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Capiciflector Modeling 

Abstract 

2 

Computer Application Systems, Inc. is currently developing a ‘capiciflector’ sensor 
for a variety of commercial applications, e.g., object detection in robotics. The goal 
of this project was to create computational tools for simulating the performance of 
this device. The role of modeling is to provide a quantitative understanding of how 
the sensor works, and to assist in designing optimal sensor configurations for specific 
applications. A two-dimensional boundary integral code for determining the electric 
field was constructed, and a novel algorithm for solving the inverse design problem 
was investigated. Parallel implementation of the code, which will be required for 
detailed three-dimensional analysis, was also investigated. 

Objectives 

The goal of this project was to develop the capability of modeling the performance of 
a cupcijlector sensor, the ultimate goal being the optimization of sensor design. The 
two roles of modeling are to provide a quantitative understanding of sensor data (e.g., 
estimating distance to the object in addition to merely detecting its presence), and 
to provide an effective engineering design tool. The sensor involves many adjustable 
parameters (capacitor plate geometry, plate separation, etc.), and identifying an op- 
timal configydion is a highly nontrivial task. Compared to experiments, calculations 
are fast and simple, and thus the direct simulations can be combined with optimiza- 
tion algorithms to determine highly optimized sensor configurations for each specific 
application. 

Assessment 

This work has demonstrated that simulations can be effective in understanding and 
improving sensor performance, and thus the objectives of the CRADA were met. 
However, further development is required in order for CAS1 to have a truly functional 
engineering design system. The primary accomplishments of this project were: 

Modeling A two-dimensional Symmetric-Galerkin boundary integral code for solv- 
ing the Laplace equation was written. This program is capable of calculating 
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the capacitance of the sensor, and the electric field surrounding the sensor. The 
primary advantages of the Symmetric Galerkin method are the ability to com- 
pute an accurate solution at the sharp corners on the sensor plates, and reduced 
computational effort. Substantial progress was also made on the development 
of a three-dimensional code. 

Design Optimization A function maximization algorithm and implementation were 
developed for use in conjunction with the Symmetric-Galerkin code, for find- 
ing the specific 'capaciflector' design which produces optimal performance for a 
specified setting. Given a range of 'capaciflector' design parameters the Laplace 
equations are solved for a sequentially determined series of problems, leading 
to a solution which maximizes the change in capacitance associated with the 
appearance of an object in the field. The optimization algorithm used is based 
on recent research in Bayesian function approximation methods. and has the 
advantage of requiring fewer function evaluations than other available methods, 
allowing faster solution to the inverse (device design) problem. 

Parallel Implementation The close spacing of the capaciflector plates, and the sin- 
gularity at the corners of the plates, imply that refined discretizations will be 
required for accurate modeling. Thus, a parallel implementation of the bound- 
ary element method described above was constructed, taking advantage of the 
ScaLAPACK parallel linear algebra software. ScaLAPACK is a package of pro- 
grams to solve linear algebra problems on parallel platforms. In order to use this 
software, a block cyclic matrix decomposition v v a s  adopted and each processor 
only constructed its local portion of the matrix. The ScaLAPACK software 
was then employed to solve the linear system. 'The parallel code was exercised 
on a network of four IBM RS6000/590 workstations, with a discretization of 
the capaciflector having of 3000 nodes. Table 1 shows the execution time (in 
seconds) for the matrix build and solve portions of the program. 

I - 
Time vs Processors 

PROC BUILD SOLIZ LGJGO- 
2 . 130 71 
3 89 55 
4 68 42 

Table 1: Execution Times 
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DOE Benefits 

This work has contributed to the advancement of ruggedized proximity sensors for 
robotics work and other applications, and has made the applications knowledge avail- 
able for DOE projects. Experience has been gained in parallel-processing applications 
of the boundary element method, which may now be applied in other weapons appli- 
cations. 

Technical Discussion 

Boundary Integral Formulation 

A typical configuration for a capaciflector sensor is shown in figure 1. The ground 
plate is held at zero potential, while the shield and sensor plates are at possibly 
different potentials, but driven at the same frequency. Objects in the vicinity of the 
sensor will be detected from changes in the measured current: the object alters the 
electric field around the plates, which in turn changes the capacitance of the circuit 
and is reflected in the current. 

