Impact of high speed civil transports on stratospheric ozone: A 2-D model investigation

PDF Version Also Available for Download.

Description

This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from ... continued below

Physical Description

9 p.

Creation Information

Kinnison, D.E. & Connell, P.S. December 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored.

Physical Description

9 p.

Notes

OSTI as DE97052669

Source

  • International colloquium: Impact of aircraft emissions upon the atmosphere, Paris (France), 15-18 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97052669
  • Report No.: UCRL-JC--126045
  • Report No.: CONF-9610234--1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 492091
  • Archival Resource Key: ark:/67531/metadc680701

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Feb. 16, 2016, 7:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kinnison, D.E. & Connell, P.S. Impact of high speed civil transports on stratospheric ozone: A 2-D model investigation, article, December 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc680701/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.