DISTRIBUTION SHEET

<table>
<thead>
<tr>
<th>Name</th>
<th>MSIN</th>
<th>With Attachment</th>
<th>EDT/ECN & Comment</th>
<th>EDT/ECN Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. J. Blanchard</td>
<td>R1-17</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. M. Jaká</td>
<td>R3-08</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. V. Scott</td>
<td>H5-52</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Y. Seda</td>
<td>R1-17</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. L. Smalley</td>
<td>R1-17</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. J. Verderber</td>
<td>S1-57</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. H. Ziada</td>
<td>H5-52</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Files (Orig. XXXXXX)</td>
<td>L8-04</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station-21</td>
<td>H5-51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSTI (2)</td>
<td>L8-07</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item No.</td>
<td>Document/Drawing No.</td>
<td>Sheet No.</td>
<td>Rev. No.</td>
<td>Title or Description of Data Transmitted</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>WHC-SD-WM-ANAL-029</td>
<td>0</td>
<td></td>
<td>Stress Analysis of Portable Safety Platform (Core Sampler Truck)</td>
</tr>
</tbody>
</table>

15. KEY

<table>
<thead>
<tr>
<th>(F)</th>
<th>(G)</th>
<th>(H)</th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, or 4 (see MRP 5.43)</td>
<td>1. Approval</td>
<td>1. Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Release</td>
<td>2. Approved w/comment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Information</td>
<td>3. Disapproved w/comment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Review</td>
<td>4. Reviewed no/comment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Post-Review</td>
<td>5. Reviewed w/comment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Dist. (Receipt Acknow. Required)</td>
<td>6. Receipt acknowledged</td>
<td></td>
</tr>
</tbody>
</table>

16. SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>(J)</th>
<th>(K)</th>
<th>(L)</th>
<th>(M)</th>
<th>(N)</th>
<th>(O)</th>
<th>(P)</th>
<th>(Q)</th>
<th>(R)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cog./Proj.Eng. H. H. Ziada</td>
<td>2-95</td>
<td>3-95</td>
<td>H5-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cog./Proj.Eng., Mgr. K. V. Scott</td>
<td>2-95</td>
<td>3-95</td>
<td>H5-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA J. J. Verderber</td>
<td>2-95</td>
<td>3-95</td>
<td>H5-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Officer D. M. Jane</td>
<td>2-95</td>
<td>3-95</td>
<td>R3-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Y. Zeda</td>
<td>2-95</td>
<td>3-95</td>
<td>R1-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. J. Blanchard</td>
<td>2-95</td>
<td>3-95</td>
<td>R1-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. L. Smalley</td>
<td>2-95</td>
<td>3-95</td>
<td>R1-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RELEASE AUTHORIZATION

Document Number: WHC-SD-WM-ANAL-029, Rev. 0

Document Title: Stress Analysis of Portable Safety Platform (Core Sampler Truck)

Release Date: March 30, 1995

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

[Signature] March 30, 1995

V.L. Birkland

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

A-6001-400.2 (09/94) WEF256

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.
SUPPORTING DOCUMENT

<table>
<thead>
<tr>
<th>2. Title</th>
<th>Stress Analysis of Portable Safety Platform (Core Sampler Truck)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Number</td>
<td>WHC-SD-WM-ANAL-029</td>
</tr>
<tr>
<td>4. Rev No.</td>
<td>0</td>
</tr>
<tr>
<td>5. Key Words</td>
<td>Sampler truck, RMCST #2, Stress analysis, Portable platform</td>
</tr>
<tr>
<td>6. Author</td>
<td>Name: H. H. Ziada</td>
</tr>
<tr>
<td></td>
<td>Signature: 3-10-95</td>
</tr>
<tr>
<td></td>
<td>Organization/Charge Code: 7E650/E39301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>This document provides the stress analysis and evaluation of the portable platform of the rotary mode core sampler truck No. 2 (RMCST #2).</td>
</tr>
</tbody>
</table>

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A-6400-073 (08/94) WEF124
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>1</td>
</tr>
<tr>
<td>3.0 CONFIGURATION AND LOADING</td>
<td>1</td>
</tr>
<tr>
<td>3.1 CONFIGURATION</td>
<td>1</td>
</tr>
<tr>
<td>3.2 LOADING</td>
<td>2</td>
</tr>
<tr>
<td>4.0 MATERIAL PROPERTIES AND ALLOWABLES</td>
<td>2</td>
</tr>
<tr>
<td>4.1 MATERIAL PROPERTIES</td>
<td>2</td>
</tr>
<tr>
<td>4.1.1 Aluminum Alloy 6061-T6</td>
<td>2</td>
</tr>
<tr>
<td>4.1.2 Aluminum Alloy 6063-T52</td>
<td>3</td>
</tr>
<tr>
<td>4.1.3 Weld Material</td>
<td>3</td>
</tr>
<tr>
<td>4.1.4 Structural Steel (ASTM A36)</td>
<td>4</td>
</tr>
<tr>
<td>4.2 ALLOWABLES</td>
<td>4</td>
</tr>
<tr>
<td>5.0 STRESS ANALYSIS</td>
<td>4</td>
</tr>
<tr>
<td>6.0 REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>
STRESS ANALYSIS OF PORTABLE SAFETY PLATFORM
(CORE SAMPLER TRUCK)

1.0 INTRODUCTION

This supporting document presents the stress analysis and evaluation of the portable platform of the rotary mode sampler truck. The portable platform comprises railing, railing posts, deck, legs, and a portable ladder. The portable platform is secured and restrained from lateral motion by means of two brackets added to the drill-head service platform.

Analysis results led to design modifications to some components. The results and conclusions appear in Section 2.0. The configuration and loading are presented in Section 3.0. The stress analysis is described in Section 4.0. The detailed stress analysis calculations are documented in the appendix.

2.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the evaluation indicate that all components of the modified portable platform assembly are adequate (WHC 1994a). The stresses in the components are within the stress limits specified in the Aluminum Construction Manual (ACM 1986) and satisfy the requirements of the Code of Federal Regulations (CFR 1990), Title 29, Occupational Safety and Health Administration (OSHA).

All posts, legs, and ladder railings should be fitted tightly into the corresponding sockets to reduce local stresses. All legs and ladder railings should be in contact with the truck floor and should touch the floor before the collars on the two 1-in.-diameter round tubes touch the supporting brackets on the truck platform. This installation requirement is necessary to prevent unsafe rocking motion of the platform and to eliminate high bending stresses in the support brackets.

3.0 CONFIGURATION AND LOADING

3.1 CONFIGURATION

The configuration and dimensions of the portable platform and the supporting brackets are documented in the following drawings:

- Drawing H-2-85358, Rev. 1 (WHC 1994a)
- ECN #610426 to drawing H-2-690067, Rev. 0 (WHC 1994b).

Figure 1 shows the general layout of the portable platform.
The portable platform consists of railing, deck, ladder, and legs. The railing consists of 1\(\frac{1}{2}\)-in. (outside diameter) by \(\frac{3}{4}\)-in.-thick aluminum tubes and five posts of 1\(\frac{1}{2}\)-in. diameter solid bars. The ladder consists of two square tube railings and four square tube rungs. The deck is made of fiberglass material laid on a platform constructed of square tubes. The platform stands on four square tube legs and the two ladder railings. The posts, legs, and ladder railings, assembled to the platform in sockets that are welded to the platform frame, are attached to the sockets by pin assemblies.

The portable platform is secured on the truck by two 1-in.-diameter round tubes inserted into two steel brackets welded to the truck platform. The brackets restrain the portable platform from lateral movement. The brackets do not carry any vertical or bending loads as long as the legs and the ladder railings touch the truck floor before the collars on the two round tubes (on the portable platform) touch the brackets in the vertical direction.

3.2 LOADING

The Code of Federal Regulations (CFR 1990) provides the load requirements for the railing and the portable ladder. For the railing, the requirement is that "the anchoring of posts and framing of members for railings of all types shall be of such construction that the completed structure shall be capable of withstanding 200 pounds applied in any direction at any point on the top rail." For portable metal ladders, CFR 1990 states that "portable ladders are designed as a one-man working ladder based on a 200 pound load." Accordingly, the 200 lbf is applied on the top railing in the direction that produces the largest stress in the railing structure and is applied on the lower rung of the portable ladder where a working person will step on first or step off last.