The capacitance of the circuit can be obtained by integrating the flux, the normal 
component of the electric field, over the surface of the shield and sensor. The flux 
is obtained by solving the electrostatic boundary value problem. The electrostatic 
potential #(x, y) satisfies the Laplace equation 

in the infinite domain exterior to the capaciflector plates. The electric field E is the 
gradient Vg5 of the potential, and the flux on the plates is the normal component 
Vg5. n ( L e . ,  the normal derivative of 4). 

Although the solution of Eq. (1) can be carried out by many methods, the boundary 
integral approach [3] is especially advantageous for this problem. Instead of solving 
the partial differential equation everywhere in the domain, this method solves the 
integral equation 
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I Shield 

Ground I 
Figure 1: A capaciflector sensor consists of a base ground plate, a shield plate, and 
the sensor plate. 

for the unknown boundary values of the flux. In this equation, r is the boundary 
of the domain (Le. ,  the capacitor plates), and G(P,Q) = -1ogI)Q - Pll/27r is the 
point source potential. Note first that understanding the performance of the sensor 
requires evaluation of the current, which in turn is determined solely by the flux 
on the boundary (capacitor plates). The boundary integral method calculates these 
surface derivatives directly and accurately, and as interior values are not needed, this 
is an efficent technique. Second, the Laplace equation holds in the infinite domain 
exterior to  the plates, and the boundary formulation is clearly simpler for this type 
of problem. 

Standard collocation techniques, as employed in all commercial boundary integral 
software, for solving this equation would have difficulties at the corners of the sensor 
plates. As the supplied boundary condition is potential, there are two unknown flux 
values at the corner, and standard techniques cannot handle this situation. How- 
ever, in the Galerkin approach, two separate equations at the corner point can be 
constructed, resulting in a more accurate corner treatment. As the ‘edge effects’ are 
important in the sensor operation, this is an important advantage. In addition, the 
Symmetric Galerkin method provides a fast algorithm [I]. 
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Sensor Optimization 

Design of the 'capaciflector' consists of specifying the dimensions and locations of 
plates displayed in Fig. 1. Because the device allows detection of objects through 
changes in the circuit capacitance, device designs resulting in the largest changes for 
a given object are deemed optimal for this purpose. The associated inverse problem 
is then optimization of the difference in computed capacitances, with and without 
the object to be sensed, with respect to the design parameters. 

The primary practical difficulty with this problem is the relatively large number 
of function evaluations required to complete the optimization process, particularly 
when a number of design parameters are considered simultaneously. Most standard 
numerical techniques are iterative, and are based on a series of local approximations 
to the objective function and its derivatives, within small neighborhoods of the design 
space. Computational overhead for such search procedures is generally small, but if 
objective function evaluations are time consuming, the overall task of optimization 
using most popular techniques can be prohibitive. 

In this work, we have developed a function optimization procedure which, while re- 
quiring somewhat more overhead than conventional techniques, accomplishes maxi- 
mization of smooth objective functions using fewer evaluations. The method is based 
on recent research in Bayesian function approximation 123 including a sequential strat- 
egy based on the following steps: 

1. 

2. 

3. 
. .  

4. 

A standard starting set of Symmetric Galerkin evaluations is made, which are 
well-spread throughout the available design region. 

Using the data from the set of evaluations which have been made at a given 
point, the objective function is approximated via a nonparametric statistical 
method. 

Response (change in capacitance) is predicted for each possible device configu- 
ration, and predictive standard errors of these predictions are determined within 
a Bayesian formulation. 

The design with the largest "credible" response is identified, based on these 
predictions and standard errors, the Symmetric Galerkin code is executed for 
this configuration, the results of the run is added to the collection, and a new 
cycle of modeling and prediction is begun. 
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The final step listed here is, itself, an optimization problem. However, i t  is computa- 
tionally much less demanding than direct optimization using the Symmetric Galerkin 
code since the function approximation can be quickly evaluated and its derivatives 
are known. The process is terminated when the "credible" response (prediction plus 
a fixed multiple of the predictive standard error) for al.1 possible devices is no greater 
than the largest calculated response so far observed. 

