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Abstract 

Metacomputing systems use high-speed networks to connect supercomputers, mass 
storage systems, scientific instruments, and display devices with the objective of enabling 
parallel applications to access geographically distributed computing resources. However, 
experience shows that high performance often can be achieved only if applications carn 
integrate diverse communication substrates, transport mechanisms, and protocols, chosen 
according to where communication is directed, what is communicated, or when communi- 
cation is performed. In this article, we describe a software architecture that addresses this 
requirement. This architecture allows multiple communication methods to be supported 
transparently in a single application, with either automatic or user-specified selection cri- 
teria guiding the methods used for each communication. We describe an implementation 
of this architecture, based on the Nexus communication library, and use this implemen- 
tation to evaluate performance issues. The implementation supported a wide variety of 
applications in the I-WAY metacomputing experiment at Supercomputing 95; we use 
one of these applications to provide a quantitative demonstration of the advantages of 
multimethod communication in a heterogeneous networked environment. 

I 
I , I Introduction 

Future networked computing systems will be increasingly heterogeneous in terms of both the 
types of networked devices and the capabilities of the networks used to connect these devices. 
At  the same time, the applications that run on these networks are becoming more sophisticated 
in terms of the computations they perform and the types of data that they communicate [6]. 
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The various gigabit testbeds showcased early examples of high-performance networked applica- 
tions, while in the I-WAY networking experiment at Supercomputing 95, around sixty groups 
demonstrated applications designed to exploit networked supercomputers, mass storage sys- 
tems, scientific instruments, and advanced display devices [lo]. 

Experiences on the I-WAY and other networking testbeds show that metacomputing appli- 
cations often need to exploit multiple network interfaces, low-level protocols, data encodings, 
and quality of service choices if they are to achieve acceptable performance. Coupled mod- 
els, which use multiple supercomputers to exploit large aggregate memory or to run different 
components more quickly on different architectures, need to use machine-specific communica- 
tion methods within computers and optimized wide area protocols between computers [21, 221. 
Collaborative environments require a mixture of protocols providing different combinations of 
high throughput, multicast, and high reliability [ll, 121. Applications that connect scientific 
instruments or other data sources to remote computing capabilities need to be able to switch 
among alternative communication substrates in the event of error or high load [20]. In general, 
the choice of communication method can vary according to where communication is directed, 
what is communicated, or when communication is performed. 

Metacomput ing applications requiring multiple communication methods have previously 
been developed in an ad hoc fashion, with different program components coded to use different 
low-level communication mechanisms. While effective, this approach is tedious, error prone, 
and nonportable. A simpler approach would be to allow programmers to develop applications 
using a single high-level notation, such as the Message Passing Interface (MPI) [19} or a parallel 
language, and then provide mechanisms that allow the methods used for each communication 
to be determined independently of the program text. However, the realization of this approach 
requires solutions to challenging problems: separate specification of communication operation 
and communication method; identification of applicable communication methods; selection from 
among alternative methods; and the incorporation of multiple communication methods into an 
implementation. 

In this article, we describe a software architecture that addresses the problems just listed. 
This architecture allows programmers to specify communications in terms of high-level ab- 
stractions such as message passing or remote procedure call, while supporting diverse low-level 
methods for actual communications. Communication methods can be associated with individ- 
ual communication operations, and the selection of an appropriate method can be guided by 
both automatic and user-specified criteria. The architecture also incorporates solutions to var- 
ious problems that arise when multiple communication methods are incorporated into a single 
implementation. Central to this multimethod communication architecture is an abstraction 
called a communication link, which provides a concise, mobile representation of both the target 
of a communication operation and the methods used to perform that operation. 

These multimethod communication techniques have been implemented in the context of the 
Nexus multithreaded runtime system [15, 161. Nexus has been used to implement a variety of 
parallel languages and communication libraries [7, 14, 121, including the MPI implementation 
used extensively in the I-WAY wide area computing experiment [lo]. We use Nexus to study the 
performance of alternative approaches to the implementation of various multimethod commu- 
nication structures. We conclude with a case study in which our multimethod communication 
techniques are used to improve dramatically the performance of an MPI-based climate model. 