4.0 MATERIAL PROPERTIES AND ALLOWABLES

4.1 MATERIAL PROPERTIES

4.1.1 Aluminum Alloy 6061-T6

The materials used for round solid bars and round tubes are aluminum alloys 6061-T6 and T6511 (B211, B211, and B241). The minimum ultimate and yield strengths for these alloys are obtained from ASTM 1992 and ACM 1986:

- Ultimate tensile strength \((F_u) = 38,000 \text{ lbf/in}^2\)
- Yield strength \((F_y) = 35,000 \text{ lbf/in}^2\)
- Shear yield strength \((F_{sy}) = 20,000 \text{ lbf/in}^2\).

The strength properties of the aluminum alloys decrease when they are welded. The material within 1.0-in. of a weld should be evaluated for the reduced properties.
The reduced as-welded properties in the vicinity of a weld are obtained from ACM 1986:

As welded ultimate tensile strength \((F_{uw}) = 24,000 \text{ lbf/in}^2 \)
As welded yield strength \((F_{yw}) = 20,000 \text{ lbf/in}^2 \)
As welded shear yield strength \((F_{syw}) = 12,000 \text{ lbf/in}^2 \).

4.1.2 Aluminum Alloy 6063-T52

The square tubes are made of aluminum alloy 6063-T52 (ASTM B241). ASTM 1992 gives a range of ultimate strengths from 22,000 to 30,000 lbf/in\(^2\), and a range of yield strengths from 16,000 to 25,000 lbf/in\(^2\). ASTM 1992 also shows that the minimum material properties of 6063-T52 are the same as those of 6063-T5. The manufacturers (See Kilsby 1994 and Ryerson 1994) provide material properties for 6063-T5 even though they specify 6063-T52 material for square tubing. This practice suggests that the manufacturers provide both materials with the same properties.

The tensile material properties for 6063-T5 as provided by Kilsby 1994 and Ryerson 1994 are listed below:

Ultimate tensile strength \((F_u) = 27,000 \text{ lbf/in}^2 \)
Yield strength \((F_y) = 21,000 \text{ lbf/in}^2 \)
Shear yield strength \((F_{sy}) = 0.577 \times F_y = 12,000 \text{ lbf/in}^2 \) (Calculated)

These material properties are judged to be appropriate for the portable platform evaluation.

To obtain the as-welded material properties, the minimum as-welded properties in ACM 1986 are ratioed up by the ratio of the properties in Ryerson 1994 to the minimum properties in ASTM 1992 and ACM 1986:

As-welded adjusted property = \(\frac{F_{uw}}{F_{min. ACM}} \times \frac{F_{min. ACM}}{F_{min. ACM}} \)

As-welded ultimate tensile strength \((F_{uw}) = 17,000 \times 27,000 = 21,000 \text{ lbf/in}^2 \) \(\frac{22,000}{22,000} \)
As-welded yield strength \((F_{yw}) = 11,000 \times 21,000 = 14,500 \text{ lbf/in}^2 \) \(\frac{16,000}{16,000} \)
As-welded shear yield strength \((F_{syw}) = 6,500 \times 12,000 = 8,500 \text{ lbf/in}^2 \) \(\frac{9,000}{9,000} \).

4.1.3 Weld Material

The welding wire used to weld these aluminum alloys is aluminum 4043 (WHC 1990 and ACM 1986). The ACM (1986) provides one value for the allowable shear stress of fillet welds \((F_{sw} = 5,000 \text{ lbf/in}^2) \).
4.1.4 Structural Steel (ASTM A36)

The two steel brackets that secure the portable platform to the truck platform are made of structural steel ASTM A36:

- Ultimate tensile strength = 58,000 lbf/in²
- Yield strength = 36,000 lbf/in².

The criteria provided by AISC 1989 are applicable for the brackets. However, these brackets are stronger than the aluminum round tube supports fitted into the brackets. Accordingly, the brackets are acceptable as long as the aluminum tubes are acceptable.

4.2 ALLOWABLES

The CFR 1990 (see Section 3.2) does not provide specific design requirements or stress allowables for portable ladders. The word "withstand" in the reference to the 200-lb load can be interpreted as allowing the resulting stresses to be as high as the yield value for the material. However, to be on the conservative side, the ACM (1986) guidelines and stress limits are judged to be applicable.

The stress limits from ACM 1986 are listed below:

- Allowable bending stress for solid bars (F_b) = 1.3 F_y/1.65
- Allowable bending stress for rectangular tubes (F_b) = F_y/1.65
- Allowable shear stress (F_s) = F_y/1.65
- Allowable shear stress for fillet weld (4043 material) (F_sw) = 5,000 lbf/in².

Table 1 includes the allowable stress values of concern.

5.0 STRESS ANALYSIS

The stress analysis appears in the appendix to this report. The appendix also includes the evaluation of the calculated stresses against the ACM (1986) stress limits. Table 2 summarizes the stress results at the locations of interest. The evaluation of the stresses at the critical locations indicates a positive design margin. The steel brackets are not critical components.

The design margin (DM) used throughout the analysis is defined below:

\[DM = \frac{\text{allowable}}{\text{calculated}} - 1.0, \]

Where

\[\text{allowable} = \text{maximum allowable stress value} \]
\[\text{calculated} = \text{maximum calculated stress value}. \]
Figure 1. Layout of Portable Platform.
Table 1. Summary of Allowable Stress Values.

<table>
<thead>
<tr>
<th>Material</th>
<th>Component</th>
<th>Type of Stress</th>
<th>Yield Strength (lbf/in²)</th>
<th>Allowable Stress Equ.</th>
<th>Allowable Stress (lbf/in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6061-T6 or -T6511</td>
<td>Solid round bar (posts)</td>
<td>bending</td>
<td>35,000</td>
<td>1.3 F_y</td>
<td>28,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Round tubes (railing)</td>
<td>bending</td>
<td>35,000</td>
<td>F_y</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>6061-T6</td>
<td>Round tubes (support tubes)</td>
<td>bending</td>
<td>20,000</td>
<td>F_{yw}</td>
<td>12,000</td>
</tr>
<tr>
<td>within 1-in.</td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>6063-T52</td>
<td>Square tubes (legs, platform, and ladder)</td>
<td>bending</td>
<td>21,000(^{(2)})</td>
<td>F_y</td>
<td>12,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>shear</td>
<td>12,000(^{(2)})</td>
<td>F_{sv}</td>
<td>7,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>6063-T52</td>
<td>square tubes (sockets)</td>
<td>bending</td>
<td>14,500(^{(2)})</td>
<td>F_{yw}</td>
<td>9,000</td>
</tr>
<tr>
<td>within 1-in.</td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>shear</td>
<td>8,500(^{(2)})</td>
<td>F_{svw}</td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>4043 weld wire</td>
<td>fillet weld</td>
<td>shear</td>
<td>----</td>
<td>----</td>
<td>5,000</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The allowable stresses are rounded off according to the method of ACM 1986.

\(^{(2)}\) See Section 4.1.2.
<table>
<thead>
<tr>
<th>Component</th>
<th>Location</th>
<th>Tube or Weld Type (Material)</th>
<th>Stress Category</th>
<th>Calculated Stress lbf/in²</th>
<th>Allowable Stress (1) lbf/in²</th>
<th>Design Margin (2)</th>
<th>Page Number (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railing</td>
<td>29.26 in. side</td>
<td>1.5 in. O.D. tube (6061-T6)</td>
<td>bending</td>
<td>8,525</td>
<td>21,000</td>
<td>1.46</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Weld</td>
<td>¼-in. fillet weld</td>
<td>shear</td>
<td>4,925</td>
<td>5,000</td>
<td>0.02</td>
<td>23</td>
</tr>
<tr>
<td>Posts</td>
<td>Single Post (solid bar)</td>
<td>1.5 in. solid bar (6061-T6)</td>
<td>bending</td>
<td>26,008</td>
<td>28,000</td>
<td>0.08</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Critical socket</td>
<td>1 3/4 x 1 3/4 x ¼-in. square tube (6063-T52 welded)</td>
<td>bending</td>
<td>8,454</td>
<td>9,000</td>
<td>0.06</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Welds at socket (worst case)</td>
<td>¼-in. fillet weld (6043)</td>
<td>shear</td>
<td>4,177</td>
<td>5,000</td>
<td>0.20</td>
<td>30</td>
</tr>
<tr>
<td>Platform</td>
<td>long sides</td>
<td>1½ x 1½ x ¼-in. square tube (6063-T52)</td>
<td>bending</td>
<td>9,633</td>
<td>12,500</td>
<td>0.30</td>
<td>13</td>
</tr>
<tr>
<td>Legs</td>
<td>Top of the leg</td>
<td>1½ x 1½ x ¼-in. square tube (6063-T52)</td>
<td>bending</td>
<td>8,680</td>
<td>12,500</td>
<td>0.44</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Welds at socket</td>
<td>¼-in. fillet weld (6043)</td>
<td>shear</td>
<td>2,773</td>
<td>5,000</td>
<td>0.80</td>
<td>34</td>
</tr>
<tr>
<td>Ladder</td>
<td>Side railing</td>
<td>1½ x 1½ x ¼-in. square tube (6063-T52)</td>
<td>bending</td>
<td>10,417</td>
<td>12,500</td>
<td>0.20</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Weld at sockets (2 railings + 2 legs)</td>
<td>¼-in. fillet weld (6043)</td>
<td>shear</td>
<td>3,328</td>
<td>5,000</td>
<td>0.50</td>
<td>37</td>
</tr>
<tr>
<td>Support tubes</td>
<td>Welds at 1.0 in. O.D. tube</td>
<td>¼-in. fillet weld (6043)</td>
<td>shear</td>
<td>4,685</td>
<td>5,000</td>
<td>0.07</td>
<td>38</td>
</tr>
</tbody>
</table>

(1) The allowable stresses are listed in Table 1.