Preliminary results indicate that this procedure effectively identifies optimal param- 
eters for 'capaciflector' design using far fewer evaluations than would be required by 
most currently available derivative-free optimization techniques. 

Invent ions 

No inventions arose out of this work. Several journal articles, describing the novel 
computational techniques developed for this project, are currently being prepared. A 
preprint of a paper concerning the parallel implementation, accepted for publication 
in Engineering Analysis with Boundary EZements, is attached to this report. 

Cornrnercializat ion 

Although there appears to be no commercial potential for the code itself, the code will 
potentially expand the commercial applications of the capciflector sensor. The ability 
to model and optimize sensor design can (a) reduce design and experimentation time 
(time to market), (b) reduce manufacturing costs (e.g. if the sensor can be made 
smaller it lowers material costs), and (c) allow sensor design for novel applications. 

Future Collaboration 

CASI and the project team are exploring potential funding sources (DoD SBIR, com- 
mercial contracts, etc.) for continuing the developmient of the design software. In 
addition, CASI is investigating the application of sensors which are driven at high 
frequency. Modeling of these devices would require the solution of Maxwell's equa- 
tions, rather than the Laplace equation, and efficient analysis of time dependent elec- 
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tromagnetic fields can also be carried out with boundary integral techniques. Thus, 
the work in this project can be extended to high frequency sensors. 

Conclusions 

This project has been successful in demonstrating the ability to model and analyze the 
capaciflector sensor, and in providing CAS1 with a preliminary design tool. Further 
development is required to establish a fully functional system which can be routinely 
employed in CASI’s engineering design process. 
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Abstract 
We report on initial progress towards a Parallel Virtual Machine (PVM) im- 
plementation of the Symmetric-Galerkin boundary integral method. We take 
advantage of software packages specifically designed to solve linear algebra 
problems on distributed memory parallel computers. In particular we use lin- 
ear algebra routines from the ScaLAPACK, PBLAS, and BLACS, libraries. 
These routines assume a block cyclic decomposition of the matrix operands. 
The decomposition of the operands and its impact on the construction of 
the coefficient matrix are described. Computational results for solving the 
two-dimensional Laplace equation are presented. This program is being used 
to simulate the performance of a proximity sensor used in robotics and other 
applications. 

Key wurds: Boundary Element method, parallel processing, workstation 
cluster, proximity sensor, block linear algebra algorithms. 
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1 Introduction 
The Symmetric-Galerkin (SG ) method [19, 23, 241 has emerged as a robust 
and highly efficient boundary integral algorithm. The importance of this rel- 
atively new approximation primarily derives from two features. First, in this 
approach, hypersingular integrals can be evaluated without a C' boundary 
interpolation [ 16, 251, a consequence of the additional boundary integration 
in the Galerkin formulation. Thus. standard and relatively simple to  imple- 
ment Co conforming element technology can be employed. =Is is well known. 
however, the extra Galerkin integration is computationally quite expensive. 
The second aspect of this method. obtaining a symmetric coefficient matrix, 
is therefore equally important. in that it reduces computation times (on serial 
computers) to a level rivaling standard collocation 12. 31. 

Hypersingular equations are essential for the boundary integral analysis 
of crack geometries [4. 7 ,  18, 211, and thus one of the main applications of 
Symmetric-Galerkin is the important area of fracture analysis [ 171. However, 
even with the computational advantages of SG , realistic three-dimensional 
fracture analysis, multiple cracks in a composite material for example, will 
be beyond the computing power of a single workstation. Moreover, as will be 
discussed below, there are applications, even in two dimensions, which require 
large scale computing. Thus, the development of a parallel implementation 
of SG is highly desirable. 

