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Background 
In designing a product or process, it is often 

necessary to take many different types of factors into 
consideration. However, the factors of interest can 
generally be classified into two categories, controllable 
and uncontrollable. Controllable (or control) factors 
represent those factors which can be regulated. 
Examples of control factors include the choice of 
material, flow rates. processing pressures, times, and 
temperatures. Uncontrollable (noise) factors are factors 
that are either difficult, impossible, or too expensive to 
control during actual production or use. Examples of 
noise factors are environmental conditions such as 
ambient temperature or humidity, process parameters 
which are dictated by an outside source such as end 
user demand, and usage factors such as how long and 
at what temperature a consumer stores a product. It has 
been recognized that these noise factors may cause 
product characteristics to deviate from an established 
target value. If the noise factors transmitting the 
greatest amount of variation could be identifed and 
controlled; perhaps the product characteristic could 
remain on target. However, by definition, the noise 
factors cannot be controlled in actual use or 
production. Thus. in order to reduce the effect of the 
noise factors on the product characteristic, values 
should be selected for the control factors such that 
sensitivity to the noise factors is reduced. A reduction 
in sensitivity is often measured in terms of the product 
characteristic being on target with minimal variability. 
A product designed in this manner is said to have a 
robust design. 

Taguchi’s Approach 
One of the individuals primarily responsible for 

bringing the idea of robust parameter design to the 
attention of modern manufacturing is Dr. Genicb 
Taguchi. He deserves recognition for not only 
vigorously promoting the idea of robust product 
designs but also for showing that experimental design 
can be used as a formal part of the engineering process 
to accomplish a robust design. Because the noise 

factors cannot be controlled, Taguchi advocated the use 
of experimental design to identify the settings of the 
controllable factors such that the effect of the noise 
factors is minimized. 

A typical Taguchi type experiment consists of a 
design matrix or inner array which specifies the 
settings of the control factors and is usually a fractional 
or screening design. It is assumed for the purpose of 
experimentation, that the noise factors can be 
temporarily fixed in order to assess their effect on the 
product characteristic. The different combinations of 
temporarily fixed noise factor settings are specified in a 
noise matrix or outer array which is usually a 2k 
design. The two arrays are then crossed, so that every 
combination of control factors in the inner array takes 
place at every condition called for by the outer array of 
noise factors. The purpose of crossing the arrays is to 
deliberately induce variation due to the noise factors in 
a balanced manner. A response is then measured at 
every “design point” of the crossed array. 

A typical Taguchi type analysis would involve 
calculating for each combination of the control factors, 
a performance statistic. usually called the signal-to- 
noise (S/N) ratio. 11 appears that the S/N ratio is 
intended to be a combined measure of the mean and 
variability of the product characteristic (Myers, et. al, 
1992). The goal of the experiment is to ident@ the 
combination of control factors in the inner may  which 
maximize the S/N ratio. The analysis may also involve 
performing an ANOVA on the observed responses in 
order to identlfy which factors have an effect only on 
the product mean. In adltion, an ANOVA may be 
performed on the S/N ratio to look for variables that 
effect both the product variance and the mean, so that 
they may be used to minimize the variation. More 
details about typical analyses of Taguchi experiments 
are given in Kackar (1985) and Taguchi and Wu 
(1980). 

Taguchi’s use of experimental design is somewhat 
novel and differs from typical experimental design 
approaches and so it is not surprising that his methods 
have been met with various criticisms. Amcles by Box 
(1985, 1988), Easterling (1985), Pignatiello and 
Ramberg (1985), and Myers et al. (1992) all explicitly 
discuss some common criticisms. The most dominant 
are (1) inefficiency in terms of the potential size of 
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experiments, (2) lack of flexibility in modeling, (3) the 
signal-to-noise ratio, and (4) preoccupation with 
optimization. 

In reference to criticisms (1) and (2) , a very large 
number of experimental trials may be required because 
the noise matrix is repeated for every row in the design 
matrix, In addition, designs suggested by Taguchi are 
not flexible with regard to modeling because they 
spec@ the treatment combinations that are run in both 
the design and the noise matrices, thus dictating the 
estimation of c e m n  effects regardless of their 
importance. In addition, Taguchi designs often assume 
that the control factors do not interact (Myers et al. 
1985). Therefore, one cannot use engineering 
knowledge or results of previous experimentation in 
choosing to include or to ignore specific interactions. 
Together, the previous can result in inflexible and 
unnecessarily large experiments. 

