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ABSTRACT 
A novel feed forward neural network is used to classify hyperspectral data from the AVIRIS sensor. The network 
applies an alternating direction singular value decomposition technique to achieve rapid training times (few seconds 
per class). Very few samples (10-12) are required for training. 100% accurate classification is obtained using test 
data sets. The methodology combines this rapid training neural network together with data reduction and maximal 
feature separation techniques such as principal component analysis and simultaneous diagonalization OF covariance 
matrices, for rapid and accurate classification of large hyperspectral images. The results are compared1 to those of 
standard statistical classifiers. 

Keywords: Neural Networks, Hyperspectral Image Classification, Feature/Class Separation'. 

1. INTRODUCTION 
An important issue associated with classifying hyperspectral images is the large size of data produced by current 
hyperspectral imaging systems. While sensors like LANDSAT'S TM produce data cubes with only 7 bands per 
pixel, more recent sensors record the spectra of individual pixels with increasing spectral resolution. Sensors like 
AVIRIS, HYDICE and the TRW Hyperspectral Imager (HSI) measure pixel spectra in 224, 210 and 348 bands 
respectively. Ultraspectral sensors based on Fourier transform spectrometers, perform measurements at even higher 
resolution. Using such high resolution data for image classification increases the dimensionality of the problem, 
and hence the complexity and computation time, significantly. 

The advantages of neural network (NN) based approaches for classifying hyperspectral images have been 
recognized for a while.14 NNs are considered to be powerful classification tools because of their nonlinear 
properties and the fact that they make no assumptions about the distribution of the data. This feature: is usefbl in 
cases where no simple phenomenological model exists to accurately describe the underlying physical process that 
determines the data distribution. Yet the we  of NN for hyperspectral image classification has been limited primarily 
due to the inordinately long time required to train NN. During training, feed forward networks use a gradient 
descent method for least squares error back propagation.' Recently, radically- different approaclhes to error 
minimization have been considered that employ a Householder transform combined with QR factorization or other 
iterative schemes.8-ll The-NN used in this work is a feed forward type of network that builds on the least squares 
paradigm. However, it introduces solutions involving a sequence of alternating directions singular value 
decompositions (ADSVD) for error minimization, which drastically reduces the error convergence time.'* As a 
result, rapid training of the NN on large hyperspectral data sets is now possible. 
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In addition to the rapid convergence property of the ADSVD NN, training time is significantly decreases by using 
data reduction schemes. Techniques like principal component analysis and simultaneous diagoulization of 
covariance matrices decrease the training time by reducing the problem dimension (by factor of 20 to 50). They also 
improve classification accuracy by-enhancing the separation between classes. A substantial reductionin the training 
time of feed forward networks is also attained by utilizing the concept of sub-networks. The idea here, is to train a 
single network to identify one particular class only instead of using a one network to identify all cfasses. Taken 
together, the data reduction and sub-network schemes not only reduces the training time drastically but ;also improve 
the classification accuracy." This combined methodology of the ADSVD NN together with data reductiodfeature 
separation and using the sub-network concept yielded excellent results. For a limited test set selected from the 
Moffett Field image acquired by the AVlRIS sensor (224 bands), we achieved extremely rapid training times (few 
seconds per class) and 100% classification accuracy, using no more than a dozen pixeldclass for training. All 
computations were performed on. a PC platform (200 MHz Pentium Pro with 64 Mbytes RAM). 

The next section discusses the transformation techniques employed in this work. Following that, we present the 
ADSVD NN classification results of the Moffett field data cube acquired using the AVIRIS sensor. Oilr results are 
then compared with those of conventional classifiers available in remote sensing software tools like ENVI. 