(2) DM = Allowable Stress - Calculated Stress

(3) Page number in the Appendix.
6.0 REFERENCES

APPENDIX

STRESS ANALYSIS AND EVALUATION OF PORTABLE PLATFORM OF CORE SAMPLER TRUCK
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
2.0 CONCLUSIONS ... 1
3.0 LOADS AND CRITERIA 1
 3.1 LOADS .. 1
 3.2 CRITERIA FOR ALUMINUM STRUCTURES 2
 3.3 CRITERIA FOR WELDS 3
 3.4 CRITERIA FOR STRUCTURAL STEEL 3
4.0 MATERIALS AND ALLOWABLES 4
 4.1 ALUMINUM ALLOY 6061-T6 4
 4.2 ALUMINUM ALLOY 6063-T52 5
 4.3 STRUCTURAL STEEL 9
 4.4 WELD MATERIAL, ALUMINUM 4043 9
5.0 ANALYSIS AND RESULTS 10
 5.1 RAILING ... 10
 5.2 POSTS ... 11
 5.3 PLATFORM .. 12
 5.4 LEGS .. 14
 5.5 LADDER ... 15
 5.6 SOCKETS ... 17
 5.7 SUPPORT BRACKET 21
 5.8 WELDS .. 23
 5.9 PINS .. 39
6.0 SUMMARY OF RESULTS 40
7.0 REFERENCES ... 41
PORTABLE PLATFORM OF
CORE SAMPLER TRUCK

1.0 INTRODUCTION

This Appendix includes the analysis and evaluation of the ladder, hand rail and posts of the portable platform of the Core Sampler Truck and the two additional brackets to the drill head service platform. The brackets are used to secure the portable platform on the truck.

2.0 CONCLUSIONS

All parts of the modified portable platform (WMC 1994a) are acceptable and satisfy the requirements of the Code of Federal Regulation (CFR 1990) and the stress limits of ACM 1986.

3.0 LOADS AND CRITERIA

3.1 LOADS

The CFR 1990 Code is used as a guide line for applied loads and configuration requirements. The ACM 1986 is used for design criteria and stress
(10) allowable.

The CFR 1990 states that "the anchoring of posts and framing of members for railings of all types shall be of such construction that the completed structure shall be capable of withstanding a load of at least 200-pounds applied in any direction at any point on the top rail", and that "portable ladders are designed as a one-man working ladder based on a 200-pound load." The CFR 1990 does not provide specific design requirements for portable metal ladders. However, it states that "the metal selected shall be of sufficient strength to meet the test requirements, and shall be protected against corrosion unless inherently corrosion-resistant."

3.2 CRITERIA FOR ALUMINUM STRUCTURES

The materials used for railing, posts, ladder and plate are Aluminum Alloy 6061-T6, 6061-T651, and 6063-T52 (ASTM B221, B221, B241, B209, B210). See the drawing (WHC 1994a). To be on the conservative side, the ACM 1986 guidelines and stress limits are judged to be applicable for this evaluation.
The stress limits from ACM 1986 for buildings and similar type structures are given below.

Allowable bending stress for solid bars = \(\frac{1.3 F_y}{1.65} \)

Allowable bending stress for rectangular tubes = \(\frac{F_y}{1.65} \)

Allowable shear stress = \(\frac{F_{sy}}{1.65} \)

Where \(F_y \) is the tensile yield strength and \(F_{sy} \) is the shear yield strength of the material.

3.3 CRITERIA FOR WELDS
The fillet weld material is Aluminum Alloy 4043 and ACM 1986 provides one value for allowable shear stress. The allowable shear stress for weld material (Aluminum Alloy 4043) \(F_{sw} = 5,000 \) lb per in²

3.4 CRITERIA FOR STRUCTURAL STEEL
AISC 1989 includes the stress limits for steel constructions.
4.0 MATERIALS AND ALLOWABLES

4.1 ALUMINUM ALLOY 6061-T6

Ultimate strength (Fu) = 38,000 lb/in²
Yield strength (Fy) = 35,000 lb/in²
Shear yield strength (Fsy) = 20,000 lb/in²

Allowable bending stress for solid bars = \(\frac{0.3 \times F_y}{1.65}\) = 28,000 lb/in²
Allowable bending stress for tubes = \(\frac{F_y}{1.65}\) = 21,000 lb/in²
Allowable shear stress = \(\frac{F_{sy}}{1.65}\) = 12,000 lb/in²
The strength properties of the welded aluminum decrease in the weld region (within 1.0-in. of a weld). The reduced as welded properties are obtained from ACM 1986, Table 3.3.2.

As welded ultimate strength (Fuw) = 24,000 lb/in²
As welded yield strength (Fyw) = 20,000 lb/in²
As welded shear yield strength (Fsyw) = 12,000 lb/in²

Allowable as welded bending stress for solid bars = \(\frac{1.3F_{yw}}{1.65} \) = 16,600 lb/in²
Allowable as welded bending stress for tubes = \(\frac{F_{yw}}{1.65} \) = 12,000 lb/in²
Allowable as welded shear stress = \(\frac{F_{syw}}{1.65} \) = 7,500 lb/in²

NOTE: The allowable stresses are rounded off according to the method of ACM 1986.

4.2 ALUMINUM ALLOY 6063-T52

The square tubes are made of aluminum alloy 6063-T52 (ASTM B241). ASTM 1992 gives a range of ultimate strength from 22,000 to 30,000 lb/in², and a range of yield strength from 16,000 to 25,000 lb/in².
ACM 1986 provides the minimum properties for 6063-T5 extrusion (\(F_u = 22,000 \text{ lb/lin}^2 \), \(F_y = 16,000 \text{ lb/lin}^2 \), and \(F_{sy} = 3,000 \text{ lb/lin}^2 \)). ASTM 1992 also shows that the minimum material properties of 6063-T52 are the same as those of 6063-T5. The manufacturers (Kilsby 1994 and Ryerson 1994) provide material properties for 6063-T5, even though they specify 6063-T52 material for square tubing. This suggests that the manufacturers provide both materials with the same properties.

The material properties for 6063-T5 as provided by Ryerson 1994 are listed below.

- Ultimate tensile strength \((F_u) = 27,000 \text{ lb/lin}^2\)
- Yield tensile strength \((F_y) = 21,000 \text{ lb/lin}^2\)
- Shear yield strength \((F_{sy}) = 0.577 F_y = 12,000 \text{ lb/lin}^2\) (calculated)

These material properties are judged to be appropriate for the portable platform evaluation.
Allowable bending stress = \(\frac{F_y}{1.65} = 12,500 \text{ lb/in}^2 \)

Allowable shear stress = \(\frac{F_{sy}}{1.65} = 7,000 \text{ lb/in}^2 \)

To obtain the as welded material properties, the minimum as welded material provided by ACM 1986 (Table 3.3.2) are ratioced up by the ratio of the properties provided by Ryerson 1994 (Page 6) to the minimum properties provided by ASTM 1992 and ACM 1986.