For engineering firms, parallel supercomputers are generally unavailable. 
The most readily accessible form of parallel computing for most companies is 
networked workstations, and consequently we investigate the performance of 
the SG algorithm using the Parallel Virtual Machine (PVM) software. PVM 
is a portable message passing library. PVM can be used to support message 
passing on many parallel platforms from massively parallel supercomputers 
to network connected collections of workstations. In this work PVM is the 
message passing layer on which the parallel linear algebra packages, ScaLA- 
PACK, PBLAS, and BLACS, are built. The interface to the message passing 
is hidden from the user in these packages in that no explicit buffer packing 
and sending is done. The required data transfer is handled by the linear al- 

' gebra packages themselves when an operation is performed on a global data 
item. 

Previous investigations of parallel boundary integral methods (see [8, 91 
and references therein) have primarily dealt with collocation methods. Nev- 
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ertheless, the structure of a Galerkin code is not very different from a collo- 
cation algorithm, and thus is is possible to take advantage of previous work. 
Following [13], we have chosen to employ a block decomposition of the co- 
efficient matrix, z. e., each processor is responsible for constructing specific 
sub-blocks of the matrix. We have exploited the availability of a parallel 
linear algebra routine based upon a block decompositi~on. 

Of primary interest here. in our opinion. is the need for parallel comput- 
ing to carry out actual engineering calculations. The modeling application 
involves solution of the two dimensional Laplace equation. and is aimed at 
improving the performance of a capacitance type proximity sensor. The 
simulations can provide a quantitative understanding of the sensor measure- 
ment (changes in current), and can be used to optimize the sensor design for 
specific applications. -4s will be discussed further below, these simulations 
require extensive computing resources, even in two diimensions. 

2 Symmetric-Galerkin 
For simplicity, and as it relevant to the calculations presented below, the 
SG method will be presented in the context of the two dimensional Laplace 
equation. If V24 = 0 holds in the domain with boundary curve y ,  the 
corresponding boundary integral formulation is given by [5, 201 

where n = n(&) is the unit outward normal at  the point Q E y and d/an 
denotes the normal derivative. Although the fundamental solution G(P, Q) 
is usually taken to be the point source potential 

(2) 
1 

G(P, Q)  = -5 log 119 - pll , 
specialized Green’s functions, which partially satisfy the prescribed boundary 
conditions, are sometimes advantageous. As discussed in Section 3, the sensor 
simulations will in fact use a modified version of Eq. (2). 

As written, Eq. (1) holds for a point P E SZ interior to the domain, 
and defining the singular integrals in terms of a limit to the boundary [15], 
also for P E y [22]. Differentiating this equation with respect to P in the 
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direction N = n(P) results in the corresponding (hypersingular) equation 
for surface flux. 

It can be shown that, assuming @(Q) is differentiable at P ,  the limit as the 
interior point P approaches the boundarv exists. and thus Eq. (3) remains 
valid for P E y [15]. 

In a standard collocation approximation. the unknown boundary values 
of potential or flux are determined by insisting that either Eq. (1) or Eq. 
(3) holds at the boundarv nodes. This inevitably leads to a non-svmmetric 
system of linear equations. as the source point P onlv enters through its 
coordinates, while the the complete neighborhood geometry of Q is taken into 
account. However, P and Q do enter in a svmmetric fashion in a Galerkin 
formulation. -4 Galerkin approximation is a weighted residual formulation in 
which the shape functions i\Ik(Q) that are used to approximate the boundary 
functions, 

also serve as the weight functions in the residual statement. Thus, Eq. (1) 
is approximated as 

In matrix form, this equation can be written 

where a, @" denote the column vectors of boundary values of potential 
{ 4(Pk)} and flux { d4/an( Pk) }. Similarly, the hypersingular equation Eq. 
(3) reduces to 

%!b@ = Gban . (7) 
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The double integration over the boundary. together with the symmetry prop- 
erties of the fundamental solution (note that G(P, &) = G(Q, P ) )  ensure that 
the matrices Ga and Rb are symmetric. Thus, for a Dirichlet problem, Eq. 
(5) produces a symmetric coefficient matrix. and similarly the hypersingu- 
lar equation yields a symmetric matrix for a Neumanm problem. In 1985, 
Hartman [19] showed that symmetry is achieved for a rnixed boundary value 
problem if Eq. (5) is written on the Dirichlet surface and the hypersingular 
equation on the Neumann surface (see also 123, 241). The main advantage 
provided by the symmetry is that a direct solution is twice as fast as for a 
nonsymmetric matrix. 