Dealing with criticism (3), as Easterling (1585) 
points out, the collapsing of the data to S / N  ratios 
throws away useful information. It masks the specific 
relationships between the control and noise factors by 
aggregating over all the noise factors in the calculation 
of the S/N ratio. The literature abounds with lively 
discussions and alternatives to the signal to noise ratio 
(Box 1988, Easterling 1985, Leon, Shoemaker, and 
Kackar 1987, Pignatiello and Rainberg 1985, Welch, 
Yu, Kang, and Sachs 1990). Lastly in regards to 
criticism (4), the preoccupation with optimization, the 
Taguchi experiments have traditionally been used to 
only pick a single winning combination of control 
factor settings. This can be problematic when because 
of cost dfierences between meren t  control factor 
settings, one may wish to consider a region of suitable 
settings. In addition, the Taguchi methods idenm the 
best combination of control factor settings observed in 
the experiment. If the control factor is a continuous 
variable, perhaps a more desirable setting occurs at a 
combination not directly observed in the experiment. 
By only optimizing a single criterion, a sacrifice is 
made in regards to potentially valuable knowledge 
about the product. 

A Response Surface Alternative 
Given these criticisms, a more desirable 

experimentation method would provide greater 
flexibility in the design of the experiment, utilize a 
more meaningful performance statistic, and lend itself 
to a better understanding of the product or process. 
One such experimentation method which has been 
proposed in the recent literature (Lucas 1994, 
Shoemaker et al. 1991, and Welch et al. 1990) is a 
response surface alternative which includes both the 
control factors and the noise factors in the design 

matrix. By fixing the noise factors for the purpose of 
experimentation, the response surface methodology 
provides a basis for estimating the product 
characteristic as a function of both the control and 
noise factors. Given ths relationship, the behavior of 
the characteristic can be estimated when the noise 
factors are truly random by assuming the product 
experiences a random set of noise factors and applying 
the appropriate mean and covariance operators. 
Therefore, the product characteristic mean and 
variance are given not by hypothesizing a model for 
the mean and variance (as in Vining and Meyers 
(1990)), but by manipulation of a model for the product 
characteristic which assumes the noise and control 
factors are both fixed. For example, suppose the 
response product characteristic can be expressed as a 
second order polynomial function of a set of k control 
factors, denoted by (XI ,  x2; ..., xk) ,  and a set of p noise 
factors, denoted by (z,, z:, ..., zp). In matrix notation, 
such a second order response surface for the product 
characteristic of interest would be given by: 

where Yxz denotes the product characteristic of 
interest as a function of a fixed set of noise and control 
factors, s is the k-vector of control factors, and z is the 
p-vector of noise factors. In order to employ classical 
least squares theory, it is usually assumed that e, a 
random error component, follows a normal distribution 
with mean zero and variance 03. Furthermore, it is 
assumed that the noise factors are independent of the 
random error components. The coeficients p, , p . B, 
y , C, and D in the linear model are assumed fixed but 
unknown. 

Applying the expectation operator over all sources 
of randomness results in the product mean, denoted by 
Yx , being given by: 

Yx, = 4 + x'p + ~ ' B x  + Z'Y + Z'CZ + Z'DX + t' , 

- 

- 
Y, = E(YJ = Po + x'p -t X'BX 

+ P;(r + Dx) + PL:CP, + tr(AC), 
where pZ is the mean vector of the noise factors, A is 
the covariance matrix of the noise factors, and tr(AC) 
denotes the trace of the matrix product of A and C. 
With this expression, one could iden@ the product 
settings which place the product characteristic on 
target. 

Similarly, the product variance can be identified 
by applying the variance operator to the linear model. 
Because of covariance terms, the expression for the 
product variance is a bit more complicated to derive 
then the product mean. Abate (1995) shows that the 
product variance, denoted by V(x), is given by: 



V(x) = K + x’D’ADx + 2xfD’(Ay + E(zz’ 0 z’)vec(C)) 

- 2p;Dx(tr(AC) + p;Cpz) 
where K denotes a constant in x, vec(C) is defined to 
be the vector fonned by stacking the columns of C on 
top of each other, and A 0 B is defined to be the 
Kronecker product of the matrices A and B. Therefore. 
in order to completely specify the product mean and 
variance, moments of the noise distribution must be 
identified. In particular, the mean vector, the 
covariance matrix, and possible some lugher order 
moments and joint moments may have to be specified. 