In brief, the contributions of this article are as follows: 

1. The definition of a software architecture that permits application-level communications to 
be specified independently of the low-level methods used to perform communication and 
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that supports both automatic and manual selection of the methods used for particular 
communication operations. 

2. The description and evaluation of implementation techniques that support the simulta- 
neous use of multiple communication methods within a single application. 

3. A demonstration that multimethod communication can significantly improve the perfor- 
mance of realistic scientific applications. 

2 Multirnethod Communication 

The need for multiple communication methods in a single application can arise for a number 
of reasons, some of which we consider here. 

0 Transport mechanisms. Complex applications such as those demonstrated on the I-WAY 
may integrate diverse computational resources, including visualization engines, parallel 
supercomputers, and database computers [lo, 20,21,22]. While the Internet Protocol (IP) 
provides a standard transport mechanism for routed networks [8], parallel computers and 
local area networks often support alternative, more efficient mechanisms. As we will show 
in Section 4, the use of specialized transport mechanisms can be crucial to application 
performance. 

0 Network protocols. Many network services are available in addition to the point-to-point 
reliable delivery typically provided by message-passing libraries. Applications such as 
collaborative engineering I121 can exploit specialized protocols such as Unreliable Data- 
gram Protocol (UDP), IP multicast, reliable multicast, and Realtime Transport Protocol 
(RTP) or application-specific protocols for selected data, such as shared state updates 
and video. 

0 Quality of service (QoS). Future networks will support channel-based QoS reservation 
and negotiation [26, 41. High-performance multimedia applications probably will want 
to reserve several channels providing different QoS; for example, they might use a low- 
latency, low-bandwidth channel for control information and a high-bandwidth, unreliable 
channel for image data transfer. 

0 Interoperability of took. Parallel applications must increasingly interoperate with other 
communication paradigms, such as CORBA and DCE. In heterogeneous environments, 
an MPI program may need to interoperate with other MPI implementations. In each 
case, different protocols must be used to communicate with different processes. 

e Security. Different mechanisms may be used to authenticate or protect the integrity or 
confidentiality of communicated data [Z?], depending on where communication is directed 
and what is communicated. For example, control information might be encrypted outside 
a site, but not within, while data is not encrypted in either case. 

These examples show that it can be necessary to vary the methods used for a particular 
communication according to where communication is directed, what is communicated, and 
even-since many of the choices listed above can vary over time-when communication is 
performed. 
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2.1 Requirements 

Recognizing that multimethod communication is important, we face the challenge of devel- 
oping tools and techniques that allow programmers to use multiple communication methods 
efficiently without introducing overwhelming complexity. We argue that a fundamental require- 
ment is that the programmer be able to specify communications in terms of a single abstraction 
(whether message passing, remote procedure call, etc.), independently of the low-level method 
used to effect a particular communication. In addition, it should be easy to distinguish com- 
munications intended for a particular purpose (for example, communications directed to a 
particular remote location), so that programmers can associate different methods with differ- 
ent subsets of the communication operations within a program. The examples presented above 
show that it is not enough to  specify communication method based solely on the source and 
destination processors. 

Implementations of multimethod communication must permit the coexistence of multiple 
methods within a single application. This is a nontrivial problem, since different methods 
may use quite different mechanisms for initiating and processing communications. It is also 
important to have flexible techniques for selecting the communication method to be used. While 
ease of use demands automatic selection mechanisms, programmer-directed selection must also 
be supported, and automatic and programmer-directed selection must be able to coexist. For 
example, automatic selection might be used to determine whether to use shared memory or 
TCP/IP between two computers, while manual selection could be used to specify that data 
is to be compressed before communication. For some communication methods, programmers 
need to manage low-level behavior by specifying values for important parameters. For example, 
a TCP-based method might allow a programmer to specify socket buffer sizes. 