3 Sensor Modeling 
The purpose of this section is to describe an industria1 problem, the model- 
ing of a capacitance type sensor, which requires parallel computing resources, 
even for two dimensional simulations. These proximity sensors have many 
applications, and the computations are essential for uinderstanding the per- 
formance of the sensor and for optimizing sensor design for specific uses. 
This work has been carried out in collaboration with Computer Application 
Systems, Inc., a company that designs and builds these devices. 

A typical configuration for a capaciflector sensor [26], consisting of ground, 
shield, and sensor plates, is shown schematically in figure 1. The ground plate 
is held at zero potential, while the shield and sensor plates are at  constant. 
possibly different, potentials. For low frequency applied voltages, the prob- 
lem can be modeled as electrostatic, with the potential (6(z, y) satisfying the 
Laplace equation in the infinite domain ezten'or to the plates. Objects in the 
vicinity of the sensor will be detected from changes in the measured current: 
the object alters the electric field around the plates, which in turn changes 
the capacitance, and hence the current, of the circuit. 

While the geometry appears to be quite innocuous, these calculations are 
actually very difficult: the horizontal and vertical axes in Fig. 1 are not 
on the same scale. The width (vertical dimension) of the plates is typically 
three orders of magnitude smaller than the length. Moreover, the vertical 
gap between plates is the same order of magnitude as plate width, and thus 
the plates cannot be idealized as infinitely thin. Consequently, both sides of 
all plates must be included, and furthermore the element size must be on the 
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Ground 

Figure 1: A capaciflector sensor consists of a base ground plate. a shield 
plate, and the sensor plate. 

order of the plate width. This last condition is required for accurate evalu- 
ation of the near-singular integrals which arise. The computation is further 
complicated by the re-entrant (for the exterior domain) rectangle corners. 
The constant potential boundary condition guarantees that the surface flux 
approaching a corner is singular, of the form T - ~ / ~ ,  where r is the distance to 
the corner [lo]. This singularity clearly presents a challenge for any numeri- 
cal method, and will also necessarily require a refined discretization near the 
corners. 

Modeling of this sensor is therefore inherently difficult, due to the dispar- 
ity of the length scales that are present. While specialized techniques could 
be invoked to partially reduce the computational work, any approach will 
involve large scale computing. In addition, as indicated above, the goal of 
this work is to employ simulations to optimize the design of the sensor config- 
uration. This will require an iterative process involving many computations, 
and thus parallel computing is essential. 

Note that the Laplace equation is posed in the infinite exterior domain, 
and this too presents somewhat of a problem. Although the physical bound- 
‘ary condition at infinity is that the potential decay to zero, the Green’s 
function, Eq. (2), diverges as IIQ - PI1 + 00. The boundary element pro- 
cedure, using just the finite boundary, will pick out the solution for which 
the integrals over a far-field boundary in either Eq. (1) or Eq. (3) cancel 
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out of the equation [ 5 ] .  This, however, does not necessarily correspond to 
the physicai solution. In particular, sensor simulations carried out without 
any regard for the far-field boundary condition produced unphysical answers. 
This problem has been dealt with by placing the entire calculation in a strip, 
-R 5 y 5 R, R large, and requiring that the flux vanish on the strip bound- 
aries y = fR. Rather than contend with these boundaries directly, which 
would significantly increase the size of the matrix and the solution time, an 
approximate Green’s function technique was employed. This method, which 
will be described elsewhere publication [14], is based upon the well-known 
reflection technique [5] for incorporating symmetry. It provides a physical so- 
lution without having to directly introduce a far-field boundary, which would 
have the undesirable consequence of increasing the problem size. 

4 PVM Implementation 
In this section we discuss the parallel implementation of the SG method 
outlined above. This initial work has centered on the simplest, but neverthe- 
less useful, situation, the solution of the two dimensional Laplace equation 
with Dirichlet data. The main consequence of this is that only the bound- 
ary integral equation, Eq. (l), is employed. Nevertheless, the algorithm for 
constructing the hypersingular flux equation is structured the same as the 
potential equation, and thus the performance results for this Dirichlet code 
are expected to carry over to a general SG program. 