As welded minimum \(F_{uw} = 17,000 \text{ lb/in}^2 \) (ACM 1986)

As welded minimum \(F_{yw} = 11,000 \text{ lb/in}^2 \) (Table 3.3.2)

As welded minimum \(F_{syw} = 6,500 \text{ lb/in}^2 \)

Adjusted properties \(\left(\frac{F_{uw}}{F_{yw}} \times \frac{F_{yw}}{F_{syw}} \right) \):

As welded ultimate tensile strength \(F_{uw}'' = 17,000 \times \frac{27,000}{22,000} = 21,000 \text{ lb/in}^2 \)

Yield strength \(F_{yw}'' = 11,000 \times \frac{21,000}{16,000} = 14,500 \text{ lb/in}^2 \)

Shear yield strength \(F_{syw}'' = 6,500 \times \frac{12,000}{9,000} = 8,500 \text{ lb/in}^2 \)

Allowable as welded bending stress = \(\frac{14,500}{1.65} = 9,000 \text{ lb/in}^2 \)

Allowable as welded shear stress = \(\frac{8,500}{1.65} = 5,000 \text{ lb/in}^2 \)

Table 1 tabulates a summary of the allowable stresses of concern.
Tab1. Summary of Allowable Stress Values

<table>
<thead>
<tr>
<th>Material</th>
<th>Component</th>
<th>Type of Stress</th>
<th>Yield Strength (ksi)</th>
<th>Allowable Stress Eqn</th>
<th>Allowable Stress (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6061-T6 or -T6511</td>
<td>Solid round bar (Posts)</td>
<td>Bending</td>
<td>35,000</td>
<td>$\frac{1.3 SY}{1.65}$</td>
<td>28,000</td>
</tr>
<tr>
<td></td>
<td>Round tubes (railing)</td>
<td>Bending</td>
<td>35,000</td>
<td>$\frac{FY}{1.65}$</td>
<td>21,000</td>
</tr>
<tr>
<td>6061-T6 within 1-in of weld</td>
<td>Round tubes (support tubes)</td>
<td>Bending</td>
<td>20,000</td>
<td>$\frac{FYw}{1.65}$</td>
<td>12,000</td>
</tr>
<tr>
<td>6063-T82</td>
<td>Square tubes (legs, platform, and ladder)</td>
<td>Bending</td>
<td>21,000</td>
<td>$\frac{FY}{1.65}$</td>
<td>12,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shear</td>
<td>12,000</td>
<td>$\frac{FSy}{1.65}$</td>
<td>7,000</td>
</tr>
<tr>
<td>6063-T82 within 1-in of weld</td>
<td>Square tubes (sockets)</td>
<td>Bending</td>
<td>14,500</td>
<td>$\frac{FYw}{1.65}$</td>
<td>9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shear</td>
<td>8,500</td>
<td>$\frac{FSyw}{1.65}$</td>
<td>5,000</td>
</tr>
<tr>
<td>4043 weld wire</td>
<td>Fillet weld</td>
<td>Shear</td>
<td>—</td>
<td>—</td>
<td>5,000</td>
</tr>
</tbody>
</table>

(1) The allowable stresses are rounded off according to the method of ACM 1986.

(2) See Section 4.2.
4.3 **STRUCTURAL STEEL (ASTM A36)**

The brackets on the truck rig are made of structural steel ASTM A36. These brackets are used as sockets for the support tubes on the platform. These brackets are not expected to be critical components.

- **Ultimate strength (Fu) = 58,000 lbf/in²**
- **Yield strength (Fy) = 36,000 lbf/in²**

The allowable stresses from AISC 1989 are calculated below.

- **Allowable bending stress = 0.6 Fy = 0.6 x 36,000 = 21,600 lbf/in²**
- **Allowable shear stress = 0.4 Fy = 0.4 x 36,000 = 14,400 lbf/in²**

4.4 **WELD MATERIAL: ALUMINUM 4043**

The allowable shear stress for fillet welds is obtained from ACI 1986.

- **Allowable weld shear stress = 5,000 lbf/in²**

Also see Section 3.3.
5.0 ANALYSIS AND RESULTS

Assume all fittings are tight fit and the legs are secured to the truck floor.

5.1 RAILING

The CFR cells for a minimum of 1.5 in. diameter tube on a maximum of 8-ft post spacing and the top rail shall have a nominal height of 42 in. from the floor. The design satisfies these conditions.

Tube outside diameter = 1.5 in.
Wall thickness = 0.125 in.
Max. distance between posts = 29.26 in.

Cross-section area = \(\frac{\pi}{4} (d_o^2 - d_i^2) = 0.54 \) in\(^2\)

\[I = \frac{\pi}{64} (d_i^4 - d_i^4) = 0.1287 \text{ in}^4 \]

\[C = \frac{d_i}{2} = 0.75 \text{ in.} \]

Single post (4-8"")

Stiffeners (2 pl.) 21"

A-12
(10) The worst case is 200 lb applied halfway between the two posts with 29.26 in spacing.

The most conservative case is a simply supported beam.

\[
\text{Moment} = \frac{PL}{4} = \frac{200 \times 29.26}{4} = 1,463 \text{ in-lb}
\]

\[
\sigma = \frac{Mc}{I} = \frac{1,463 \times 0.75}{0.1287} = 8,525 \text{ lb/in}^2
\]

Acceptable: \(< 21,000 \text{ lb/in}^2 \) (Aluminum 6061-T6 round tube)

5.2 Posts

All posts are solid aluminum bars with \(d_0 = 1.5 \text{ in.} \)

\[
\text{Area} = \frac{\pi}{4} (1.5)^2 = 1.767 \text{ in}^2
\]

\[
I = \frac{\pi}{64} (1.5)^4 = 0.248 \text{ in}^4
\]

\(C = 0.75 \text{ in.} \)
(10) The worst case is 200 lbf applied at the top of the single post (43 in. high cantilever).

\[M = P l = 200 \times 43 = 8,600 \text{ in-lbf} \]

\[\sigma = \frac{M c}{I} = \frac{8,600 \times 0.75}{0.248} = 26,008 \text{ lbf/in}^2 \]

Acceptable \(< 28,000 \text{ lbf/in}^2 \) (Alum. 6061-T6 solid bar)

5.3 PLATFORM

Assume platform without grating, and the 200 lbf is applied at the middle of the 4' - 8" (56") span of the 1\(\frac{1}{2}\)" x 1\(\frac{1}{2}\)" x 1/8" square tube.

Tube outside dimension = 1\(\frac{1}{2}\)" x 1\(\frac{1}{2}\)"

Tube thickness = 0.125 in.

Area = \((1.5)^2 - (1.25)^2 = 0.687 \text{ in}^2 \)

\[I_p = \frac{(1.5)^4}{12} - \frac{(1.25)^4}{12} = 0.218 \text{ in}^4 \]

\[C = 0.75 \text{ in} \]
Design Calculation

Bending Stress

Assume simply supported beam (conservative)

\[
M = \frac{pl}{4} = \frac{200 \times 56}{4} = 2,800 \text{ in} \cdot \text{lb}
\]

\[
\sigma = \frac{Mc}{I} = \frac{2,800 \times 0.75}{0.218} = 9,633 \text{ lb/in}^2
\]

Acceptable (6063-T52) < 12,500 lb/in^2

The ASCE 7-88, 1988, Table 2 requires that an elevated platform be designed to carry a live load of 60 lb/ft^2 (alternate criterion).

Assume only the two long sides carry the load.

Platform area = 42 x 28 + \frac{1}{2} x 12 x 28 = 1,344 in^2 = 9.33 ft^2

Total load = \frac{60 \times 1344}{(12)^2} = 560 lb

Load per linear inch (on two sides only) = \frac{560}{(56 + 12)} = 5.71 lb/in

Moment = \frac{WL^2}{8} = \frac{5.71 (56)^2}{8} = 2,240 \text{ in} \cdot \text{lb}

\[
\sigma = \frac{Mc}{I} = \frac{2,240 \times 0.75}{0.218} = 7,706 \text{ lb/in}^2
\]

Acceptable (6063-T52) < 12,500 lb/in^2

A-15
5.4 LEGS

Assume a horizontal load of 200 lb at the platform is reacted by the four legs and the two ladder rails (neglect the two supports locating the portable platform to the truck platform).

L e g s:

- Tube outside dimension = 1\(\frac{1}{4}\)" x 1\(\frac{1}{4}\)" square tube.
- Tube thickness = 0.125 in.
- Area = \((1.25)^2 - (1.0)^2\) = 0.562 in\(^2\)
- \[I = \frac{(1.25)^4}{12} - \frac{(1.0)^4}{12} = 0.12 \text{ in}^4 \]
- \(C = 0.625 \text{ in} \)

Assume the ladder rails (1\(\frac{1}{2}\)" square tube) are the same size as the legs, conservative.