Finally, both automatic and manual selection require access to information about the avail- 
ability and applicability of different communication methods and about system state and config- 
uration. For example, shared-memory communication is appropriate only if directed to another 
process within the same shared address space. An implementation of multimethod communica- 
tion must provide this information via enquiry functions. Enquiry functions should also enable 
programmers to evaluate the effectiveness of automatic selection or to tune manud selections. 

2.2 Communication Primitives 

The preceding discussion has identified requirements for an implement ation of multimethod 
communication. These requirements can be satisfied in a variety of ways. We advocate an 
approach based on a one-sided asynchronous communication mechanism implemented by a 
communication link and remote service request. 

Before going into details of our approach, let us consider the limitations of supporting 
multimethod communication with traditional two-sided message passing primitives. We start 
with the observation that two-sided communication defines a specific protocol for synchronizing 
and extracting data at the receive side of the transfer. This protocol can hinder communication 
methods, such as stream communication, in which an explicit receive operation may not be 
appropriate. 

Message-passing libraries such as PVM [17], MPL, or NX provide no notion of commu- 
nication context: a receive can potentially match any send. This feature makes it difficult 
to associate a communication method with a specific set of communication operations or to 
support different methods on different communication operations. The situation is improved 
in MPI [19] by the introduction of communicators, which provide a scope for communication. 

. 
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Figure 1: The communication link and its role in communication. The figure shows three address 
spaces; three startpoints in address space 1, labeled SP, are linked to endpoints labeled EP in address 
spaces 0 and 2. 

One could associate a communication method with a communicator. However, communicators 
also have their limitations. A communicator defines a symmetric communication structure and 
must be created by a collective operation. This symmetry may cause difficulties in the case 
of asymmetric communication methods, such as multicast. Additionally, program design is 
complicated in that the communicators used for different methods must be managed explicitly. 
Also, as communicators cannot be transferred between nodes, it is difficult for one node to 
inform another node of its communication preference. 

In light of these limitations, we choose to support multimethod communication with com- 
munication links and remote service requests rather than point-to-point message passing. In our 
system, communication is directed over a communication link that connects a communication 
startpoint to a communication endpoint. (We have adopted this terminology in preference to 
the term gkobak pointer used in prior publications [15, 161, because the latter led many readers 
to assume a distributed shared memory.) Before a startpoint can be used, it must be explicitly 
bound to an endpoint to form a communication link. If more than one startpoint is bound 
to an endpoint, incoming communications are merged, just as incoming messages to the same 
node are merged in a point-to-point message passing system. If a startpoint is bound to more 
than one endpoint, communication results in a multicast operation. Startpoints can be copied 
between processors, but endpoints cannot. When a startpoint is copied, new communication 
links are created, mirroring the links associated with the original startpoint. This ability to 
copy a startpoint means that startpoints can be used as global names for objects. These names 
can be used anywhere in a distributed system. 

A communication link supports a single communication operation: an asynchronous remote 
service request (RSR). An RSR is applied to a startpoint by providing a procedure name and a 
data buffer. For each endpoint linked to the startpoint, the RSR transfers the data buffer to the 
address space in which the endpoint is located and remotely invokes the specified procedure, 
providing the endpoint and the data buffer as arguments. A local address can be associated 
with an endpoint, in which case any startpoint associated with the endpoint can be thought of 
as a “global pointers” to that address. 

Each communication link defines a unique, asymmetric communication space with which a 
specific communication method can be associated. A process can create any number of links, 
allowing communications intended for different purposes to be distinguished (see Figure 1). 
Since the communication method is associated with the communication link, no additional 
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bookkeeping needs to be performed by the application. 
A key to the utility of the communication link abstraction is the portability of the startpoint. 