2. ANALYSIS 

Principal component analysis (PCA) is a linear coordinate transformation technique to represent a {data set in a 
reference frame where the variables (spectral bands in our case) are no longer correlated."-I6 The process of 
determining the new coordinate axes involves diagonalizing the covariance matrix of the data. Shce the off 
diagonal elements of this matrix measure the correlations between bands, we compute a Coordinate &ansformation 
in which these terms are zero; i.e. a transformation that diagonalizes the covariance matrix. From linear algebra, 
there exists an orthonormal transformation capable of diagonalizing the covariance matrix as it is symm.emc.F18 

The new axes (or principal components) are organized so as to indicate the directions of decreasing variance in the 
data. Hence by retaining only the first few principal axes (corresponding to directions of maximum variance) to 
represent the data and discarding the rest, we obtain not only maximal feature separation but also a substantial 
reduction in the dimensionality of the data set. Physically, the reduced dimensionality means that in ord.er to identify 
K distinct classes of objects with spectra in N bands (where N >> K ) ,  we require at the most K distinct coordinate 
axes, and often fewer than K. PCA computes these axes. 

With data classification as the fd goal, the covariance matrix is computed using all the pixels from the selected 
regions of interest (ROIs) for each class. Note that each pixel represents an N dimensional vector x (N = # bands = 
224 for the AVIRIS sensor). Let K be the number of classes, Mt be the number of pixels in class k and IK be the total 
number of pixels where M = zk, Mk . The mean vector of this set, m is denoted by 

K 

where E(x) is the expectation of x. The covariance ma-& of the data set (ROIs), E,, is given by 

Diagonalizing this covariance matrix gives the required transformation matrix, G. The eigenvectors (columns of G) 
corresponding to the largest few eigenvalues correspond to the axes of maximal variance. The data show very little 
variance (ie. no useful separation amongst classes) along the remaining principal directions (eigenvectors). Hence 
data along these axes are not useful for classification. The transformed data may therefore be computed after 
zeroing all but the first few eigenvectors: 

y = GT(L)x (3) 



wherc L is the number of eigenvectors retained in the transformation. Hence the dimension of a transfixmed pixel, 
y, is L and the data reduction factor is N/L. 

An important point to note about.EcA is that while it computes the axes of maximum overall variance:, there is no 
guarantee that it will actually increase the separation between a particular pair of classes. It only guarantees to 
maximize the overall variance given by a? = G c x  G? In order to ensure maximum separation between classes, 
the fimction to be maximized must be sensitive to the class structure. Hence a suitable function would: be one that 
not only maximizes the variance amongst classes but also simultaneously minimizes the variances within all the 
classes. One such a function is given by i4*i920 

5* and 5w are the amongst class and within class variances respectively and ok is the variance of class k. These 
terms are related to their corresponding covariance matrices Ch and CW by 

where G is the transfoxmation matrix that diagonalizes both CA and Cw. The detailed expressions for the E’s are 

ma is the overall means of all the pixels, mk is the mean of class k and ,vk is the 
expression in equation (4) is maximized by setting 

pixel belonging to class k. The 

This is a generalized eigenvalue (GEV) equation where oz are the eigenvalues and the matrix G contains the 
eigenvectors of the transformation. The constraint G IV GT = I N f l  (nwU identity matrix) renders the: distribution 
of all the classes spherical. This process also hown as ‘whitening’ is only useful when the distributions of various 
classes deviate sigmficantly from a Gaussian. If for example the members of each class are affected by random 
gaussian noise only, they will have a spherical distribution to start with. Hence in this case, a GEV transformation 
will not separate the classes better than the PCA. Lastly, for K classes we obtain K-i non zero eigenvalues fioEthe 
GEV and hence K-1 distinct axes (provided N > K). The eigenvectors corresponding to the remaining N-K zero 
eigenvalues belong to a degenerate orthogonal s u b s p a c ~ . ~ ~ J ~  
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3. RESULTS 
3.1 Maximum Feature Separation 
Figure 1 shows an image of the Moffett field data cube recorded using the A W S  sensor in 224 ban& (0.4 pm to 
2.4 pm spectral range). This data are 12 bit digital numbers without any atmospheric corrections for absorption and 
scattering. Eight regions of interest (ROIs) are marked in the image for classification (table 1) Five of these regions 
(1,4,5,6,7) are different water bodies ranging fiom clear water (1) to an evaporation pond (7). The water bodies in 
between have different levels of clarity (due to different amounts of particle suspension). Region 3 corresponds to 
concrete structures. Regions 2 and 8 are dense and sparse vegetation. Figure 2 shows the average spectrum of each 
of the ROIs marked in figure 1. The spectra of some of the ROIs, for example regions (2, 8), (4,7) anid (5 ,6)  look 
very similar. The entire image is classified to identifjl pixels belonging to these 8 regions (classes). Similar classes 
of pixels have deliberately selected to make the classification problem difficult. Since the average spectra of the 



pixels from these classes look very similar, any classification in the spectral domain will most likely produces 
significant errors. Classification is therefore performed in the PCA and GEV transformed domains. 

