Prediction of violent mechanochemical processes

PDF Version Also Available for Download.

Description

Energetic materials, such as high explosives, propellants and ballotechnics, are widely used as energy sources in the design of numerous devices, components and processes. Although most energetic materials are selected for safe operation, their high energy densities have the potential for inadvertent initiation and subsequent powerful energy transformations. This potential for damage or injury places a heavy burden on careful analysis of safety issues as part of the design process. As a result, considerable effort has been devoted to empirical testing of initiation conditions, and development of scientific models of initiation processes that have been incorporated into computer models for ... continued below

Physical Description

18 p.

Creation Information

Graham, R.A.; Anderson, M.U.; Holman, G.T. & Baer, M.R. January 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Energetic materials, such as high explosives, propellants and ballotechnics, are widely used as energy sources in the design of numerous devices, components and processes. Although most energetic materials are selected for safe operation, their high energy densities have the potential for inadvertent initiation and subsequent powerful energy transformations. This potential for damage or injury places a heavy burden on careful analysis of safety issues as part of the design process. As a result, considerable effort has been devoted to empirical testing of initiation conditions, and development of scientific models of initiation processes that have been incorporated into computer models for numerical simulation of initiation of reaction. Nevertheless, in many cases, there is still only rudimentary understanding of the processes of initiation. Mechanochemical processes are perhaps the least understood of the various excitation mechanisms. In these energy transformation processes mechanical stimuli lead directly to initiation and substantial reaction under conditions not thought to be capable of reaction. There are no established scientific models of the initiation of mechanochemical reactions in energetic materials. Mechanochemical reactions can be initiated by enhanced solid state chemical reactivity, changes in reactant configuration, and localization of initiation energy. Such solid state reactions are difficult to understand, either empirically or scientifically, as they are inherently nonequilibrium processes; scientific models currently used assume equilibrium thermochemical conditions and materials behaviors. The present work was undertaken as a first step in developing a scientific basis for prediction of the initiation of mechanochemical processes in high energy density solids.

Physical Description

18 p.

Notes

OSTI as DE97003150

Source

  • Other Information: PBD: Jan 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97003150
  • Report No.: SAND--97-0038
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/437696 | External Link
  • Office of Scientific & Technical Information Report Number: 437696
  • Archival Resource Key: ark:/67531/metadc680280

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 5, 2016, 8:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Graham, R.A.; Anderson, M.U.; Holman, G.T. & Baer, M.R. Prediction of violent mechanochemical processes, report, January 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc680280/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.