A process can create a link, associate a communication method with the startpoint, and then 
communicate that startpoint to other processes, providing those processes with a handle that 
they can use to perform RSRs to the remote location. In addition, the communication method 
associated with any startpoint can be altered, so a process receiving a startpoint can change 
the communication method to be used, on the basis of sender-side requirements. In general, 
then, the communication link and RSR abstractions overcome the limitations of two-sided 
communication primitives for mult imet hod communication. 

3 Implementing Mult imet hod Cornmunicat ion 

We now turn our attention to the techniques used to implement multimethod communica- 
tion. We describe these techniques in the context of Nexus [15, 161, a portable, multithreaded 
communication library designed for use by parallel language compilers and higher-level com- 
munication libraries. In the discussion that follows, we refer to an address space, or virtual 
processor, as a contezt. In the communication architecture that we present below, the range of 
possible communication methods available to a computation is defined by the contexts in which 
the startpoint and endpoint reside; the actual method used for a particular RSR is determined 
by the data structures associated with the startpoint and endpoint. 

3.1 Mult imet hod Communication Architecture 

Figure 2 provides an overview of the data structures used to support multiple communica- 
tion methods. A communication method is implemented by a communication module. Each 
communication module implements a standard interface that includes communication-oriented 
functions, an initialization function, and functions used to construct communication descriptors 
and communication objects. To enable the coexistence of many different communication mod- 
ules within an executable, Nexus accesses interface functions within a module via a function 
table, constructed when the module is loaded. To date, communication modules have been 
constructed for local (intracontext) communication, TCP sockets, Intel NX message passing, 
IBM MPL, AAL-5 (ATM Adaptation Layer 5 ) )  Myrinet, unreliable UDP, and shared memory; 
others are being developed. 

Several methods are provided for determining which communication modules can be used 
by a particular executable. When the Nexus library is built, a default set of modules is de- 
fined. Additional communication modules can be specified by entries in a resource database, 
by command line arguments, or by function calls from within the program, The function table 
interface is designed so that if a required module has not been compiled into the Nexus library, 
it can be loaded dynamically. 

A communication descriptor contains the information that a communication module needs 
in order to communicate with a specific context. For example, when using MPL to communicate 
between nodes on IBM SP multicomputers, a communication descriptor contains a node number 
and a globally unique session identifier, which is used to distinguish between different SP 
partitions. On the Intel Paragon, the descriptor also includes the name of the process with 
which we wish to communicate, since on the Paragon, a parallel computation can contain 
several processes executing on the same processor. Communication descriptors are grouped into 
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Figure 2: Nexus data structures used to support multimethod communication. The figure shows the 
startpoint, communication descriptor table, communication object, function table, and communication , 

module. The data structures are explained in the text. 

a communication descriptor table, which is a concise and easily communicated representation 
of information about communication methods. 

An active connection is represented by a communication object. A communication object 
contains the information found in a single communication descriptor, a pointer to the function 
table corresponding to that descriptor, and any additional state information needed to represent 
the connection. For example, a communication object for a TCP connection contains the file 
descriptor for the TCP socket. 

Finally, a startpoint contains context and address information for the link’s endpoint, a 
pointer to the communication descriptor table for the context being referenced, and a commu- 
nication object representing the communication method currently being used by the pointer. 
Communication objects are shared among startpoints that reference the same context and use 
the same communication method. 

