Radiant transmittance of cerium doped quartz from 300 to 1270K

PDF Version Also Available for Download.

Description

The transmittance of curved slabs of cerium doped quartz is reported as a function of wavelength and temperature. The spectral range of measurement is 0.25 to 0.725 {micro}m and temperature varies from 300K to 1270K. The short wavelength cutoff for transmission shifts to longer wavelengths monotonically with temperature at a rate of {approximately}3nm/l 00K. The tmnstnittance data for wavelengths less than 0.36 {micro}m are fit to a classical pole fit model using 8 modes (Oscillators) and the temperature dependence of the modes is given. For wavelengths beyond 0.36 {micro}m the data are fit to an ``Urbach rule.`` The bandgap parameter ... continued below

Physical Description

11 p.

Creation Information

Havstad, M.A. & Dingus, C. March 14, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The transmittance of curved slabs of cerium doped quartz is reported as a function of wavelength and temperature. The spectral range of measurement is 0.25 to 0.725 {micro}m and temperature varies from 300K to 1270K. The short wavelength cutoff for transmission shifts to longer wavelengths monotonically with temperature at a rate of {approximately}3nm/l 00K. The tmnstnittance data for wavelengths less than 0.36 {micro}m are fit to a classical pole fit model using 8 modes (Oscillators) and the temperature dependence of the modes is given. For wavelengths beyond 0.36 {micro}m the data are fit to an ``Urbach rule.`` The bandgap parameter in the Urbach rule decreases linearly with temperature to 1270K and varies from 3.394eV at 300K to 3,183 eV at 1270K, while the steepness parameter also decreases approximately linearly from 8.51 eV{sup -1} to 5.80 eV{sup -1}. The fits are used to compute the spectral and temperature dependent absorption coefficient.

Physical Description

11 p.

Notes

OSTI as DE98050957

Source

  • AICHE/ASME national heat transfer conference: current developments in numerical simulation of heat and mass transfer, Baltimore, MD (United States), 10-12 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98050957
  • Report No.: UCRL-JC--126283
  • Report No.: CONF-970824--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 358867
  • Archival Resource Key: ark:/67531/metadc680867

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 14, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 8, 2017, 12:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 20

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Havstad, M.A. & Dingus, C. Radiant transmittance of cerium doped quartz from 300 to 1270K, article, March 14, 1997; California. (digital.library.unt.edu/ark:/67531/metadc680867/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.