Final Report for
Closeout of Interagency Agreement No. DE-AI05-90ER60995

Warren M. Washington and Gerald A. Meehl
National Center for Atmospheric Research (NCAR)*
Boulder, Colorado 80307-3000

From 1 October 1990 to 30 September 1991, consistent with our objectives to extract as much as we could from existing models on the role of the oceans in the greenhouse effect and to improve various aspects of the coupled system, we made significant progress in three areas. (1) In a series of manuscripts, we documented how the El Niño-Southern Oscillation operates in the model and how it is enhanced with increased carbon dioxide. Although not all aspects are well simulated, most major features are as shown in comparison with observations. (2) In studies with collaborators Branstator, Karoly, and Karl, we explored the possible carbon dioxide “fingerprint” in zonal mean temperatures, the effects of changes in extratropical teleconnections, and the regional effects of low-frequency variability and climate change. The latter is of special interest to policymakers since a separation is necessary between natural and anthropogenic change and variability. (3) We experimented with an advanced version of the NCAR community climate model (CCM0) that also includes the Ramanathan and Collins cirrus albedo feedback mechanism. This model was run with a mixed layer and was tested with the 1° 20-level Semtner and Chervin ocean model. The latter includes the Arctic Ocean and dynamic sea ice, both showing realistic results. The model was configured in a multitasking mode and will be coupled to the CCM2 for a series of tests when it becomes available in the late fall of 1991.

From 1 October 1991-30 September 1992, we completed the coupling of the advanced models. The dynamical ocean model was a 1°x1° version of the Semtner-Chervin 1/2°x1/2° ocean model with 20 vertical levels. The 1°x1° version of the Semtner-Chervin model used in this research explicitly resolved some aspects of the mesoscale eddies as did the parent model. Research has shown that observed ocean features sufficient for climate experiments can be simulated at this resolution.

The sea-ice component made use of the Flato-Hibler dynamical sea-ice model with a new three-layer thermodynamical sea-ice component from Semtner. The coupling scheme was synchronous in that the atmospheric model provided wind stress, precipitation minus evaporation, and the sum of the surface energy balance to the ocean. The ocean provided surface temperature and sea-ice distribution to the atmosphere. The coupled experiment was started from separate runs of the new models, each “forced” with the appropriate observed climate conditions, e.g., the observed sea-surface temperature for the spinup of the atmospheric model. This allowed separate diagnosis of any model problems before coupling.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
We tested the effects of cirrus albedo changes as a function of deep tropical convection, as suggested by V. Ramanathan in the atmospheric model that now includes a mass flux convective scheme. Results show that the increased sensitivity of the model with the mass flux convective scheme was moderated by increased tropical cirrus albedos.

From 1 October 1992–30 September 1993, the new coupled model system for greenhouse gas simulations on climate change was tested on multidecadal runs. We were capable of keeping the climate reasonably close to observed without the normal flux correction methods. The transient experiment was conducted by the same method as other modeling groups that took part in the Intergovernmental Panel on Climate Change (IPCC) 1995. It should be noted that the ocean model components made use of the documented Semtner-Chervin model at 1° and the sea ice used the Flato-Hibler dynamical method and the improved thermodynamics approach of Semtner. Coupling to the released NCAR CCM2 was ongoing. We studied changes in interannual variability (as shown by empirical orthogonal function), changes in interannual variability in comparison to microwave sounding unit data, and compared the mixed-layer and coupled-model changes in variability.

Several publications have been completed covering the following subjects: greenhouse warming sensitivity to cirrus albedo effect, documentation and comparison of ocean models of 1° and 0.5° resolutions, monsoon variability changes with climate change, extratropical regional climate change, etc.

Publications