The Laplace algorithm employed in this work differs from a ‘conventional’ 
boundary integral approach in two respects. First, in many implementations, 
both ?fa and Ga matrices are built and stored. While this is a convenient 
approach for relatively small problems, the storage of both matrices can limit 
the size of problem that can be attacked. Thus, the parallel code only stores 
&, constructing the right hand side vector, which consists of ?fa times the 
vector of known potentials, ‘on the fly’. This effectively cuts the memory 
requirement in half, and allows consideration of larger problems. Moreover, 
this approach is not an impediment for the design iterattion, as changes in the 
geometry would necessarily force recomputation of both matrices. The other 
modification, incorporated specifically for the sensor problem, addressed the 
requirement that the potential vanish at infinity. As discussed above, this 
boundary condition was included in the Green’s function. The tradeoff here 
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is between the additional computation required for this fundamental solution, 
versus the increased size of Ga (and the additional computation) that results 
from adding more boundary surface. Again viewing the problem size as the 
main limiting factor, the Green‘s function approach was deemed preferable. 

Networked parallel processing, such as Pl’hf, offers a reasonable solution 
to the problem of solving large scale boundary element problems. This is 
especially true for small or medium sized engineering companies, as access 
to mainframe machines will be nonexistent or too expensive. collection 
of network connected workstations was employed as the parallel platform 
for this work. The workstation cluster consisted of four IBM RS6000 590 
workstations connected via Ethernet. with each workstation having at  least 
128 megabytes of memory. The message passing capabilities were provided 
by the PVM system. 

Linear Algebra 

A boundary integral algorithm consists of two main parts, the construction 
and solution of a large dense system of linear equations. The matrix con- 
struction consists of completely independent integrations and is inherently 
perfectly parallel. The construction of the right hand side involves a matrix 
vector multiplication and will involve some communication. The factoriza- 
tion of the coefficient matrix and solution of the linear system also require 
interprocess communication. Thus, a main determining factor in the decid- 
ing on the division of work among processors is the availability of effective 
parallel matrix operation methods. The data decomposition strategy used 
in our work was heavily influenced by the desire to use the ScaLAPACK 
[ll] library. ScaLAPACK is a library of routines for solving linear algebra 
problems on distributed memory computers. It was designed to be a parallel 
version of the LAPACK [l] library, and like LAPACK it uses block factoriza- 
tion algorithms and parallel versions of the level 2 and level 3 Basic Linear 
Algebra Subprograms (BLAS). The decomposition used in our work is ac- 
tually imposed by the parallel BLAS, PBLAS [6]. The PBLAS assumes a 
block-cyclic decomposition of the matrix operands. That is the global matrix 
is partitioned into blocks and the blocks are distributed cyclically among the 
processors. 

Both ScaLAPACK and the PBLAS routine are designed to be portable 
and to  have calling syntax similar to their scalar counterparts. The PBLAS 
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in particular are meant to be building blocks for implementing parallel lin- 
ear algebra algorithms. In order to achieve this, in a distributed memory 
environment, a set of Basic Linear Algebra Communications Subprograms 
(BLACS) [12] was designed. The BLACS is a communications library that 
allows the programmer to  perform message passing on matrix subsections 
rather than lower level data. Portability and performance are achieved by 
using local message passing libraries and efficient BLAS implementations in 
support of the PBLAS and BLACS. 

The current ScaLAPACK library unfortunately does not contain a so- 
lution algorithm for symmetric indefinite systems. Symmetry is of course 
a basic motivation for using the SG approach. and this is therefore a ma- 
jor drawback. Nevertheless. as will be discussed below. the ScaLAPACK 
nonsymmetric solver produced excellent efficiencies. 

Block decomposition 

The routines that perform the task of constructing Ga and the right hand side 
vector contain two nested loops. The inner (& integration) and outer ( P  in- 
tegration) loop indices correspond to row and column indices respectively in 
the matrices. The block cyclic decomposition used by the linear algebra soft- 
ware has a direct influence on how the loop structure of the matrix element 
assembly process is parallelized. The reader is referred to the material on 
block decompositions in [6] for a detailed description of the decomposition. 