The derivations for the product mean and variance 
were done without restrictions on the parametric 
distribution of the noise factors. The current literature 
has derived the mean and variance response surfaces 
only under the restrictive assumption that the noise 
factors are uncorrelated and uniform over the design 
region (Box and Jones 1992, Vining, et al. 1992) or 
normally distributed over the design region (Evans 
1995). While such assumptions on the noise 
distributions considerably simpllfy the derivation of the 
process mean and variance they may be unrealistic. For 
example, suppose the noise factors of interest were 
ambient temperature and humidity. It does not seem 
sensible to consider either of these to be uniform and 
such noise factors would almost certainly be correlated. 
It is also easy to envision noise factors that do not 
follow a normal distribution. For example, it is 
expected that noise factors such as storage time of food 
or other products which may deteriorate will follow a 
skewed distribution. With this in mind, the general 
expressions derived for the process mean and variance 
are preferable and more flexible then those available in 
the current literature. Given these two expressions, the 
related response surfaces for the product mean and 
variance could be explored graphically for a region of 
the control factor settings such that the product 
characteristic is near the target value with minimal 
variability. When the number of control factors would 
lead to complicated graphical exploration, it may be 
more clear to consider a single meaningful criteria. 
Such a criteria, which encompasses the two notions of 
being on target with minimum variance is mean 
squared error loss, defined b y  

L(x) = E[Y, - TI2 
2 

= E[Y, - ux] + [Tx - T]’ 

= V(X) +B(x)’, 
where T represents the specified target value, B(x) is 
the bias, and V(x) is the product variance as defined 
previouslq. The expectation is taken over the 
probability density function of the noise factors. Thus, 

L(x) is a combined measure of the product variance 
and distance to target. Minimizing the loss function 
over the control factors will identify settings which 
simultaneously depend on the bias and variance. 

A Case Study 
This response surface alternative to robust 

parameter design was applied to a plastic pellet 
manufacturing process at Eastman Chemical 
Company. A major goal in the production of plastic 
pellets is to keep a product characteristic, denoted Y, 
close to a target value of 29.996. Substandard or 
unsellable product may result if the characteristic 
deviates far enough from the established target value. 
The Eastman engineers knew that many inputs affected 
the product characteristic of interest. In particular, they 
had identified one uncontrollable factor, denoted zi, 
and two control factors, xi and x2, which influenced 
the value of the characteristic, Y. In order to better 
understand how these factors are related to the product 
characteristic, a three factor Box-Behnken design was 
run on the process. A Box-Behnken design was chosen 
in order to allow for the estimation of curvature effects 
because it was felt that running the process at the 
extreme vertices of a factorial design would not be 
possible. Three replicates were added at the center 
point conditions to give an estimate of pure error and 
to track the process stability during the experiment. 
The resulting experimental data is given in Figure 1, 
which shows the observations taken at the given values 
of the two control factors, xi and x2. Multiple 
observations at each (XI ,x2) combination correspond to 
different values of zi with the exception of the center 
point replication where zi=O. 

Figure 1: Experimental Data. 



A least squares fit of the data was made. The 
resulting estimated response surface model contained 
linear, quadratic, and interaction terms. The lack of fit 
was found to be insignificant and diagnostics did not 
reveal any departures from model assumptions. The 
reduced model that was eventually adopted on the basis 
of the analysis was: 

qn = 30.002+.018xl+.019x,-.008x~ 

-.022z, -.009xlz, +.0Iz: 
The estimated coefficients in the previous equation 

can be used to generate an estimated response surface 
for the mean and variance of Y.  By taking the 
expectation and variance over the noise factor, the 
estimated mean model is given by: 

* - 
Y, = 30.002+.018x1 +.019x2-.008.x~ 

- (.022+.009x,)E(zl)+.0 E($) 

. 

and the estimated variance by: 
Vgr(x) = K + (.022+.009~,)~Var(z,) 

- (.0002x1)(E(z:) - E(z , )E(Z;) )  
Notice that the estimated response surface for the 

variance is only a function of xi .  This is because the 
control factor x2 does not interact with the noise factor. 
and therefore does not have a significant effect on the 
variance of Y. In order to identify the optimal settings 
of the control factors, it is necessary to specify the first 
through third moments of the noise factor. A historical 
data set was available that gave the values of the noise 
factor over an eight month period following the 
experiment. Production constraints throughout these 
eight months resulted in the historical noise factor 
levels being on the high side and often outside the 
region of the experimental design. Figure 2 is a 
histogram of the historical noise data which were used 
to estimate the moments necessary to completely 
spec& the estimated mean and variance response 
surfaces. 
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Figure 2: Histogram of the Historical Noise Data for z, . 