When a startpoint is created in a context, the communication descriptor table representing 
the methods supported by that context is attached to the startpoint along with a communication 
object referencing the “local” communication method. When the startpoint is transferred 
to another context, this descriptor table is passed with it. Hence, any context receiving a 
startpoint also receives the information required to communicate to the referenced endpoint. 
Before a startpoint can be used, one of the methods specified in its descriptor table must be 
selected and that method used to construct a communication object. Subsequent operations 
on the startpoint then occur via the communication object. The techniques used to select 
a communication method are discussed below. Note that this technique allows us to change 
dynamically the communication method used by a specific startpoint, simply by constructing 
a new communication object and storing a reference to that object in the startpoint. 
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The mechanisms that we have described are very general and hence powerful, but make 
startpoints rather heavyweight entities. While this situation is acceptable in a wide-area con- 
text, where the cost of communicating a few tens of bytes of descriptor table is insignificant, it 
can be unacceptable in more tightly coupled systems. Fortunately, it is possible to recognize 
special cases in which a default descriptor table is used repeatedly, as is often the case with 
communication links between nodes within a parallel computer. In such situations, the size of 
a startpoint and the cost of manipulating it can be reduced significantly by not attaching a 
descriptor table. 

3.2 Selecting a Communication Method 

Upon receipt of a startpoint, a context must determine which of the methods contained in the 
attached descriptor table are to be used for subsequent communication using that startpoint. 
As explained in Section 2.1, we wish to support both automatic and manual method selection. 

Nexus currently uses a simple automatic selection rule: a received descriptor table is scanned 
in order and the first “applicable” communication method is used. A method is “applicable” 
if it is supported by both the local and remote contexts and meets additional method-specific 
criteria. For example, the MPL communication method can be used only if both contexts reside 
in the same SP partition. 

Figure 3 illustrates automatic method selection. Consider a network configuration in which 
three nodes are connected by an Ethernet. Nodes 1 and 2 are part of an IBM SP2 and hence are 
also connected by MPL. Node 0 has a communication link to node 2. Because the associated 
startpoint was received from node 2, its attached descriptor table contains entries for both 
Ethernet (E) and MPL (M). However, node 0 supports only Ethernet and so this method is 
used. The startpoint is then migrated to node 1. On arrival at node 1, we determine that MPL 
is applicable, since it is supported by both nodes and since both nodes are on the same SP 
partition. 

Because of the ordered scan of the descriptor table, placing the MPL descriptor before the 
Ethernet descriptor results in a “fastest first’’ selection policy. This policy is easily extended. 
For example, network QoS parameters be incorporated into the selection policy, by looking at 
available network bandwidth rather than raw bandwidth before indicating that a module is 
acceptable. The user can also influence the choice of method by reordering entries within the 
communication descriptor table or by adding or deleting descriptors. 

3.3 Detecting and Processing Multimethod Communication 

Startpoints represent the sending side of a communication link; at the endpoint, incoming RSRs 
must be detected and processed. Since different communication methods may require different 
detection mechanisms, we must consider how incoming communication can be identified across 
all the communication methods available to a context. 

A straightforward approach to checking for pending communication is to provide a single 
polling function that iterates over the elements of a context’s communication descriptor table, 
invoking a method-specific poll operation for each entry. To evaluate the performance of this 
approach, we conducted experiments with a ping-pong microbenchmark that bounces a vector 
of fixed size back and forth between two processors a large number of times. This process is 
repeated to obtain one-way communication times for a variety of message sizes. 
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Figure 3: Communication method selection in Nexus. See text for details. 

We measured performance of three implementations of the ping-pong microbenchmark: a 
pure MPL version, a Nexus version supporting a single communication method (MPL), and 
a Nexus version supporting two communication methods (MPL and TCP). In both Nexus 
versions, all communications were initiated with MPL; hence, any performance degradation in 
the MPL/TCP Nexus version is due to overhead associated with TCP polling. All experiments 
were run on the IBM SP2 at Argonne National Laboratory, which consists of Power 1 processors 
connected via an SP2 multistage switch. Both MPL and TCP operate over the switch and can 
achieve maximum bandwidths of about 36 and 8 MB/sec, respectively. 

Figure 4 shows our results. The lower two lines in the first graph show that for small 
messages, the message-driven execution model supported by Nexus introduces some overhead 
on the SP2, relative to native MPL; we have provided a detailed analysis of these overheads 
elsewhere 1161. In the other graph, these same two lines coincide, thus indicating that Nexus 
overheads are not significant for larger messages. 