Figure 3 illustrates the advantage of classifying the image in the PCA or GEV transformed feature space, where we 
show the average ‘transformed spectra’ ofthe 8 ROIs in these domains. Only 8 bands are retained in the PCA case 
and 7 for the GEV. The choice of 8 bands for the PCA transform is motivated by the fact that there are only 8 
classes while for the GEV we retain only 7 bands because there are only 7 (K-l bands where K = 8) non-zero 
eigenvalues arising from the simultaneous diagonalization process. We obtain a data reduction factor (of about 30 
from these transformations. For classification, we need only the fmt 4-5 bands where the classes are separated. The 
last few bands have been retained to illustrate the fact that the variance amongst classes is negligible along these 
axes. 

Both the PCA and the GEV transforms enhance the separation between classes as compared with the 224 band 
spectral space (figure 2), but the interclass separations are clearly greater using the GEV transformation (figure 
3(b)). This is confirmed by calculating the average interclass separations for the spectral, PCA and GEV spaces 
using the angular distance and Fisher discriminant distance as measures (table 2). The columns labeled 1-8 indicate 
the average distance between class i and all other classes. The angular separation between classes increases 
dramatically from the spectral to the GEV domain where the pixels are nearly collinear in the former and highly 

separated in the later (90” separation is orthogonality condition). The Fisher distance is given by the ratio - 
where d, is the Euclidean distance between classes i andj  and the 0’s  are their respective variances, all calculated in 
the appropriate domain. The Fisher distances for all classes but 2 and 3 are greater for the GEV than the PCA. The 
overall average (last column) also clearly indicates that the GEV transformation affords greater class separation than 
the PCA. A direct outcome of this is the improved classification results by the NN obtained after training on the 
GEV transformed data than on the PCA transformed set. 

3.2 Image Classification by ADSVD Neural Network 

The implementation details of the A D S W  NN are discussed elsewhere.’Z For the present it suffices to state that It  

has as many input nodes as the number of bands of the input data (8 for PCA and 7 for GEV), one hidden layer and 
a single output node. The approach we adopt is to compute the PCA and GEV transformation matrices using the 
ROI pixels. The entue data cube is then transformed using the appropriate transformation. NN classification is then 
performed using the PCA and GEV transformed data cube. We also employ 8 sub-networks for training and 
classification. Each of which is trained to identify one particular class only and reject the rest. 

d,i 

pw 

Without independent ground truth to validate the NN classification results, a small fraction of the ROI pixels were 
used to train the networks. The remaining pixels from the ROIs were then used to test the classification performance 
of the NN. Specifically, 8-12 randomly selected pixels from each class were used to train the NNs. A s  a result, a 
reasonable number of pixels were left in the ROIs to test the network classification accuracy. 

Table 3 shows the results of testing the NN classifier on th6ROIs in the PCA and GEV domains. The c.lassification 
tlxsshold is set at 0.5 (middle range of NN’s logistical activation function). A single pixel is processed by each 
network and a ‘winner take all’ scheme is employed to assign a pixel to a particular class. A pixel is ‘correctly’ 
classified if it’s network activation level is the highest of all networks and exceeds the threshold. A ‘miss’ OCCUS 
when a pixel gets incorrectly classified. Lastly, a pixel is ‘unclassified’ if it’s NN has the highest output level of all 
networks but it is still less than the threshold. The sum of the correct, missed and unclassified columrls equals the 
total number of pixels per class. A missed pixel in one class appears as a falsely classified pixel elsewhere. Hence 
the sum of the ‘missed’ column equals that of the ‘falsely’ classified one. 

