticommodity Flow Problems with Application to Approximation Algorithms”, Proceedings
of the 29th Annual IEEE Conference on Foundations of Computer Science (FOCS’88), Oct.
1988, pp. 422-431.

[8] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt 111,
“Bicriteria Network Design Problems”, In Proceedings of the 22nd International Colloquium
on Automata, Languages and Programming (ICALP’95), July 1995, Vol. 944 of Lecture Notes
in Computer Science, pp. 487-498.

[9] J. Plesnik, “The Complexity of Designing a Network with Minimum Diameter”, Networks,
Vol. 11, 1981, pp. 77-85.

[lo] D. Paik and S. Sahni, “Network Upgrading Problems,” Networks, Vol. 26, 199,5, pp. 4.5-58.

[ll] C. Phillips, “The Network Inhibition Problem,” Proc. 25th Annual ACM Symposium on
Theory of Computing (STOC’93), San Diego,CA, May 1993, pp. 288-293.

[12] R. Ravi and M. X. Goemans, “The Constrained Minimum Spanning Tree Problem”, Proc.
Scandinavian Workshop on Algorithmic Theory (SWAT’96), Reykjavik, Iceland, July 1996.

13

- *

* * - Appendix

A Hardness Results

The following result states the complexity of obtaining near-optimal solutions to the problems
(TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT,
NODE UPGRADING COST, SPANNING TREE).

Theorem A. l Unless NP C DTIME(n'"g'"g"), there can be no polynomial time approximation
algorithm for either (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) or (BOT-
TLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE) with a performance of (f(n), a)
for any (Y < In n and any polynomial time computable function f . Moreover, this result holds with
f (n) = nk being any polynomial, even i f the difference between the maximum edge weight and the
minimum edge weight in the problem instance is bounded by a polynomial function of the size of
the gmph. 0

We prove the above result by using a reduction from the MIN SET COVER probiem and
Feige's result 121 on the non-approximability of MIN SET COVER. It also follows from our proof
of Theorem -4.1 that similar hardness results hold for the problems (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) and (NODE UPGRADING COST, BOTTLENECK WEIGHT,
SPANNING TREE).

Recall that an instance of MIN SET COVER consists of a finite set Q of ground elements
(41, . . . , qn}, a collection F = .{QI, . . . , Qm} of subsets of Q and the requirement is t o pick a
minimum number of sets from 3 such that their union equals Q. The proof of Theorem A . l uses
Feige's result concerning the nonapproximability of the MIN SET COVER problem stated below.

Theorem A.2 (Feige [2]) Unless NP C_ DTIME(n'"g'"g"), the MIN SET COVER problem, with a
ground set Q of size IQI, cannot be approximated in polynomial time within a performance factor
of P < In IQI.
Proof of Theorem A.1: Suppose A is a polynomial time algorithm that provides a performance
guarantee of (f (n) , a) , for some polynomial time computable function f (n) and some value
a < In n, for the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem. We will
show that A can be used to obtain a polynomial time approximation algorithm with a. perforniance
guarantee of a for MIN SET COVER. Theorem A.1 would then follow in view of Feige's result
indicated above.

Given an instance of MIN SET COVER, we produce an instance of (TOTAL WEIGHT, NODE
UPGRADING COST, SPANNING TREE) as follows. We first construct the natural bipartite graph,
one side of the partition for set nodes Q3, j = 1,. . . , m, and the other for element nodes qz,
i = 1,. . . , n. We insert an edge (Q3, yi) if qi E Q3. We now add one more node R (the "root'?)
and connect R t o all the set nodes.

Note tha t the resulting graph is bipartite (with R and the element nodes on one side and the
set nodes on the other side).

The current weight, medium weight and the low weight values for each edge are f(n)-(n+m)+l,
1 and 1 respectively. The cost of upgrading R is set to zero. For every set node, the cost of
upgrading is set to 1; for every element node, the cost of upgrading is set t o [nzln n1 + 1. The
budget on the weight of a spanning tree in the upgraded network is set t o n + m. The resulting

14

instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) satisfies the following L -

property.

Claim A.3 Let O P T denote the number of sets in an optimum solution to the MIN SET COVER
instance. Then there is a solution to the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING
TREE) instance constructed above with an upgrading cost of at most OPT.

Proof of Claim A.3: Let F* be an optimal solution to the MIN SET COVER instance. Let us
upgrade the node R and the nodes corresponding to the sets in 3*. The cost of this upgrade is
OPT. A spanning tree T in which each edge has weight 1 can now be constructed by attaching
each set node t o R and for each upgraded set node, attaching the nodes corresponding t o the

0

Now, suppose we run A on the (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE)
instance constructed above and examine the spanning tree T’ produced by A for the upgraded
network. Since A violates the budget constraint only by a factor f (n) , by the above claim, the
weight of T’ is at most f (n) ‘ (rn + n). Since the weight of each edge in the original (unupgraded)
network was chosen as f (n) (m + n) + 1, T’ cannot include any such edge. Therefore, by our
construction, the weight of each edge of T’ is exactly 1.

We also note that the cost of the upgrading set chosen by A is at most a. OPT < m In n. Since
the upgrading cost of any element node (namely, [m In n1 + 1) exceeds this bound, A could not
have upgraded any of the element nodes.

