Modeling changes in mineral assemblages and sorptive capacity within the altered zone: analytical data for flow-through experiment

PDF Version Also Available for Download.

Description

Mineral changes that may occur within the altered zone (AZ) will develop in response to complex interactions among condensate, pore waters, fracture mineralogy, and the mineralogy of the in situ rocks. At the Yucca Mountain site, the mineralogy of the in situ rock varies from one lithologic unit to another, reflecting different initial bulk rock chemistries and different degrees of devitrification and welding. To account for these variations when describing the possible changes the potential repository block will experience during heating and fluid movement, a credible database of experimental results describing the chemical and mineralogical consequences of rock-water interaction must ... continued below

Physical Description

54 p.; Other: FDE: PDF; PL:

Creation Information

DeLoach, L., LLNL October 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Mineral changes that may occur within the altered zone (AZ) will develop in response to complex interactions among condensate, pore waters, fracture mineralogy, and the mineralogy of the in situ rocks. At the Yucca Mountain site, the mineralogy of the in situ rock varies from one lithologic unit to another, reflecting different initial bulk rock chemistries and different degrees of devitrification and welding. To account for these variations when describing the possible changes the potential repository block will experience during heating and fluid movement, a credible database of experimental results describing the chemical and mineralogical consequences of rock-water interaction must be available; against this, modeling capabilities are compared. Once the capability is established to accurately simulate the time-dependent evolution of rock-water systems at elevated temperatures, confidence can be placed in models of the mineral changes expected within the AZ. This report describes experiments and modeling that consider the effects of different starting materials on mineral evolution and on the rates of mineral formation. Bounds are placed on the kinetics of the controlling dissolution-rate constants, which are the fundamental parameters that influence secondary mineral development. The sensitivity of the results to different secondary minerals is considered in the simulations. The most significant parameters affecting the results are shown to be the effective surface areas of the phases involved, the rate constants for the phases, and, for the case of vitric material, the model used for glass dissolution.

Physical Description

54 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98057896

Source

  • Other Information: PBD: 1 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98057896
  • Report No.: UCRL-ID--128497
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/289598 | External Link
  • Office of Scientific & Technical Information Report Number: 289598
  • Archival Resource Key: ark:/67531/metadc680682

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 6:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

DeLoach, L., LLNL. Modeling changes in mineral assemblages and sorptive capacity within the altered zone: analytical data for flow-through experiment, report, October 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc680682/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.