Peak fitting applied to low-resolution enrichment measurements

PDF Version Also Available for Download.

Description

Materials accounting at bulk processing facilities that handle low enriched uranium consists primarily of weight and uranium enrichment measurements. Most low enriched uranium processing facilities draw separate materials balances for each enrichment handled at the facility. The enrichment measurement determines the isotopic abundance of the {sup 235}U, thereby determining the proper strata for the item, while the weight measurement generates the primary accounting value for the item. Enrichment measurements using the passive gamma radiation from uranium were developed for use in US facilities a few decades ago. In the US, the use of low-resolution detectors was favored because they cost ... continued below

Physical Description

15 p.

Creation Information

Bracken, D.; McKown, T.; Sprinkle, J.K. Jr.; Gunnink, R.; Kartoshov, M.; Kuropatwinski, J. et al. December 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Materials accounting at bulk processing facilities that handle low enriched uranium consists primarily of weight and uranium enrichment measurements. Most low enriched uranium processing facilities draw separate materials balances for each enrichment handled at the facility. The enrichment measurement determines the isotopic abundance of the {sup 235}U, thereby determining the proper strata for the item, while the weight measurement generates the primary accounting value for the item. Enrichment measurements using the passive gamma radiation from uranium were developed for use in US facilities a few decades ago. In the US, the use of low-resolution detectors was favored because they cost less, are lighter and more robust, and don`t require the use of liquid nitrogen. When these techniques were exported to Europe, however, difficulties were encountered. Two of the possible root causes were discovered to be inaccurate knowledge of the container wall thickness and higher levels of minor isotopes of uranium introduced by the use of reactor returns in the enrichment plants. the minor isotopes cause an increase in the Compton continuum under the 185.7 keV assay peak and the observance of interfering 238.6 keV gamma rays. The solution selected to address these problems was to rely on the slower, more costly, high-resolution gamma ray detectors when the low-resolution method failed. Recently, these gamma ray based enrichment measurement techniques have been applied to Russian origin material. The presence of interfering gamma radiation from minor isotopes was confirmed. However, with the advent of fast portable computers, it is now possible to apply more sophisticated analysis techniques to the low-resolution data in the field. Explicit corrections for Compton background, gamma rays from {sup 236}U daughters, and the attenuation caused by thick containers can be part of the least squares fitting routine. Preliminary results from field measurements in Kazakhstan will be discussed.

Physical Description

15 p.

Notes

INIS; OSTI as DE99001211

Source

  • 39. Institute of Nuclear Materials Management (INMM) annual meeting, Naples, FL (United States), 26-30 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001211
  • Report No.: LA-UR--98-2436
  • Report No.: CONF-980733--
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/296666 | External Link
  • Office of Scientific & Technical Information Report Number: 296666
  • Archival Resource Key: ark:/67531/metadc680102

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 25, 2016, 10:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bracken, D.; McKown, T.; Sprinkle, J.K. Jr.; Gunnink, R.; Kartoshov, M.; Kuropatwinski, J. et al. Peak fitting applied to low-resolution enrichment measurements, report, December 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc680102/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.