Assume the six legs are cantilever beams with 80-in. length (actual length 48\(\frac{1}{4}\)-in.), conservative.

\[\text{Moment} = P \times l = 200 \times 50 = 10,000 \text{ in-lb} \]
ASSUME the ladder rails have the same properties as the legs (conservative).

\[
\sigma = \frac{MC}{6I} = \frac{10,000 \times 0.625}{6 \times 0.12} = 8,680 \text{ lb/in}^2
\]

Acceptable (6063-T52) < 12,500 lb/in²

The vertical load on the legs (including platform weight) produces negligible stresses.

When the two truck supports share the load, the stresses in the legs will be less than 8,680 lb/in².

5.5 LADDER

The ladder railings and rungs are constructed from \(1\frac{1}{2} \times 1\frac{1}{2} \times 1\frac{1}{8}\) square tube.

Side Railing

The ladder railings are attached to the two legs on the side. Assume the 200 lb person load is applied horizontally on the lower rung (i.e. 40-in. distance from the upper support in the platform). For conservatism, assume the ladder railings have the same tube size as the legs (i.e. \(1\frac{1}{4} \times 1\frac{1}{4}\) tube).
Design Calculation

(1) Drawing

(2) Doc. No.

(3) Page 16 of 42

(4) Building

(5) Rev.

(6) Job No.

(7) Subject Portable Platform M CST # 2

(8) Originator Nanon H. Fried

(9) Checker	Date 3-7-94

(10) See section properties in Section 5.4.

\[
M = 200 \times 40 = 8,000 \text{ in.-lb}
\]

\[
\sigma = \frac{MC}{4I} = \frac{8,000 \times 0.625}{4 \times 0.121} = 10,417 \frac{lb}{in^2}
\]

(6063-T52) < 12,500 \frac{lb}{in^2}

Acceptable

Rungs

Assume simply supported beam with 200 lbf at the middle of the rung. See section properties in Section 5.3.

Rung span = 19 - 3 = 16 in.

\[
M = \frac{Pl}{4} = \frac{200 \times 16}{4} = 800 \text{ in.-lb}
\]

\[
\sigma = \frac{MC}{I} = \frac{800 \times 0.75}{0.218} = 2,752 \frac{lb}{in^2}
\]

(6063-T52) < 12,500 \frac{lb}{in^2}

Acceptable.
5.6 SOCKETS

The sockets of the railing are more critical than the sockets of the lypo and ladder. The sockets are stiffened by plates or angles welded on the sides of the sockets and on the platform tubes. Each socket has a different stiffener arrangement as provided in WHC 1994a and shown on page 13.

The sockets are all within 1-in of welds. Therefore, the reduced allowable stresses are applicable.

5.6.1 Post Sockets

The moment on the railing sockets is 8,600 in-lbf. See section 5.2. The sockets are made of 1 3/4-in. by 1 3/4-in. by 5/8-in. square tube.

\[
\text{Area} = (1.75)^2 - (1.5)^2 = 0.8125 \text{ in}^2 \\
\text{I} = \frac{(1.75)^4}{12} - \frac{(1.5)^4}{12} = 0.36 \text{ in}^4 \\
C = 0.875 \text{ in}
\]

The socket of the single post is critical because it has to withstand the 200 lb by itself.
5.6.1.1 Single Post With Stiffeners

The socket of the single post is surrounded by 4 stiffeners with \(\frac{1}{4}\)-in. thickness.

The moment of inertia is composed of the tube and the four stiffeners.

\[
I_{tube} = 0.36 \text{ in}^4
\]

\[
I = 2 \frac{0.25 \times (1.25)^3}{12} + 2 \frac{1.25 \times (0.25)^3}{12} + 2 (1.25 \times 0.25)(1.0)^2 + I_{tube}
\]

\[
= 0.0813 + 0.0033 + 0.625 + 0.36
\]

\[
= 1.07 \text{ in}^4
\]

\[
C = \frac{1.75}{2} = 0.875 \text{ in. (socket wall)}
\]

\[
\sigma = \frac{Mc}{I} = \frac{8,600 \times 0.875}{1.07} = 7,033 \text{ kpsi}
\]

(Welded 6063-T52) \(< 9,000 \text{ kpsi}

Acceptable
5.6.1.2 Posts 1 & 4 (See page 13)

These poles are at the ends of the railing. Each one will carry not more than 60% of the load applied in the plane of the railing, and not more than 90% of the load applied perpendicular to the plane of the railing.

These poles have 3 stiffeners.

- A tube = 0.8125 in²
- I tube = 0.36 in⁴
- \(C_x = \frac{2.25}{2} = 1.125 \) in

Centroid Calculations (About Base)

\[
C_y = \frac{0.8125 \times 1.125 + (1.25 \times 0.25) \times 0.125 + 2 \times (1.25 \times 0.25) \times 1.125}{0.8125 + 3 \times (1.25 \times 0.25)} = 0.946 \text{ in}
\]

\[
C_y = 2.0 - 0.946 = 1.054 \text{ in}
\]

\[
I_{x-y} = 0.36 + 0.8125 \times (0.179)^2 + 2 \times \frac{0.25 \times (1.25)^3}{12} + \frac{1.25 \times (0.25)^3}{12} + (1.25 \times 0.25) \times (0.946 - 0.125)^2 = 0.7 \text{ in}^4
\]

\[
I_{y-x} = 0.36 + 0.25 \times (1.25)^3 + 2 \times \frac{(1.25 \times 0.25)^3}{12} + 2 \times (1.25 \times 0.25) \times (1)^2 = 1.03 \text{ in}^4
\]

\[
\sigma_x (\text{parallel to rail}) = \frac{0.6 \times 8,600 \times 1.054}{0.7} = 7,770 \text{ lb/ft}^2
\]

\[
O_y (\text{perpendicular to rail}) = \frac{0.9 \times 8,600 \times 1.125}{1.03} = 8,454 \text{ lb/ft}^2
\]

Acceptable

\(< 9,000 \text{ lb/ft}^2 \)
5.6.1.3 Posts 2 and 3

These posts are in the middle of the railing (see page 13). Each post has only one stiffener and will not carry more than 40\% of the load in any direction (engineering judgment).

From page 17;

A tube = 0.8125 in\(^2\)

I tube = 0.36 in\(^4\)

\[C_{y1} = \frac{0.8125 \times \left(\frac{1.25}{2} + 0.25\right) + (1.25 \times 0.25) \times 1.25}{0.8125 + (1.25 \times 0.25)} = 0.847\text{ in} \]

\[I_{x-x} = 0.36 + 0.8125(0.278)^2 + \frac{1.25(0.25)^3}{12} + (1.25 \times 0.25)(0.847 - 0.125) = 0.878\text{ in}^4 \]

\[I_{y-y} = 0.36 + 0.25\left(\frac{1.25}{2}\right)^3 = 0.4\text{ in}^4 \]

\[\sigma_x (\text{perpendicular to rail}) = \frac{0.4 \times 8,600 \times 1.53}{0.878} = 6,757\text{ lb/ft}^2 \]

\[\sigma_y (\text{parallel to rail}) = \frac{0.4 \times 8,600 \times 0.875}{0.4} = 7,525\text{ lb/ft}^2 < 9,000\text{ lb/ft}^2 \]

5.6.2 Ladder and Legs Sockets

The results in Section 5.4 and 5.5 show that the ladder rails are stressed more than the legs. Assume the four ladder sockets are all 1\(\frac{1}{2}\)-in. by 1\(\frac{3}{4}\)-in. square tube (see page 12). Assume no stiffeners.

\[\sigma = \frac{8,000 \times 0.175}{4 \times 0.218} = 6,880\text{ lb/ft}^2 < 9,000\text{ lb/ft}^2 \]
5.7 SUPPORT BRACKET

The platform is secured on the truck by two brackets. The brackets restrain the platform from moving horizontally. The two round tubes (1.0 in. O.D. x 0.188 in. Wall) take only horizontal load; they are not touching the brackets in the vertical direction. The legs and ladder should touch the truck floor before the collar of the two tubes touch the brackets otherwise the platform will be hanging on the brackets and cause unsafe rocking motion (unstable condition).
The tube is the critical component, if it passes then the steel bracket passes.