The PCA transformed data are correctly classified for all but classes 2 , 5  and 6. There are a few misses in classes 2. 
However, most pixels in class 6 are unclassified and a large number of pixels from class 6 are incorrectly classified 
into 5. On the other hand, the NN classifies the GEV transformed data with 100% accuracy. This is not surprising 
that the different classes are vexy well separated in the GEV transformed feature space as is depicted i n  figure 3(b) 
and table 2. 



, 
Table 4 show the results of the entire Moffett Field image classified by the NN in the PCA and GEV transformed 
domains usmg a threshold level of 0.5. The classified images are not included as they are not usefuji for viewing 
without fill color representation.2’ While the overall spatial structure of the image is reconsmcted in both the PCA 
and the GEV classified images, table 4 indicates that the NN identifies more pixels in each class with the GEV 
transformed cube than with the PCA transformed one. The NN barely detects any pixels in class 6 6om the PCA 
cube while in the GEV cube, it assigns over 6% of the pixels to this class. From figure 1, it is apparent that there is 
a considerable number of pixels belonging to class 6 in the image. The poor NN result for class 6 on the PCA 
transformed cube is consistent with the previous result obtained while verifjmg NN performance on the PCA 
transformed ROI’s, where also the NN failed to detect class 6. Overall, the NN classifies about 50% of the GEV 
transformed pixels whereas it classifies only 30% of the pixels in the PCA case. The unclassified pixels are 
concentrated in the central portion of the image in both cases indicating the need to add more training classes from 
to this region. 

Lastly, we note that the total computation time for the PCNGEV transformation on the entire cube is about 10 
minutes. The NN takes about 1 minute per class to process the entire cube. Training times is insignificant. 

3.3 Supervised ENVI Classification 

ENVI classifiers like the parallelepiped (PP), minimum distance (Min-D) and spectral angle mapper (SAM) are 
applied to the AVIRIS cube in the PCA transformed domain, using the same ROI’s for training as before. In order 
to compare the ENVI results with those from the NN, the ENVI classification thresholds are adjusted till 
approximately 50% of the total number of pixels are classified (which is the number of pixels classified by the NN 
using the GEV transformed cube). The lack of ground huth makes it difficult to make absolute performance 
comparisons but some of obvious problems of each method can nevertheless be identified. 

Table 5 summarizes the results of the ENVI classifiers. The PP and Min-D methods assign about 30% of the pixels 
to class 1. However, a large number of pixels assigned to this class are from the central region of the cube where no 
ROIs were selected. In contrast, the NN classifications of the PCA and GEV cubes for class 1 take a middle ground 
with 6% and 14% respectively. Further, the NNs leave the central regions of the image as ‘unclassified’. The SAM 
assigns a negligible number of pixels to class 1, which is clearly incorrect. In class 2, the results fiom all classifiers 
are more or less in agreement. In class 3 (concrete), the Min-D classifier detects very few pixels whereas it is clear 
from the image that a large number of pixels belong to this class. The other statistical classifiers tend to agree with 
the NN assignments in this case. With classes 4 and 5, all the classifiers (NN and E m )  assign moire pixels to 4 
than to 5 although the ratio of pixels assigned to the two classes varies. The S A M  violates this trend and assigns 
over 3 times as many pixels to class 5 (20%) than to class 4 (6%). With class 6, the ENVI classifier more or less 
agree with the NN results from the GEV cube. The NN fails to detect class 6 in the PCA transformed cube. Min-D 
identifies very few elements belonging to classes 7 and 8 in the image while PP and S A M  identify larger numbers. 
The latter’s results are consistent with those of the NN.*’ 

ENVI takes about 1-2 minutes to classify the image in the PCA domain. The PCA transformed cube (8 bands) was 
created externally before feeding it ENVI. Classification in the spectral domain takes 10-15 minutes depending on 
the distance measure. 

