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Introduction 

The THREEDANT code is the latest addition to our system of codes, DANTSYS', which perform neutral 
particle transport computations on a given system of interest. The system of codes is distinguished by geo- 
metrical or symmetry considerations. For example, ONEDANT and TWODANT' are designed for one and 
two dimensional geometries respectively. We have TWOHEX2 for hexagonal geometries, TWODANT/GQ 
for arbitrary quadrilaterals in X Y  and RZ geometry, and THREEDANT for three-dimensional geometries. 
The design of this system of codes is such that they share the same input and edit module and hence the 
input and output is uniform for all the codes (with the obvious additions needed to specify each type of 
geometry). The codes in this system are also designed to be general purpose solving both eigenvalue and 
source driven problems. 

In this paper we concentrate on the THREEDANT module since there are special considerations that need 
to be taken into account when designing such a module. The main issues that need to be addressed in a 
three-dimensional transport solver are those of the computational time needed to solve a problem and the 
amount of storage needed to accomplish that solution. Of course both these issues are directly related to 
the number of spatial mesh cells required to obtain a solution to a specified accuracy, but is also related to 
the spatial discretization method chosen and the requirements of the iteration acceleration scheme 
employed as will be noted below. Another related consideration is the robustness of the resulting algo- 
rithms as implemented; because insistence on complete robustness has a significant impact upon the com- 
putation time. We address each of these issues in the following through which we give reasons for the 
choices we have made in our approach to this code. And this is useful in outlining how the code is evolving 
to better address the shortcomings that presently exist. 
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E General Solution Approach In DANTSYS 

DANTSYS employs the multigroup, discrete ordinates method to discretize the momentum variables in the 
transport equation. This leads to a coupled set of linear partial differential equations in the space variables 
where the coupling is through the collision source term and the fission term. To illustrate the form of the 
discretized equation and the source iteration process, we write the system of equations as: 

L l  
t .  1 / 1  

l = l q = - 1  

n - 1  L 1 _ _  G 

G L l  

g' = g + I1 = I q  = -1 

g = 1 ,  ..., G; m = l ,  ..., M 

Eq. 1 

where: 

I m = l  

In Eqn 1, g is the energy group index, m is the angle index, Yl,q(Qm) are the spherical harmonics, and Q, 
is the discrete direction of particle travel. Thus it is seen that the scattering function is expanded in Leg- 
endre polynomials which requires the flux be expanded in spherical harmonics. The terms on the right 
hand side of Eqn 1 are the within group scattering source, the down scatter, the source from fissions and the 
upscatter source. Since the order of computation is from higher energy to lower (g=l corresponds to the 
highest energy group), the down scatter term is known. The superscript k refers to the outer iteration index; 
thus k+1/2 is the current level of iteration and k indicates the previous level. The within group scatter is 
indicated at level k+1/2 which means that an inner iteration process for each group must be employed to do 
this. Thus, the source iteration process for solving the transport equation consists of inverting the left hand 
side of Eqn 1 onto the source (right hand side) which has been evaluated from the previous iteration. We 



write the source iteration in this fashion because we employ iteration acceleration methods to raise the iter- 
ation level to k+l. In the simplest case of no iteration, we simply set +: + 1 = +,k + 1’2. When the DSA3r4 
acceleration method is used, then +! + is the solution of a specially formulated diffusion-like equation. The 
use of this DSA technique greatly speeds the convergence of the source iteration process especially for 
eigenvalue calculations. 

We recapitulate the solution process for the discrete ordinates transport equation as follows: 
1. Evaluate the source from a flux guess or the previous iterate. 
2. Invert the transport operator (the right hand side of Eqn 1) onto this source. 

3. Evaluate the spherical harmonic moments of the flux from the angular flux. 
4. Evaluate the scalar flux from the angular flux or for DSA compute the elements of the DSA equation and 
solve it for the scalar flux in each group. 
5. Check for convergence depending upon the convergence criteria specified. 
6. If the solution has not met the requirement, return to step 1. 