Tube O.D. = 1.00 in.
Wall thickness = 0.188 in. (3/16)
Tube I.D. = 0.625 in

Area = \(\frac{\pi}{4} \left((1)^2 - (0.625)^2 \right) \) = 0.48 in\(^2\)

\[I = \frac{\pi}{64} \left[(1)^4 - (0.625)^4 \right] = 0.0416 \text{ in}^4 \]

Assume the 200 lbf load is carried by the two brackets only (neglect the Lego).

\[M = \frac{3 \times 200}{2} = 300 \text{ lin-lbf per bracket} \]

\[\sigma = \frac{300 \times 0.5}{0.0416} = 3,606 \text{ lbf/lin}^2 \]

(Welded 6061-T6) < 12,000 lbf/lin\(^2\)

Acceptable
5.8 WELDS

The weld analysis procedure of Blodgett 1982 is used in this evaluation.

5.8.1 Railing Welds

The worst case is the 1/8 in. fillet weld on the 1/2 in. tube analyzed in Section 5.1.

\[
M = \frac{P l}{8} \quad \text{(Fixed ends)}
\]

\[
M = \frac{200 \times 29.26}{8} = 731.5 \text{ in-lbf}
\]

\[
A_w = \pi D = 4.71 \text{ in}
\]

\[
S_w = \frac{\pi D^2}{4} = 1.767 \text{ in}^2
\]

\[
f = \frac{M}{S_w} + \frac{P}{A_w} = \frac{731.5}{1.767} + \frac{100}{4.71} = 414 + 21.2
\]

\[
= 435.2 \text{ lbf/in}
\]

Shear stress \(f_{sw} = \frac{435.2}{0.707 \times 0.125} = 4925 \text{ lbf/in}^2 \)

Acceptable \(< 5,000 \text{ lbf/in}^2 \)
5.8.2 Welds of Sockets of Posts

The layout of the posts is shown on page 13.

The single post is surrounded by four stiffeners; two plates and two angles. Posts 1 and 4 are stiffened by three stiffeners, two plates and one angle. Posts 2 and 3 have only one plate stiffener each. Assume the welds deposited on each socket are carrying the load applied on that socket and that the welds joining the stiffener to the other parts of the structure do not share in carrying the load on that socket.

In Section 5.6, the load on each socket was defined according to the arrangement of the posts and engineering judgement. The single post carries the full load. Posts 1 and 4 each carries 60% of the load in the plane of the railing and 90% of the load perpendicular to the railing. Posts 2 and 3 do not carry more than 40% of the load in any direction.

The section properties and the weld analysis follow the methods of Blodgett 1982.
5.8.2.1 Single Post

Diagram

![Diagram of a single post structure with dimensions and labels](image)

Table: Moment of Inertia Calculation

<table>
<thead>
<tr>
<th>Member</th>
<th>Size (L)</th>
<th>Distance (y)</th>
<th>Area (A = L \times 1)</th>
<th>(M = A \times y)</th>
<th>(I_y = A \times y^2)</th>
<th>(I_j = L \times d^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.25</td>
<td>0.0</td>
<td>1.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>0.875</td>
<td>1.25</td>
<td>1.09375</td>
<td>0.357</td>
<td>0.163</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>2.1875</td>
<td>3.828</td>
<td>-</td>
</tr>
<tr>
<td>4 to 7</td>
<td>1.25</td>
<td>0.875</td>
<td>1.25</td>
<td>1.09375</td>
<td>0.357</td>
<td>0.163</td>
</tr>
<tr>
<td>8 & 9</td>
<td>2(2.5)</td>
<td>0.0</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>3.0625</td>
<td>5.359</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>1.75</td>
<td>0.875</td>
<td>1.75</td>
<td>1.53125</td>
<td>1.34</td>
<td>0.446</td>
</tr>
<tr>
<td>12</td>
<td>1.75</td>
<td>0.875</td>
<td>1.75</td>
<td>1.53125</td>
<td>1.34</td>
<td>0.446</td>
</tr>
</tbody>
</table>

Total:

| 32 | 25.5 | 36.281 | 1.218 |

\[
I_y = I_y + I_g - \frac{M^2}{A} \quad \text{mm} = \frac{M}{A} = 0.8 \text{ in.} (0.875" \text{actual})
\]

\[
I_y = 36.281 + 1.218 - \left(\frac{25.5}{32}\right)^2 = 17.18 \text{ in}^3
\]
Analytical Calculations

Subject: Portable Platform of CST #2
Originator: Hassen I. Zieda
Date: 2-17-95
Checker:
Date: 3-9-95

Table: Inx (Unit Weld Size)

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>Distance</th>
<th>Area</th>
<th>M = A \cdot y</th>
<th>I_y = A \cdot y^2</th>
<th>I_x = I_y d^2 / 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
<td>—</td>
</tr>
<tr>
<td>5 & 5'</td>
<td>2(2.5)</td>
<td>1.25</td>
<td>5.0</td>
<td>6.25</td>
<td>7.8125</td>
<td>2(1.302)</td>
</tr>
<tr>
<td>6 & 6'</td>
<td>2(2.5)</td>
<td>1.25</td>
<td>5.0</td>
<td>6.25</td>
<td>7.8125</td>
<td>2(1.302)</td>
</tr>
<tr>
<td>7 & 7'</td>
<td>2(2.5)</td>
<td>1.25</td>
<td>5.0</td>
<td>6.25</td>
<td>7.8125</td>
<td>2(1.302)</td>
</tr>
<tr>
<td>8 & 8'</td>
<td>2(2.5)</td>
<td>1.25</td>
<td>5.0</td>
<td>6.25</td>
<td>7.8125</td>
<td>2(1.302)</td>
</tr>
<tr>
<td>9</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td>3.0625</td>
<td>9.2656</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td>3.0625</td>
<td>9.2656</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td>3.0625</td>
<td>9.2656</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td>3.0625</td>
<td>9.2656</td>
<td>—</td>
</tr>
</tbody>
</table>

Total: | 32.00 | 37.50 | 62.5 | 10.416 |

\[I_{nx} = 62.5 + 10.416 - \left(\frac{37.5}{32} \right)^2 = 28.97 \text{ in}^3 \]

\[M_{max} = \frac{37.5}{32} = 1.17 \]

Note: Assume 5'-8' at same location as 5-8.

Page 26 of 42

BD-8400-080.1 (07/93)

A-28
ANALYTICAL CALCULATIONS

Subject: Portable Platform CST #2
Originator: Hassan H. Zohn
Checker: A. Kall
Date: 2-17-95

\[C = \sqrt{(2.5-1.17)^2 + (0.875)^2} = 1.592 \text{ in.} \]

\[J_W = I_{nx} + I_{ny} = 28.97 + 17.18 = 46.15 \text{ in}^3 \]

\[Z_W = \frac{J_W}{C} = \frac{46.15}{1.592} = 29.0 \text{ in}^2 \]

Shear force \(f = \frac{F}{Z_W} = \frac{8,600}{29.0} = 296.5 \text{ lb/lin} \)

Shear stress \((\beta_{sw}) = \frac{296.6}{0.707 \times 0.125} = 3,356 \text{ lb/in}^2 \)

Acceptable \(< 5,000 \text{ lb/in}^2 \)

5.8.2.2 Posts 1 and 4

These two posts are not expected to carry more than 90% of the load in a direction perpendicular to the plane of the railing and not more than 40% in the plane of the railing. For weld analysis, the 90% of the load is used because the welds are evaluated for the torsional shear capacity. The 90% load bounds the 40% load. The orientation of the lowest torsional sectional property is used.
ANALYTICAL CALCULATIONS

Subject: Portable Platform of EST #2

Posts 1 & 4

(\(Y \) is the axis of the lower moment of section, see page 19)

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>Distance (y)</th>
<th>Area (A = L \times t)</th>
<th>Moment (M = A \times y)</th>
<th>(I_y = A \times y^2)</th>
<th>(I_y = \frac{1}{12} I_{x}d^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.25</td>
<td>0.875</td>
<td>1.25</td>
<td>1.09375</td>
<td>0.957</td>
<td>0.163</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>1.75</td>
<td>1.25</td>
<td>2.1875</td>
<td>3.828</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.25</td>
<td>0.875</td>
<td>1.25</td>
<td>1.09375</td>
<td>0.957</td>
<td>0.163</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>7 & 8</td>
<td>2.25</td>
<td>1.5</td>
<td>5.0</td>
<td>7.5</td>
<td>11.25</td>
<td></td>
</tr>
<tr>
<td>8 & 8</td>
<td>2.25</td>
<td>1.5</td>
<td>5.0</td>
<td>7.5</td>
<td>11.25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>1.75</td>
<td>3.0625</td>
<td>5.359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.75</td>
<td>0.875</td>
<td>1.75</td>
<td>1.5325</td>
<td>1.34</td>
<td>0.446</td>
</tr>
<tr>
<td>12</td>
<td>1.75</td>
<td>0.875</td>
<td>1.75</td>
<td>1.5325</td>
<td>1.34</td>
<td>0.446</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>25.5</td>
<td>36.281</td>
<td>1.218</td>
<td></td>
</tr>
</tbody>
</table>

\[I_{y} = 56.281 + 1.218 \times \frac{(2.5 \times 5)^2}{25.75} = 12.25 \text{ in}^3 \]

\[M_{y} = \frac{25.5}{25.75} = 1.0 \text{ in} \]