4. SUMMARY 

In this paper we have demonstrated the advantage of the GEV technique for class separation and its effect on 
classification accuracy. The ADSVD NN which has a very rapid error convergence rate facilitates extremely fast 
training of hyperspectral data sets. This NN is also highly robust in that it requires very few samples (10-12) to 
encode the features of a particular class. Training the NN in the GEV transformed space not only speeds up training 
by reducing the data dimension (by a factor of 30-50) but also improves classification accuracy by mcirniZing class 
separation. The use of sub-networks also contributes to improved classifcaton accuracy and reduced training time. 
All the above techniques lead to a methodology that makes the NN a very fast, robust and practical tool for 
supervised hyperspectral image classification. 



Finally, more work needs to be done in terms of validation and comparison of the various techques. While 
absolute comparison of ADSVD NN with statistical classifiers is only possible with ground truth, we have 
qualitatively identified some obvious cases where the statistical classifiers produce erroneous results. Previous 
studies using synthetic hyperspectral data also verified-that the ADSVD NN outperformed the statistical 
cIassifiers.I32l 

- 

ACKNOWLEDGMENTS 
The authors thank Dr. Risa Wu from NASA Stennis Space Center (Mississippi) for providing the AWNS data set 
and the ROI’s discussed in this paper. We also thank Dr. Robert Cromp, the NASA program nlanager who 
supervised the NASA STTR Phase I contract (# NAS5-32935, Jan-June 1996) under which this work W i S  done. 

REFERENCES 
1. P. Blonda, et ai, “Feature extraction and pattern classification of remote sensing data by a modular ne:ural 

2. T. Yoshida, S. Omatu, “ Neural network approach to land cover mapping”, IEEE Trans. Geosci. and Remote 

3 .  Y .C. Tseng et al, “A dynamic neural network for remote sensing applications”, IEEE Trans. Geosci. and Remote 

4. J.A. Bendicktsson, P.H. Swain, O.K. Ersoy, ‘‘Conjugate gradient neural networks in classification of very high 
dimensional remote sensing data”, Int. Jnl. Remote Sensing, 14,2883 (1993). 

5 .  R. Li, H. Si, “ Multi-spectral image classification using improved backpropagation neural networks, h o c .  IEEE 
lGARSS-92,2, 1078 (1992). 

6. J.A. Bendicktsson, P.H. Swain, O.K. Ersoy, “Neural network approaches versus statistical methods OF 
classification of multisource remote sensing data”, IEEE Trans. Geosci. and Remote Sensing, 28,540 (1992). 

7. J.L. Mcclelland, D.E. Rumelhart, Parallel Distributed Processing, Vol. 1, and 2, MIT Press (1988). 
8. M. Azmi, R. Liu, “Fast learning of multilayer neural networks using recursive least squares”, IEEE Trans. Signal 

9. F. Biegler-Konig, f. Barmann, “Learning algorithm for multilayered neural networks based on linear least 
squares”, Neural Networks, 6, 127 (1993). 

10. B. Cetin, J. Barhen, J. Burdick, “Terminal repeller unconstrained subspace tunneling (TRUST) for fast global 
optimization”, Jnl. Optmization 7’heory and Applications, 77,97 (1993). 

1 1. J. Barhen, “Learning without local minima”, IEEE World Congress on Computational Intelligence, 7,4592, 
( 1994). 

12. J. Barhen, N. Gat, “Rapid convergence of feed forward multilayered neural networks using alternate direction 
singular value decompositions”, (manuscript in preparation). 

13. N. Gat, S. Subramanian, M. Sheffield, N. Toomarian, J. Barhen, NASA STTR Phase I Program Final Report 
(contract # NAS5-32935), Mission to planet earth, “Novel neural network technology for very fast analysis of 
hyperspectral imagery”, (Opto-Knowledge Systems Inc., June1996). 

network”, Optical. Eng, 35,536 (1996). 

Sensing, 32, 1103 (1994). 

Sensing, 32, 1096 (1994). 

froc., 40,446 (1992). 