Thus from a computational point of view, the main work is in inverting the transport operator and in solv- 
ing the diffusion equation if DSA is invoked. The effort in obtaining the spherical harmonic expansion of 
the flux and computing the various sources is usually less than 10% of the total computation time on PVPs. 
In the section where we discuss solution strategy, we give an indication of how we measure the time to 
invert the transport and diffusion operators and its impact upon the default solution strategy. It turns out 
that this is an important effect on the performance of the code and on the robustness of the solution 
method. 

Combinatorial Geometry Capability In DANTSYS 

When presented with a zapability to do two- and three-dimensional calculations, the user has an automatic 
desire to be able t~ model the ‘real’ geometry that is to be calculated rather than to make an idealized 
model which adds some unknown degree of uncertainty to the solution obtained. This natural desire has 
been addressed to some extent in the WODANT and THREEDANT modules in the sense that the user 
has the option to describe his geometry in terms of bodies much as is done in Monte Carlo codes. A calcu- 
lational mesh is then overlaid on the geometry and the volume fractions of the intersection of the bodies 
with each mesh cell is computed. This volume fraction method is formulated so as to preserve the mass in 
the original body described geometry. The code we are using to set up the body described geometry and to 
compute the volume fractions on a prescribed XY or XYZ mesh is Frac-in-the box5. This geometry can be 
setup by hand instructions or through the use of our graphical users interface, JUSTINE. JUSTINE allows 
us to set up problems with a common geometry for THREEDANT and our Monte Carlo code, MCNp6. 
This GUI also allows us to couple Monte Carlo calculations and deterministic calculations through a sys- 
tem we call AVATAR. The linking is done by doing an adjoint calculation on the problem geometry with 
THREEDANT and then generating importances as a function of space, angle and energy group for the 
weight window mechanism in MCNP. This has allowed a significant speedup of some MCNP calculations. 

In using the volume fraction method for the deterministic calculations of geometries described by bodies in 
3D space, there is a source of error due to a ‘fuzzing’ of the boundaries of the various regions. This puts an 
added requirement on the spatial meshing of the problem in that these boundary cells should be less than 
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one mean free path around the boundaries for acceptable accuracy. We have demonstrated that if this is 
done, then accurate pointwise solutions result from this technique. 

Diamond 
Platform (1 processor) Diamond (STZ) AWDD 
CrayrvMp 0.25 0.5 0.5 
CrayiT3D 2.9 5.0 5.0 
IBM/RS6000/590 1.3 2.5 2.5 
Sun/SparclO 12.5 25.0 25.0 

Issues In Computational Efficiency 

CLNodal LLNodal 
1.25 2.2 

As pointed out above, computational efficiency is affected by many ingredients. The main considerations 
we address here and which are addressed in THREEDANT involve: (1) the CPU time per phase space cell 
to invert the transport operator, (2) the amount of time needed to solve the DSA equations, (3) the spatial 
differencing scheme, and (4) vectorization, parallelization and super scalar considerations. Efficiency also 
includes the memory required to implement the methods used and is affected by the type of calculation to 
be done, eigenvalue or source driven. Note that item (4) above is an ingredient in all issues of CPU time to 
do a computation and in the amount of memory required because of the way the algorithms are coded to 
take advantage of vectorization, super scalar and cash management and especia:: parallelization. The par- 
allelization issues are treated in a separate companion paper so here we consider ody the first three items 
in turn and indicate how they are handled in the code 

CPU Time to Invert Transport Operator. 