A-30
ANALYTICAL CALCULATIONS

Subject: Portable Platform of Truck #2

<table>
<thead>
<tr>
<th>Member</th>
<th>Size (in)</th>
<th>Distance (in)</th>
<th>Area (in²)</th>
<th>Moment of Inertia (in⁴)</th>
<th>Section Modulus (in³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
</tr>
<tr>
<td>4</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>3.125</td>
<td>7.8125</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>1.25</td>
<td>2.5</td>
<td>3.125</td>
<td>3.90625</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>1.25</td>
<td>2.5</td>
<td>3.125</td>
<td>3.90625</td>
</tr>
<tr>
<td>7 & 8</td>
<td>2(2.5)</td>
<td>1.25</td>
<td>5.0</td>
<td>6.25</td>
<td>7.8125</td>
</tr>
<tr>
<td>9</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.75</td>
<td>0.0</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[I_{yx} = 46.875 + 7.812 - \frac{(28.125)^2}{25.75} = 23.97111 \text{ in}^3 \]

\[S_{yx} = \frac{28.125}{25.75} = 1.092 \text{ in} \]

\[A = 25.75 \text{ in} \]

\[B = 28.125 \text{ in} \]

\[C = 46.875 \text{ in} \]

\[D = 7.812 \text{ in} \]
ANALYTICAL CALCULATIONS

Subject: Portable Platform of CST #2

Originator: J. Smith
Date: 2-21-85

Checker: H. Johnson
Date: 3-9-85

\[C = \sqrt{(1.0)^2 + (2.5 - 1.0)^2} = 1.727 \text{ in.} \]

\[J_w = I_{nx} + I_{ny} = 12.25 + 23.97 = 36.22 \text{ in}^3 \]

\[Z_w = \frac{36.22}{1.727} = 20.97 \text{ in}^2 \]

Shear force \[= \frac{0.9 \times 8,600}{20.97} = 369 \text{ lb/in} \]

Shear stress \[= \frac{369}{0.767 \times 0.125} = 4,177 \text{ lb/in}^2 \]

Acceptable \[< 5,000 \text{ lb/in}^2 \]

Posts 2 & 3

These posts are in the middle of the railing. Each one will not carry more than 40% of the applied load in any direction (engineering judgement). The orientation of the lowest torsional sectional property is used.
ANALYTICAL CALCULATIONS

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>Distance</th>
<th>Area A=Ly</th>
<th>M=A.y</th>
<th>Iy=A.y^2/2</th>
<th>Iz=Ix.d^2/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.25</td>
<td>0.875</td>
<td>1.25</td>
<td>1.09375</td>
<td>0.957</td>
<td>0.163</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
<td>1.5</td>
<td>2.5</td>
<td>3.75</td>
<td>5.625</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>1.75</td>
<td>—</td>
<td>1.75</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>3.0625</td>
<td>5.359</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>1.75</td>
<td>0.875</td>
<td>1.75</td>
<td>1.53125</td>
<td>1.34</td>
<td>0.446</td>
</tr>
<tr>
<td>12</td>
<td>1.75</td>
<td>0.875</td>
<td>1.75</td>
<td>1.53125</td>
<td>1.34</td>
<td>0.446</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13.25</td>
<td>10.96875</td>
<td>14.621</td>
<td>1.055</td>
</tr>
</tbody>
</table>

\[I_{ny} = 14.621 + 1.055 = \frac{(10.97)^2}{13.25} = 6.59 \text{ in}^3 \quad M_{ny} = 0.875 \text{ in.} \]
ANALYTICAL CALCULATIONS

Subject: Portable Platform M CST #7

Originator: Henry H. Few
Date: 2-21-85
Checker: Phane Good
Date: 3-9-85

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Member} & \text{Size} & \text{Distance} & \text{Area} & \text{Moment} & \text{Area Moment} \\
& \text{L} & \text{Y} & \text{A=Lx1} & \text{M=A\cdot Y} & \text{I_y = A \cdot Y^2} \\
\hline
4 & 1.25 & 2.5 & 1.25 & 3.125 & 7.8125 \\
6 & 2.5 & 1.25 & 2.5 & 3.125 & 3.90625 \\
8 & 2.5 & 1.25 & 2.5 & 3.125 & 3.90625 \\
9 & 1.75 & 91 & 1.75 & 1.302 & 1.302 \\
10 & 1.75 & 91 & 1.75 & 1.302 & 1.302 \\
11 & 1.75 & 91 & 1.75 & 1.302 & 1.302 \\
12 & 1.75 & 91 & 1.75 & 1.302 & 1.302 \\
\hline
\text{Total} & 13.25 & 9.375 & 15.625 & 2.604 \\
\hline
\end{array}
\]

\[
I_{x} = 15.625 + 2.604 - \frac{(9.375)^2}{13.25} = 11.6 \, \text{in}^3 \quad M_{x} = \frac{9.375}{13.25} = 0.707 \, \text{in}
\]

\[SD-6400-060.1 (07/93)\]

A-34
\[C = \sqrt{(0.875)^2 + (2.5-0.707)^2} \leq 2.0 \text{ in.} \]

\[J_W = I_n x + I_n y = 11.6 + 6.59 = 18.19 \text{ in}^3 \]

\[Z_W = \frac{18.19}{2} \approx 9.1 \text{ in}^2 \]

\[\text{Shear force} = \frac{0.4 \times 8,600}{9.1} = 378 \text{ lb/in} \]

\[\text{Shear stress} = \frac{378}{0.707 \times 0.125} = 4277 \text{ lb/in}^2 \]

Acceptable \[< 5,000 \text{ lb/in}^2 \]

5.8.3 Platform Welds

The welds of the platform frame carry very small loads because they are at the corners (where the legs are) and the fiberglass grating platform will distribute the load along the four sides of the platform. In addition, the welds are full penetration welds. Therefore, the welds are not critical.
5.8.4 Welds for Leg Sockets

See Section 5.4 for load details. There are four leg sockets (1½-in. by ½-in. by ½-in. tube) and two ladder sockets (1¾-in. by 1¾-in. by ½-in. tube) carrying the horizontal load. Assume all 6 sockets are ½-in. tube with only one stiffener.

\[P = 200 \text{ lb} \]
\[l = 50 \text{ in.} \]
\[M = 10,000 \text{ in.-lb} \]

From pages 35 & 36 (next two pages)

\[J_W = I_{nx} + I_{ny} = 6.57 + 4.31 = 10.88 \text{ in}^3 \]
\[C = \sqrt{(0.75)^2 + (2-0.578)^2} = 1.61 \text{ in.} \]
\[Z_W = \frac{10.88}{1.61} = 6.8 \text{ in}^2 \]

Shear force \[= \frac{10,000}{6 \times 6.8} = 245 \text{ lb/in} \]

Shear stress \[= \frac{245}{0.707 \times 0.125} = 2,773 \text{ lb/in}^2 \]

Acceptable \[< 5,000 \text{ lb/in}^2 \]
ANALYTICAL CALCULATIONS

Iny

(Unit Weld Size)

<table>
<thead>
<tr>
<th>Member</th>
<th>Size</th>
<th>Distance Y</th>
<th>Area A= LxL</th>
<th>M= A.Y</th>
<th>Iyy= A.Y^2 /2</th>
<th>Izz= Lxd^3 /12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.25</td>
<td>0.75</td>
<td>1.25</td>
<td>0.9375</td>
<td>0.7031</td>
<td>0.163</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>1.375</td>
<td>2.00</td>
<td>2.75</td>
<td>3.7810</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>1.5</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>1.5</td>
<td>1.50</td>
<td>2.25</td>
<td>3.3750</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>0.75</td>
<td>1.50</td>
<td>1.125</td>
<td>0.8437</td>
<td>0.28125</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>0.75</td>
<td>1.50</td>
<td>1.125</td>
<td>0.8437</td>
<td>0.28125</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11.25</td>
<td>8.187</td>
<td>9.545</td>
<td>0.7255</td>
</tr>
</tbody>
</table>

\[\text{Iny} = 9.545 + 0.725 - \frac{(8.187)^2}{11.25} = 4.31 \text{ in}^2 \]

\[\text{Iny} = 0.75 \text{ in} \]