Substituting the estimated moments for z1 into the 
estimated product mean yields the response surface in 
Figure 3 and shows that the target value of 29.996 can 
be achieved for x1 ranging between -1 and 1 and 
corresponding x2 values between 0 and 1. Figure 4 
gives the estimated standard deviation for Y (actually 
the square root of the variance plus a constant) and has 
a discernible minima around - . 5 .  
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Figure 3 : Estimated Product Mean Response Surface 
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Using the estimated mean and standard deviation 
response surfaces, the corresponding estimated optimal 
settings found by minimizing the loss function are x1 = 
-.550 and x2 = .533. Considering Figures 3 and 4, these 
minima of the loss function are not surprising. 
However, investigation of these figures also reveals 
that there may be a larger range of optimal control 
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factor settings which place the response nearly on 
target with minimal variance. In addition, these 
estimated optimal control factor settings are random 
variables because they are functions of random least 
squares estimates and estimated historical noise factor 
moments. That is, both the experimental and historical 
data transmit variability to the estimated optimal 
settings. The experimental data transmits variability 
through the least squares estimates, and the historical 
data through the estimated noise factor moments. For 
these reasons, it was desired to assess the variability 
associated with the estimated optimal control factor 
settings. Because only the data at hand is available to 
assess this variability, a resampling method was 
applied. 

To assess the variability associated with the use of 
historical data in estimating the noise factor moments, 
a non-parametric bootstrap technique was utilized. In 
this technique, B resamples are drawn with 
replacement from the original collection of observed 
noise factor values. This results in B resampled noise 
factor data sets. From each of these resampled noise 
factor data sets, the moments necessary to specify the 
estimated product mean and variance are computed. 
This exercise results in estimates of the noise factor 
moment distributions. 

The other source of variability associated with the 
estimated optimal settings arises from using the 
experimental data to estimate the response surface 
parameters. The assumptions associated with the use of 
the response surface model imply that the underlying 
source of variability associated with the experimental 
data is the error term distribution whch is assumed to 
be nornial with zero mean and constant variance. In 
this experiment, the center points were used to estimate 
this variance and thus the pure error distribution. From 
this parametric distribution, B resamples of error terms 
were simulated. Using these B sets of error terms, the 
settings of the control factors and noise factors from 
the original Box-Behnken design, and the original 
least squares estimates, B sets of experimental data 
were constructed. For each of these B sets of 
experimental data, the response surface model 
parameters were again estimated. Use of this 
parametric bootstrap results in estimates of the least 
squares distributions. 

Combining the nonparametric and the parametric 
bootstrap methods previously outlined, B sets of both 
the historical noise moments and the response surface 
least squares estimates are generated. Each set of these 
resampled estimates may then be substituted into the 
expressions for the product mean and variance in order 
to form the loss function. Minimizing the loss function 
for each set of resample estimates results in B estimates 

;e(?, ) =.263 

of the optimal control factor settings. By calculating 
the standard error across these B estimates, a statement 
of variability associated with the optimal settings 'nay 
be obtained. Denoting the estimated parametric error 
distribution by N(o,o:), aGd the original vector of 
historical noise data by h ,  this dual bootstrap 
procedure can be pictured as in Figure 5. Applying this 
dual bootstrap procedure with B= 1000 resamples 
results in the estimated optimal settings and associated 
standard errors given in Table 1 

i2 =.533 I 

Table 1 : Estimated Optimal Settings and Standard 
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Figure 5: Dual Bootstrap Method. 

Using the results in Table 1, a region of possible 
optimal settings can be idenwied by considering some 
multiple of the standard error. For example, taking 
plus and minus 1.5 standard errors from the estimated 
optimal settings results in consideration of the region 
bounded by: 

-.9451~, <-,156 and -.085<~, 21.151. 
Such a region may be used for further 

confirmatory experimentation. Comparing th~s region 
back to Figures 3 and 4 of the product mean and 
variance, it is obvious that it corresponds to control 
factor settings where the estimated mean response was 
very close to the target value of 29.996 with minimal 
variance. Thus, in this case study, graphically 
exploring the product mean and variance leads to a 
conclusion similar to that found by formally 



minimizing an appropriate loss function and assessing 
the associated variability. The usefulness of this more 
formal process is most apparent in situations where the 
number o f  control factors complicate strict graphical 
exploration of the product mean and variance response 
surfaces. By applying the response surface 
methodology demonstrated in thus case study, control 
factor settings were identified which placed the 
characteristic of interest on target with minimal 
variability, thus resulting in a robust parameter design. 
In addition, use of this response surface alternative to 
Taguchi methods lent itself to a better understanding of 
the manufacturing process. 
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