This time is governed by the computing platform type, of course. But on each platform certain optimiza- 
tions can be done to reduce the amount of time spent in inverting the transport operator. Another consider- 
ation is the type of spatial differencing scheme used to solve the transport equation. The more elaborate the 
differencing method the more operations that need be performed and hence the more costly it is to use. We 
assess the time to invert the transport operator by quoting the average CPU time per phase space cell; i.e., 
the time per energy group per angle per spatial mesh cell. The spatial differencing schemes that are used in 
THREEDANT are the diamond differencing method with set-to-zero fixup @D/STZ), the adaptive 
weighted diamond method (AWDD), and the nodal method both constant-linear and linear-linear'. Vector- 
ization and super scalar transport sweepers use the same method for all differencing schemes. That is, we 
invert the transport operator a Z-plane at a time using diagonal line sweeps in the XY plane, following the 
direction of travel of the particles resulting in a variable vector length equal to the length of the diagonal in 
the X Y  plane. In the current X Y Z  solver, we make this somewhat more efficient by including all the angles 
in an octant in the sweep so that a gather-scatter operation is done. This is still vectorizable and is quite 
efficient on the Cray and the IBM. In Table 1, we present an average of the cell time for a variety of com- 
puting platforms and the spatial differencing schemes in 'ITREEDANT gathered from representative prob- 
lems. 
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This table shows that the transport sweeper performs quite well on these platforms and that, as mentioned 
above, the spatial differencing scheme does influence greatly the amount of time needed to invert the trans- 
port operator. 

Time Needed to Solve the DSA Equations. 

If the source iteration process were rapidly convergent, then the bulk of the computation time would just be 
that required to invert the transport operator. However, the source iteration process is frequently very 
slowly convergent so some means of iteration convergence acceleration must be used to obtain optimal 
efficiency in the transport calculations. This paper assumes that the reader is familiar with the concept of 
diffusion synthetic acceleration of the source iterations. Suffice it to say here that in DANTSYS, the DSA 
method involves the solution of a diffusion equation for each of the groups in the inner iterations and the 
solution of the multigroup diffusion equation for the outer iterations. To define inner and outer iterations, 
we refer back to Eqn 1. The first line of Eqn. 1 represents the inner iteration which is the source iteration 
process that accounts for the coupling of the angular flux through the within-group scattering source. In 
this iteration process, the other scattering terms and the fissions are assumed known from the previous iter- 
ation or the previous groups and are thus held fixed. The outer iteration process accounts for the coupling 
of the group fluxes through the fissions and upscattering processes. The DSA procedure can be used (and is 
used in DANTSYS) to accelerate the convergence of each of these processes. In the DSA process the main 
assumption is that we can replace transport iterations by diffusion (or some other similar low order opera- 
tor) iterations and achieve a more computationally efficient solution. This being said, we must somehow 
measure the efficiency of the acceleration process against the CPU time required to use it to ascertain what 
the overall benefit will be. 

Now the three-dimensional diffusion operator is by no means a trivial operator to invert; the inversion pro- 
cess is itself an iterative procedure. In THREEDANT we have four methods to invert the diffusion opera- 
tor: (1) multigrid with line relaxationg, (2) conjugant gradient with 3-line sweep preconditioner, (3) 
conjugate gradient with l-line sweep preconditioner, and (4) successive line relaxation. In general, multi- 
grid is the most efficient and thus is the default. As a rule of thumb, the time to invert the diffusion operator 
is about the same time as that required to invert the transport operator using S4 quadrature. Thus in order 
for the DSA procedure to be efficient, it must be effective enough to reduce the number of iterations by at 
least a factor of three. In order to demonstrate some of the effectiveness of the DSA process and to assess 
the impact of the inversion of the diffusion operator we present three problems which have been described 
in detail elsewhere". 'Itvo of the problems are eigenvalue problems and the third is a shielding problem. 
The first eigenvalue problem is a two group LWR model with a spatial mesh of 25x25~25 run in S8; and 
the second is a four group fast reactor assembly with a 32x32~20 spatial mesh and S8 quadrature. The 
shielding problem is the iron-water shield of ref 8 expanded to three dimensions with a spatial mesh of 
5Ox50x50 and using S8 quadrature. In Table 2 we present some timing and iteration results on the Cray/ 
YMP. These same runs on the IBM/RS600/590 took about 5 times longer in CPU time 
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TABLE 2. Timing and Iteration Data for Three Problems from THREEDANT/YMP. 