The upper two lines in each graph reveal a disadvantage of the unified polling scheme. In 
general, the cost of a poll operation can vary significantly depending on the mechanism used. 
For example, on many parallel computers, the probe operation used to detect communication 
from another processor is cheap, while a TCP select is expensive. On the SP2, the mpc-status 
call used to detect an incoming MPL operation costs 15 microseconds, while a select costs over 
100 microseconds. A consequence of this cost differential is that an infrequently used, expensive 
method imposes significant overhead on a frequently used, inexpensive method. On the SP2, 
the cost for a zero-byte message as measured by the ping-pong microbenchmark increases from 
83 to 156 microseconds with TCP polling, even though no TCP communication is performed. 
In addition, TCP support degrades MPL communication performance even for large messages. 

. 
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Figure 4: One-way communication time as a function of message size, as measured with both a 

low-level MPL program and the ping-pong microbenchmark, using single-method and multimethod 
versions of Nexus. On the left, we show data for message sizes in the range 0-1000, and on the right 
a wider range of sizes. See the text for details. 

We hypothesize that this degradation is because repeated kernel calls due to select slow the 
transfer of data from the SP2 communication device to user space. 

To reduce the additional overhead incurred in detecting multimethod communication, we 
take advantage of the fact that the high latency inherent in the TCP interface means that 
TCP messages will be delivered less frequently than MPL messages. Hence, it is acceptable 
to check for TCP communications less frequently than MPL communications. To apply this 
optimization, we extend Nexus to support a parameter, skip-poll, that specifies the frequency 
with which TCP polls should be performed. For example, with a skip-poll value of 2, the 
TCP interface will be checked every other time the polling function is called, while the MPL 
interface will be checked every time. Note that the overall frequency at which the polling 
function will be called will depend on characteristics of both the application program and the 
Nexus implementation. However, the polling function will be called at least every time a Nexus 
operation is performed. 

To demonstrate the effectiveness of the skip-poll parameter, we use a second microbench- 
mark that runs two instances of the ping-pong program concurrently, one over MPL and the 
second over TCP (Figure 5 ) .  The two programs execute until the MPL ping-pong has per- 
formed a fixed number of roundtrips. Then the one-way communication time of each pair is 
computed. To simulate an environment in which we have two separate SP2s coupled by a high 
speed network, we place the endpoints for the TCP communication in separate partitions, a 
software abstraction provided on the SP2. Processors in the same partition can communicate 
by using either TCP or IBM’s proprietary Message Passing Library (MPL), while processors 
in different partitions can communicate via TCP only. 

The experiment was repeated for a range of skip-poll values, yielding the results shown in 
Figure 6. The performance of the MPL ping-pong is degraded significantly by the concurrently 
executing TCP ping-pong. As we might expect, MPL performance improves with increasing 
skip-poll, while TCP performance degrades. For this experiment, we can see that a skip-poll 
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Figure 5:  Configuration for the multiple ping-pong communication benchmark. Two ping-pong 
programs run concurrently, one within an IBM SP2 partition using MPL, and the other between two 
partitions using TCP. 

values of around 20 provides improvement in MPL performance, while not impacting TCP 
performance significantly for both small and large message sizes. 

The polling function can be refined further on systems that allow a separate thread of control 
to block awaiting communication. (IBM's AIX 4.1 operating system provides this capability 
for TCP communication but is not installed on the Argonne SP2.) On such systems, we can 
create a specialized polling function that executes in its own thread of control and checks only 
those communication methods for which blocking is supported. Preliminary experiments show 
that this approach allows TCP communication operations to be detected without significant 
impact on MPL performance. 