BD-8400.060.1 (07/93)

A-37
Analytical Calculations

Subject
Portable Platform of Truck #2

Originator
Harris N. Hinds

Date
2-23-85

Checker

Calculations

Base Line For Iny

Base Line For Inx

Table: Member Calculations

<table>
<thead>
<tr>
<th>Member</th>
<th>Size L</th>
<th>Distance Y</th>
<th>Area A = Lxh</th>
<th>M = A.y</th>
<th>I_p = A.y^2</th>
<th>I_g = (1/12) L^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.25</td>
<td>2.0</td>
<td>1.25</td>
<td>2.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>1.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.0</td>
<td>0.667</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>1.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.0</td>
<td>0.667</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>—</td>
<td>1.50</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>—</td>
<td>1.50</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>—</td>
<td>1.50</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>—</td>
<td>1.50</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11.25 6.5</td>
<td>9.0</td>
<td>1.33</td>
<td></td>
</tr>
</tbody>
</table>

\[I_{ny} = 9.0 + 1.33 - \frac{(6.5)^2}{11.25} = 6.57 \text{ in}^3 \]

\[I_{nx} = \frac{6.5}{11.25} = 0.578 \]
5.8.5 Welds For Ladder Sockets

See Section 5.5 for loads. The ladder load is carried by two leg sockets and two ladder rail sockets. Assume all 4 sockets are 1/8-in. tube with only one stiffener.

\[ZW = 6.8 \text{ in}^2 \] (see page 34)

\[M = 8,000 \text{ in-lb} \]

Shear force = \[\frac{8,000}{4 \times 6.8} = 294 \text{ lb/in} \]

Shear stress = \[\frac{294}{0.707 \times 0.125} = 3328 \text{ lb/in}^2 \]

Acceptable \[\leq 5,000 \text{ lb/in}^2 \]

5.8.6 Welds For Ladder Rung

Assume fixed supported beam and all welds are fillet.

\[Aw = 2(1.5 \times 4) = 12 \text{ in. (two sides)} \]

\[Sw = bd + \frac{d^2}{6} = \frac{4}{3}(1.5)^2 = 3 \text{ in}^2 \]

Shear force = \[\frac{M}{Sw} + \frac{P}{Aw} = \frac{400}{3} + \frac{200}{12} = 150 \text{ lb/in} \]

Shear stress = \[\frac{150}{0.707 \times 0.125} = 1,697 \text{ lb/in}^2 \]

Acceptable \[\leq 5,000 \text{ lb/in}^2 \]

A-39
5.8.7 Support Tubes

The bracket assembly is given in Section 5.7. The weld of 1" O.D. tube to square tube is critical.

\[Aw = \pi D = 3.14 \text{ in} \]
\[Sw = \frac{\pi D^2}{4} = 0.785 \text{ in}^2 \]
\[M = 300 \text{ in}-16 \]p

\[f = \frac{M}{Sw} + \frac{P}{Aw} = \frac{300}{0.785} + \frac{100}{3.14} = 414 \text{ lb/in}' \]

Shear stress \(f_{SW} = \frac{414}{0.781 \times 0.125} = 4685 \text{ lb/in}^2 \)

Acceptable \(< 5,000 \text{ lb/in}^2 \)

The welds of the steel brackets have larger section properties and weld allowables. Therefore, they are acceptable by comparison.
5.9 PINS

All pins, clevises and bolts are 0.25-in. diameter. The bolts are made of steel ASTM A-307.
Assume the pins are made of Aluminum 6061 (conservative).

Shear area = \(\frac{\pi d^2}{4} = \frac{\pi}{4} (0.25)^2 = 0.049 \text{ in}^2 \)

Maximum load on any pin will never exceed 400 lbf (200 lbf man + 200 lbf assembly).
The worst pin is subjected to double shear.

\[T = \frac{400}{2 \times 0.049} = 4082 \text{ lbf/ln}^2 \]
\[< 12,000 \text{ lbf/ln}^2 \text{ (Section 4.1)} \]

Acceptable
6.0 SUMMARY OF RESULTS

The critical results at locations of interest are tabulated below.

Table 2. Stress Results at Locations of Interest.

<table>
<thead>
<tr>
<th>Component</th>
<th>Location</th>
<th>Tube or Weld Type (Material)</th>
<th>Stress Category</th>
<th>Calculated Stress 1bf/in²</th>
<th>Allowable Stress 1bf/in²</th>
<th>Design Margin (DM)</th>
<th>Page Number (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railing</td>
<td>29.26 in. side</td>
<td>1.5 in. O.D. tube (6061-T6)</td>
<td>bending</td>
<td>8,525</td>
<td>21,000</td>
<td>1.46</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-in. fillet weld</td>
<td>shear</td>
<td>4,925</td>
<td>5,000</td>
<td>0.02</td>
<td>23</td>
</tr>
<tr>
<td>Posts</td>
<td>Single Post</td>
<td>1.5 in. solid bar (6061-T6)</td>
<td>bending</td>
<td>26,008</td>
<td>28,000</td>
<td>0.08</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(solid bar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical socket</td>
<td>1 3/4 x 1 3/4 x 4-in. square tube (6063-752 welded)</td>
<td>bending</td>
<td>8,454</td>
<td>9,000</td>
<td>0.06</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Welds at socket (worst case)</td>
<td>4-in. fillet weld (4043)</td>
<td>shear</td>
<td>4,177</td>
<td>5,000</td>
<td>0.20</td>
<td>30</td>
</tr>
<tr>
<td>Platform</td>
<td>long sides</td>
<td>1% x 1% x 4-in. square tube (6063-152)</td>
<td>bending</td>
<td>9,633</td>
<td>12,500</td>
<td>0.30</td>
<td>13</td>
</tr>
<tr>
<td>Legs</td>
<td>Top of the leg</td>
<td>1% x 1% x 4-in. square tube (6063-152)</td>
<td>bending</td>
<td>8,680</td>
<td>12,500</td>
<td>0.44</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Welds at socket</td>
<td>4-in. fillet weld (4043)</td>
<td>shear</td>
<td>2,773</td>
<td>5,000</td>
<td>0.60</td>
<td>34</td>
</tr>
<tr>
<td>Ladder</td>
<td>Side railing</td>
<td>1% x 1% x 4-in. square tube (6063-152)</td>
<td>bending</td>
<td>10,417</td>
<td>12,500</td>
<td>0.20</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Welds at sockets (2 railings + 2 legs)</td>
<td>4-in. fillet weld (4043)</td>
<td>shear</td>
<td>3,328</td>
<td>5,000</td>
<td>0.50</td>
<td>37</td>
</tr>
<tr>
<td>Support</td>
<td>Welds at 1.0 in. O.D. tube</td>
<td>4-in. fillet weld (4043)</td>
<td>shear</td>
<td>4,685</td>
<td>5,000</td>
<td>0.07</td>
<td>38</td>
</tr>
</tbody>
</table>

(1) The allowable stresses are listed in Table 1.
(2) DM = \frac{\text{Allowable Stress}}{\text{Calculated Stress}} - 1.
(3) Page number in the Appendix.
DESIGN CALCULATION

(1) Drawing _______________________ (2) Doc. No. ______________________ (3) Page 41 of 42
(4) Building _______________________ (5) Rev. ______________________ (6) Job No. ______________________
(7) Subject Portable Platform of CST #2
(8) Originator Edward H. Tisch Date 12-1-94
(9) Checker Lawrence Kallen Date 3-9-85

7. REFERENCES

BD 6400 060 1 (12/87)

A-43
DESIGN CALCULATION

(1) Drawing ________________________________ (2) Doc. No. ____________________________ (3) Page 42 of 42
(4) Building ________________________________ (5) Rev. ________________________________ (6) Job No. ____________________________
(7) Subject Portable Platform of CST #2
(8) Originator Hassan H. Zeid Date 12-1-94
(9) Checker Pamina Kaddou Date 3-9-95

Kilsby, 1994, Tubing and Stock List, Kilsby-Roberts, Brea, California.