The loop structure in the serial code assembles the matrix entries by 
rows. The parallel code assembles the matrix entries by blocks. The block 
size is that used in the decomposition of the matrix. Only local blocks are 
constructed. This adds an additional outer loop over blocks to the matrix 
construction routines. The outer loop calculates the global starting indices 
of the first element in the block to be constructed and the indices in the 
local array where this block is to be stored. These indices are used by the 
inner loops to calculate the entries for this block. This scheme adds a small 
additional overhead to the matrix construction process. 

9 



5 Performance 
The numerical experiments consisted of solving a Dirichlet problem on a 
circle, and of solving the sensor problem described above. The problem size 
for the circle used 3000 nodes. This is easily solvable on a single workstation, 
and yet large enough to be a sensible test of the distributed computation. 
The sensor problem used 6600 nodes to describe the geometry. This problem 
was too large to solve on all but one of the workstations. as the memory 
requirement of the serial version of this code was close to 700 megabytes. 
The largest workstation had 512 megabytes of main memory and another 
512 megabytes of swap space on disk. The solution of this problem benefited 
greatly from the use of parallel processing. 

As a measure of the effectiveness of the implementation. the performance 
of the parallel code was compared to the serial code. As mentioned above, 
ScaLAPACK presently has no routine for solving symmetric indefinite sys- 
tems and so a general LU factorization algorithm, pdgesv, was used. A gen- 
eral LU factorization method was also used in the serial case even though 
routines for solving symmetric indefinite systems on a single processor are 
readily available. The LAPACK routine dgesv was used to solve the linear 
system in the serial case. 

The results of the test runs are shown in table 1. The single processor code 
assembles the matrix and solves the linear system of equations in 253 and 
120 seconds respectively. The solution time of 120 seconds for this problem 
translates to  a computational rate of 150 Mflops/sec. The LAPACK users 
guide [I] reports a rate of 168 Mflops/sec for this routine, (dgesv), on the same 
processor (IBM Rs6000/590). The difference in execution rates is most likely 
due to  the fact that we did not have access to the IBM ESSL library for the 
level 3 BLAS. 

The multiprocessor times in table 1 show that the matrix build portion of 
the program scales reasonably well. This portion of the code achieved speed 
up factors of 1.9, 2.8, and 3.7 on 2, 3, and 4 processor runs respectively. The 
ScaLAPACK routine did not scale as well in this test achieving a speed up 
of approximately 3 on four processors. Considerable communication occurs 
in this section of the code. The impact of the communication cost appears 
in the less than linear scaling. 

For the 6600 node sensor geometry, the one workstation having a large 
memory capacity and was used to run the serial version of the code. The 
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Time vs Processors 1 

4 68 42 

Table 1: Execution Times 

execution time in this case was 3 hours 36 minutes. The parallel version. 
running on the four workstation cluster, executed in 43 minutes. which rep- 
resents a 5 fold increase in speed. The reason for this superlinear speed up is 
that the serial code size (700 megabytes) far exceeded the physical memory 
of the workstation (512 megabytes), and thus computer must have paged in 
and out of physical memory. 

6 Conclusions 
Although the work presented here is preliminary, it nevertheless demonstrates 
that boundary integral computations, and in particular the SG approxima- 
tion, can be effectively carried out on networked workstations. We intend to 
continue this work on several fronts. First a parallel iterative solver will be 
developed. The plan is to substitute parallel BLAS calls for the serial BLAS 
in a GMRES and QMR iterative package. The logic for building the coeffi- 
cient matrix will also be revisited. It is expected that more efficient serial and 
parallel versions of this part of the code can be developed. Second, a general 
SG algorithm, one that includes the use of the hypersingular equation, needs 
to be investigated. The concern here is that the hypersingular integrations 
require more work than their potential equation counterparts, and thus load 
balancing of the calculation might become a problem. Finally, realistic three 
dimensional sensor simulations will clearly require more computing resources, 
and a larger cluster of workstations needs to be employed. 
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