Another approach to the problem of processing incoming communications associated with 
multiple communication methods is to define a dedicated forwarding processor. This processor 
receives all incoming communication associated with a specific communication method and 
forwards these communications to their intended destination by using an alternative method. 
For example, in an SP2 environment, all TCP communications from external sources would 
be routed to a single SP node, which in turn would forward these communication to other 
nodes by using MPL. The use of a forwarding node means that other nodes need not check 
for communications with the forwarded communication method. We have implemented TCP 
forwarding in Nexus; performance results are presented in the next section. 

4 Case Study: A Coupled Climate Model 

The multimethod communication techniques described in this article were used in the I-WAY 
networking experiment to support a variety of applications, ranging from coupled simulations to 
collaborative environments and networked instruments [lo, 201. In this section, we consider one 
such application-a coupled simulation-and study its behavior in a controlled environment . 

similar to the I-WAY wide area network. 
In general, scientific simulations synchronize too frequently to permit distributed execution. 

One exception is multicomponent models constructed by coupling models of distinct subsys- 
tems [ Z l ,  221. In such models, communication and synchronization between submodels is often 
less frequent than internal communication and synchronization. Hence, it can be feasible to ex- 
ecute distinct components on different supercomputers. This distribution can have advantages. 
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Figure 6: One-way communication time as a function of skip4011 for a microbenchmark in which 
two ping-pong programs run concurrently over MPL and TCP, as described in the text. The graph 
on the left is for zero-length messages, and the graph on the right is for 10 kilobyte messages. 

In some cases, different models may execute more efficiently on one computer than another; for 
example, one component may execute more quickly on a vector supercomputer, while another 
is better suited to an parallel computer [21]. In other cases, distributed execution can provide 
access to larger aggregate memory and hence permit the solution of larger problems [22]. 

The model that we study here is the Millenia coupled climate model, designed to run at 
relatively low resolutions for multicentury simulations. This model uses MPI for communica- 
tion and combines a large atmosphere model (the Parallel Community Climate Model [13]) 
with an ocean model (from U. Wisconsin). The two models execute concurrently and perform 
considerable internal communication. Every two atmosphere steps, the models exchange infor- 
mation such as sea surface temperature and various fluxes. The models typically run for tens 
or hundreds of thousands of timesteps. 

To provide a controlled environment for our experiments, we run the two model components 
not on two different computers but instead on distinct partitions of the Argonne SP2. As noted 
above, the SP2 programming environment permits the use of the fast MPL communication 
library only within a partition; communication between partitions must be performed with TCP 
(Figure 7). Since TCP over the SP2 switch runs at about 8 MB/sec and incurs small-message 
latencies of around 2 milliseconds, this two-partition configuration has similar performance 
characteristics to two SP2 systems connected by a tuned OC3 or faster ATM network in a 
metropolitan area network. In our experiments, the atmosphere model runs on 16 processors 
and the ocean model on 8 processors. Communication is achieved by using the MPICH [18] 
implementation of MPI layered on top of Nexus. This layering adds an execution time overhead 
of about 6 percent when compared with MPICH running on top of MPL. 

We measured execution times for the coupled model both without multimethod communica- 
tion and with various multimethod communication techniques. In the absence of multimethod 
communication support, both interpartition and intrapartition communication must be per- 
formed with TCP. This requirement results in a total execution time an order of magnitude 
greater than the worst multimethod time, clearly demonstrating the advantages of multimethod 
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Figure 7: The Argonne/ Wisconsin coupled ocean/atmosphere model in the configuration used for 
our multimethod communication experiments, showing the two IBM SP partitions. 

Table 1: Time spent in communication between models and total execution time for the coupled 
model. Times are in seconds per timestep on 24 processors. 

i 7 

Experiment 
Selective TCP 
Forwarding 
skip poll 1 
skip poll 100 
skip poll 10000 
skip poll 12000 
skip poll 13000 

109.3 
109.1 
107.8 
105.4 
105.0 

communication. 
Table 1 shows the execution time per timestep when using various multimethod communi- 

cation techniques. Row 1 shows a best-case scenario (given for comparative purposes), in which 
TCP polling is enabled only in the section of code in which partitions communicate. Row 2 
shows the performance of multimethod communication using TCP forwaxding, while rows 3 
through 7 show the execution time for various skip-poll values. As we can see, the perfor- 
mance of the skip-poll  implementation increases from values of 0 to 12,000 and then degrades 
as the decreased TCP polling frequency increases the latency of intermodel communication. As 
can be seen from row 6 ,  the use of a skip-poll value of 12,000 results in performance that is 
within 0.1 percent of the best case result. 