14. I.T. Jollife, Principai Component Analysis, Springer Verlag New York, (1986). 
15TA. Richards, Remote Sensing and Digitai Analysis, Springer Veda ,  2nd ed., (1995). 
16. R.A. Schowengerdt, Techniques for Image Processing and Classification in Remote __ Sensing, Academic Press 

17. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press (1996). 
18. R. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press (1985) 
19. C.W. Therrein, Discrete Time SignaZs and StatisticuZSignal Processing, Prentice Hall, (1992). 
20. T. Parsons, Voice and Speech Processing, McGraw-Hill, (1987). 
2 1. For latest updates on this work please see the “Hyperspectrum Newsletter” at the following web-site: 

- 
(1983). 

(http://www.techexpo.com/WWW/opto-knowledgdhYperspectrum ). 

http://www.techexpo.com/WWW/opto-knowledgdhYperspectrum


Class# I Pixels/ 1 M a t e r i a l 1  

ci- 
suspended solid 
material 

2 
3 24 concrete 
4 

5 

6 
suspended solid 
material (‘not as 

7 1  
8 1  

Table 1: ROIs for classification. 

Figure 1: Moffett field data cube recorded by AVIRIS sensor in 224 spectral bands covering the range 0.4 prn to 
2.4 pm. The RGB composite was created using bands 45,31 an 18 respectively. The patches alongside ?he numbers 
are the 8 regions of interest. 
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Figure 2: Average spectrum of each class created using ROI pixels. 
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Figure 3(a): Principal component representation of average ROI spectra. 
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Figure 3(b): Generalized eigenvalue transform representation of average ROI spectra. Interclass separation is better 
than with PCA and all classes look distinct. 



Clots # 1 2 3 4 5 

Average Pngular Distance (degnerl  
SPECTRAL 19.70 -31.92 18.33 21.21 21.82 
PCA 32.75 33.25 67.89 37.32 33.02 
G N  57.78 55.67 75.09 68.43 55.22 

Average Fisher &tan- (dimensionlessl 
SPECTRAL 86.98 154.83 83.41 78.99 80.03 
PCA 122.10 203.19 126.01 104.56 105.35 
GEV 162.65 198.15 56.55 165.26 140.00 

6 7.00 8.00 chrerali Avg 

16.56 20.53 -- 23.60 21.71 
33.93 56.18 30.74 40.64 
57.31 71.26 52.35 61.64 

60.80 99.84 80.06 90.62 
75.99 136.78 102.80 122.10 
128.41 21q.36 111.69 146.63 

Table 2: Class separation of the average ROI spectra measured using the angular separation and Fisher discriminant 
distance measures in the spectral, PCA and GEV domains. The separations increase as we go from spectral to GEV 
domains. 

5 179 179 0 0 0 
6 183 183 0 0 0 
7 21 2 21 2 0 0 0 
8 107 107 0 0 0 

- - 
Table 3: ADSVD neural network classification of the ROI pixels in the PCA and GEV domains. 
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Class # 

1 

PCA Classified NN GEV Classiiied NN I 
I 

#PixelsClassified I % I # Pixels CIassifid I % ___ 
7 9 . 9 3 6  1 6.3 44.7 18 I 14.3 

2 4,046 1.3 6,338 
3 8,678 2.7 16,390 
4 12.065 3.8 33.979 

2 
5.2 
109 

5 
6 
7 

Classified I I I 1 
Unclassified I 219.709 I 69.9 1 159.997 I 50.9 

5,701 1.8 7,963 2.5 
30 -0 20,799 . 6.6 

2.436 0.8 5.801 1.8 

Table 4: NN classification of the entire PCA and GEV transformed images at 0.5 threshold The NN classifies 
nearly 50% of the pixels in the GEV cube and only 30% in the PCA case. 

8 I 4 i , w  I 13.3 1 18,383 
Total 94,732 I 30.1 I 154,371 

5.8 
49.1 

Table 5: ENVI classified result in the PCA domain. Different thresholding parameters were used in each case so as 
to make the total number of classified pixels3roximately equal to 50% (same as NN classified results of G E L  
cube). The following threshold parameters were used: (Mh-D (a= 4.0), PP (os 4.0), S A M  (8  = 0.27 ra.dians). 
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Classified 
Unclassified 

1 
51.9 49.5 53.1 


