Optimization of high-temperature superconductor current leads

PDF Version Also Available for Download.

Description

Methods to improve the performance of high-temperature superconducting current leads are analyzed. Designs are considered that are inherently safe from burnup, even if the lead enters the normal state. The effect of a tapered lead that takes advantage of the increase in critical current density with decreasing temperature will decrease helium boiloff by about a factor of two for an area ratio of four. A new concept, in which Ag powder is distributed in increasing concentration from the cold end to the hot end of the lead in sintered YBCO, is shown to have comparable performance to that of leads ... continued below

Physical Description

5 p.

Creation Information

Seol, S.Y.; Hull, J.R. & Chyu, M.C. February 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Seol, S.Y. Chonnam National Univ., Kwangju (Korea, Democratic People`s Republic of)
  • Hull, J.R. Argonne National Lab., IL (United States)
  • Chyu, M.C. Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Methods to improve the performance of high-temperature superconducting current leads are analyzed. Designs are considered that are inherently safe from burnup, even if the lead enters the normal state. The effect of a tapered lead that takes advantage of the increase in critical current density with decreasing temperature will decrease helium boiloff by about a factor of two for an area ratio of four. A new concept, in which Ag powder is distributed in increasing concentration from the cold end to the hot end of the lead in sintered YBCO, is shown to have comparable performance to that of leads made with Ag-alloy sheaths. Performance of the best inherently safe designs is about one order of magnitude better than that of optimized nonsuperconducting leads. BSCCO leads with Ag-alloy sheaths show improved performance for Au fractions up to about 3%, after which increases in Au fraction yield negligible performance improvement.

Physical Description

5 p.

Notes

OSTI as DE95005838

Source

  • Applied superconductivity conference, Boston, MA (United States), 16-21 Oct 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95005838
  • Report No.: ANL/ET/CP--82190
  • Report No.: CONF-941013--31
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 35401
  • Archival Resource Key: ark:/67531/metadc680332

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1995

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 16, 2015, 5:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Seol, S.Y.; Hull, J.R. & Chyu, M.C. Optimization of high-temperature superconductor current leads, article, February 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc680332/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.