Problem 

LWR 

FBRL 

- 
3DFEH20 

Total 
CPU 

Accelerator Keff time@) # inners 

none 0.96239 228.3 5 80 

D S m G  0.96236 10.4 15 

DSNCG3L 0.96236 11.2 17 

DSA/CGIL 0.96236 17.2 16 

DSABR 0.96236 29.2 15 

none 

DSA/MG 
DSNCG3L 

DSA/CGlL 

DSABR 

none 

DSA/MG 
DSNCG3L 
DS AICGlL 
DSABR 

0.96973 905.7 1960 

0.96999 48.3 53 

0.96999 46.7 54 

0.96999 70.3 52 

0.96999 69.3 53 
716.5 233 
152.0 58 

155.7 58 
197.3 58 
301.8 52 

228.3 

5.8 
5.5 
5.7 

88 905.7 

10 24.8 
10 25.3 

10 24 A 

10 24.6 
1 716.5 
1 123.2 

~1 123.3 
1 1  123.3 
11 160.2 

5 .O 774 

11.4 533 
23.0 3390 

21.7 1982 
19.6 2955 

44.1 I 1765 

28.0 1062 
69.6 687 
138.7 63% 

a. A work unit is a line relaxation through the entire 3D mesh. 

In the above MG refers to multigrid, CG refers to conjugate gradient with either 3 line or 1 line precondi- 
tioning, and SR refers to successive line relaxation. It is seen from these examples that the acceleration is 
certainly an efficient way to go to reduce the number of iterations by nearly a factor of 60 for the eigen- 
value problems and a factor of 4 in the source driven shielding problem. This translates into a savings of 
about a factor of 20 in CPU time in the eigenvalues and a factor of nearly 4 for the shield. We also see that 
from the work unit point of view, the MG solver is the most efficient giving a slight edge in computational 
time for the difYusion compared to CG and a substantial edge compared to SR. 

Solution Strategy 

Mostly in the name of computational efficiency, it is expedient to devise a solution strategy to solve three- 
dimensional transport problems. The strategy is different for source driven calculations from that used in 
eigenvalue calculations. Both involve the assumption that the iteration accelerator is effective in reducing 
the error in the solution over that of the unaccelerated case. We outline each of these strategies in the fol- 
lowing: 

Source Driven Problems 

In source driven problems without fissions, the strategy is to converge the inner iterations for each group 
according to the input convergence criterion. This criterion is such that the change in the scalar flux in each 
spatial mesh cell must be less than the input error, eg. less than 0.1 %. If there is no upscatter, then the prob- 
lem is solved. If there is upscatter, then outer iterations must be done and so the inner iteration procedure is 
repeated with the updated scattering source. When this source has been converged to the convergence crite- 
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rion, the problem is then complete. If there are fissions in the problem, then the strategy switches to that 
used for eigenvalue problems. 

Eigemtalrce Problems 

In this case it is of little use to converge the inner iterations until the source has been converged. Thus when 
the DSA is effective, the strategy is to do only one inner iteration per outer for each group. The source is 
then iterated using the multigroup DSA equation with the transport information from the one inner. With 
the new source, then another inner is done for each group and the source is then recomputed using the mul- 
tigroup DSA. This process continues until the source is converged with the supplied transport information. 
The inners are then converged for each group. It is very rare that another source iteration will need be done 
as the new source using the converged inner information is usually within the convergence criterion of the 
old source. This strategy greatly reduces the number of times that the transport operator need be inverted 
and hence reduces the CPU time for solution. It is crucial though that the inner acceleration process be 
effective, or else this procedure will not be efficient. The code will detect these situations for the most part 
and turn off the DSA for the affected groups. In these cases the multigroup DSA will be used with some of 
the groups not participating and the overall strategy is still effective. If not, we wind up in the worst case 
with solving the problem with no acceleration; but for a properly posed problem, this is very rare. 