Note that the performance of the polling implementation can exceed that of TCP forwarding. 
This result can be explained by the fact that nodes on the SP have good TCP connectivity and 
the use of a forwarder incurs additional overhead not found in the polling implementation. 
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5 Related Work 

Many researchers have proposed and investigated communication mechanisms for heterogeneous 
computing systems (for example, [l, 3, 233). However, this work has typically been concerned 
with hiding heterogeneity by providing a uniform user-level interface rather than with exploiting 
and exposing the heterogeneous nature of networks and applications. 

Some communication libraries permit different communication methods to coexist. For 
example, p4 and PVM on the Intel Paragon use the NX communication library for internal 
communication and TCP for external communication [5, 171; p4 supports NX and TCP within 
a single process, while PVM uses a forwarding process for TCP. In both systems, the choice of 
method is hard coded and cannot be extended or changed without substantial re-engineering. 

The x-kernel E241 and the Horus distributed systems toolkit [30] both support the concurrent 
use of different communication methods. Horus provides some support for varying the commu- 
nication method associated with an entire group. However, it does not provide for automatic 
method selection or for the migration of communication capabilities (with associated method 
information) between processes. In other respects, the x-kernel and Horus complement our work 
by defining a framework that supports the construction of new protocols by the composition 
of simpler protocol elements. These mechanisms could be used within Nexus to simplify the 
development of new communication modules. Early results with Horus suggest that these com- 
positional formulations simplify implement ation but can introduce overheads similar to those 
encountered when layering MPICH on Nexus: additional message header information, function 
calls, and messages. Tschudin [28] and the Fox project [2] have explored similar concepts and 
report similar results. 

Finally, we note that concepts similar to the Nexus communication link are used in other 
systems. For example, Split-C [9] uses a global pointer construct to support remote put and get 
operations within homogeneous systems. Nexus mechanisms also share similarities with Active 
Messages 1291 and Fast Messages [25]. However the association of communication method 
choices with startpoints is unique to Nexus. 

6 Conclusions 

We have described techniques for representing and implementing multimethod communication 
in heterogeneous environments. We use a startpoint construct to maintain information about 
the methods that can be used to perform communications directed to a particular remote 
location. Simple protocols allow this information to be propagated from one node to another 
and provide a framework that supports both automatic and manual selection from among 
available communication methods. These techniques have been incorporated in the Nexus 
communication library and used to support a wide variety of metacomputing applications in 
the I- WAY wide-area computing experiment. 

We have used the Nexus runtime system to illustrate the implementation of the various 
techniques described in this article. Performance studies using both microbenchmarks and a 
coupled climate model application provide insights into the costs associated with multimethod 
communication mechanisms. In particular, we show that careful management of polling fre- 
quencies can improve multimet hod comrnunicat ion performance significantly and can provide 
performance superior to techniques based on a forwarding processor. 

The results reported in this article suggest several directions for future work. Polling func- 
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tions can be further refined, for example to allow for adaptive adjustment of skip-poll values 
and the use of blocking operations. The basic framework can be extended to support additional 
communication methods. Streaming protocols, security-enhanced protocols, and multicast are 
currently being investigated; while preliminary design work suggests that they fit the frame- 
work well, practical experience may suggest refinements. We also plan to investigate more 
sophisticated heuristics for automatic method selection. Further work is also required on the 
representation, discovery, and use of configuration data, particularly in situations where it is 
subject to change. 
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