Thus, the upgrading set chosen by A consists of some set nodes and possibly the node R.
Therefore, the number of upgraded set nodes is at most CY - OPT. In T‘, each element node must
be attached to an upgraded set node; otherwise, the weight of such an edge would be greater
than 1. In other words, the sets corresponding to the upgraded set nodes form a cover of size
a t most a OPT for the MIN SET COVER instance. Thus, using A, we have constructed a
polynomial time approximation algorithm with a performance guarantee a < I n n for the MIN
SET COVER problem. This completes the proof for the (TOTAL WEIGHT, NODE UPGRADING
COST, SPANNING TREE) problem.

When f (n) is a polynomial in n, we obtain the non-approximability result for (TOTAL WEIGHT,
NODE UPGRADING COST, SPANNING TREE) for the case when the difference between the maxi-
mum edge weight and the minimum possible edge weight is polynomially bounded.

We note that the above construction also yields the hardness result for approximating the
(BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE) problem. The reason is
that our transformation leads to a spanning tree in which each edge has a weight of 1 in the

0

By a slightly different transformation from SET COVER, it can be shown that the (TOTAL
WEIGHT, NODE UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, NODE
UPGRADING COST, SPANNING TREE) problems remain NP-hard even when each node has an
upgrading cost of 1.

elements in that set. Clearly, the weight of T is n + m.

upgraded network; that is, the minimum bottleneck cost of the tree is 1.

B Proofs for Upgrading under Bottleneck Constraint

B.1 Claw Partitions

While in Section 2 our main tool for decomposing the optimal solution was the notion of a
bounded claw decomposition, for the bottleneck upgrading problem, we introduce the notion of a
claw partition, which is formally defined below.

15

, Q 1

'
Definition B. l Let G = (V, E) be a graph with node set V . A claw partition of V in G is a
collection of node-disjoint nontrivial claws, which are all subgraphs of G and whose vertices form
a partition of V . .

Thus, a claw partition can be viewed as a relaxation of a l-bounded claw decomposition where
we do not require each edge of the graph G t o appear in one of the claws. The following lemma
can be proved by an easy induction on /VI.

Lemma B.2 Let G be a connected graph with node set V , where \VI 2 2. Then there is a claw
0 partition of V in G.

B.2 Proof of Lemma 3.1

Proof: Let T* be an optimal tree with the nodes W* be the upgraded nodes. Let OPT := c(W*)
be the cost of the optimal solution. Let 8 = GI, . . . , G, be the clusters when the node 'u was
chosen and let T*(w) be the graph obtained from T* by contracting each G, to a supernode.
T*(v) is connected and contains all supernodes. We then remove edges (if necessary) from T*(v)
so as to make i t a spanning tree. Note that all the edges in this tree are either medium or highly
critical.

Let A C W* be the set of nodes in the optimal solution that are adjacent t o another cluster in
T*(v) . Clearly, the cost of these nodes is no more than OPT. Take a claw partition of T*(w). We
now obtain a set of claws in the graph G itself in the following way: Initialize E' to be the empty
set. For each claw in the partition with center G', and fingers G;, . . . ,Gi we do the following:
For each edge (Gi, Gg) the optimal tree T* must have contained an edge (u, w) with u E Gi and
w E Ga, Notice tha t since this edge was either medium or highly critical, at least one of the
vertices u and w must belong to -4 W*. We add (u, 20) to E'.

It is easy t o see tha t the subgraph of G induced by the edges in E'consists of disjoint nontrivial
claws. Also, all edges in the claws were medium or highly critical and the total number of nodes
in the claws is at least q. We need one more useful observation: If a claw center is not contained
in A, then aZZ the fingers of the claw must be contained in A, since the edges in the claw were
medium or highly critical.

Let A, be the set of nodes from A acting as centers in the just generated claws. Let =Imed
denote the fingers of the claws contained in A which are connected t o their claw center via a
medium critical edge, whereas Ahigh stands for the set of fingers adjacent to the center via a
highly critical edge and also contained in A. For each claw with exactly two nodes we designate
an arbitrary one of the nodes to be the center. Then by construction, A,, Amed and A h z g h are
disioint. Therefore,

For a node u E A,, let Nu denote the number of vertices in the claw centered at u. We have
seen tha t if a center is not in A, then all the fingers belong to the optimal solution. Clearly. this
can onIy happen, if the claw centered at u does not contain a highly critical edge. Thus, we can
estimate the total number of nodes in the claws from above by summing up the cardinalities of
the claws with centers in A and for all other claws adding twice the number of fingers. Hence

Nu + 2JAmedl _> J{ w : w belongs t o some claw }] _> Q, (15)
uEAc

16

_ I

T I . ., . - * since the total number of nodes in the claws is at least q.
We now estimate the first sum in (14). If u E A,, then the bottleneck quotient cost of u is

a t most the cost of u plus the cost of the fingers in the claw that are in Ahisfa divided by the
total number of nodes in the claw. This in turn is at least C / r by the choice of the algorithm in
Step 5b. By summing up over all those centers, this leads to

Now, for a node u in Amed, its bottleneck quotient cost is at most c(u) /2 , which again is at least
C / r . Thus

(17)
C C

2- v = 21Amedl -7. C (U) > -
&Arned

Using (16) and (17) in (14) yields

OPT 2

L

uEAmed ’

This proves the claim.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy. completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