QuaZi.6~ of Soiution Aids 

With the complications of the iteration solution process outlined above and the use of spatial differencing 
schemes that require some sort of fixup, it is prudent to provide an indication of the quality of the solution 
obtained and to indicate iteration convergence problems. One of the most important aids is a balance table. 
This is data derived from the solution which gives the quantities in the angle-integrated balance equation 
derived from the conservative form of the discretized transport equation. Thus terms appear such as the 
absorption rate, the self-scattering rate, the in-scattering rate, the out-scattering rate, the source rate, the fis- 
sion rate, and the net leakage rate for each group. Also computed is the error in the balance between the 
sources and losses in each group and the sum of the groups. Since this is a spatially integrated balance it 
should be less than the convergence criterion specified. This table is valuable because it expresses the 
physics of the problem being solved; and if there is something amiss, this table will show it. 

Another aid is the iteration monitor which records the history of the error in the solution process and the 
number of iterations required for solution. The code also monitors the convergence rate and compares it 
with the expected rate of convergence. If the computed rate is far below the expected rate, the code prints 
out this information. The slower than expected rate of convergence is usually due to nonlinearities in the 
spatial discretization which come from the fixups. This in turn is due to the mesh being too large. Hence 
improvements in the iteration convergence performance can be seen if the mesh is made finer in most 
cases. Of course the user may know from this information which groups are giving problems, but there is 
nothing to say which spatial region. A way to provide this information is to provide the number of fixups 
used in each coarse mesh spatial region of the problem as is done in TWODANT. This will be provided in 
some form in the THREEDANT code in the future. 
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Other Capabilities In DANTSYS 

We have included other useful capabilities in the DANTSYS code to solve particular problems. Below is a 
partial list but indicates some of the directions we have taken. 

Boundaqy Conditions 

Besides vacuum boundary conditions, we have also included reflective boundary conditions on all faces as 
needed, albedo boundaries, periodic boundaries and white boundaries. This allows the modelling of many 
types of cell problems and other related phenomena. 

Group Dependent Sn 

The Sn order can be input as group dependent. Thus some groups which require it can use a high order 
angular quadrature while others use a lower order as needed. This is for the sake of efficiency in that the 
computing time is roughly proportional to the number of angles used (depending on the amount of vector- 
ization). This option can even be used to specify some groups be solved by diffusion theory only. 

First Collision Source 

In some problems of interest, the source is in a spatially very localized region. If the scamring is also rela- 
tively weak, serious ray effects will develop in the solution. Ray effects are the unphysical spatial oscilla- 
tions in the solution due to the finite number of angles being used. One way to alleviate this, is to use a first 
collision source method. In DANTSYS we use a stochastic ray tracing option that does an analytic ray 
trace from the source region through all other regions of the problem. From this is consnucted a first colli- 
sion source which is spread throughout the problem region. Another transport problem is then solved using 
discrete ordinates and this first collision source. The solution to the original problem is then the sum of the 
ray tracing solution and the Sn solution. We also have a semi-analytic point source option which is similar 
to the above except that an analytic solution from the point source is used. This technique greatly improves 
the accuracy of the solution to such problems. 

Conclusions 

DANTSYS is a code still actively under development but is also a mature code that has capabilities to 
solve many multi-dimensional transport problems in computationally efficient manner. The flexible geom- 
etry options are particularly attractive as well as the attention paid to solving eigemalue problems. It is up 
and running on a variety of computing platforms and takes advantage of the vector, super scalar or parallel 
opportunities that are possible on each one. Not too much has been mentioned on memory management in 
this paper because not a whole lot of effort has gone into a modem memory management capability for the 
code. This is the weakest part of the code and we are addressing it now by converting the code to a 
FORTRAN90 structure. Also we intend to implement other more advanced spatial differencing schemes 
such as exponential discontinuous which, from research being done at Los Alamos, looks promising for 
deep penetration problems. 
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